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For more than a century, electrophysiologists, cardiologists and engineers have studied the electrical activity of the human
heart to better understand rhythm disorders and possible treatment options. Although the depolarisation sequence of the
heart is relatively well characterised, the repolarisation sequence remains a subject of great controversy. Here, we study
regional and temporal variations in both depolarisation and repolarisation using a finite element approach. We discretise
the governing equations in time using an unconditionally stable implicit Euler backward scheme and in space using a
consistently linearised Newton–Raphson-based finite element solver. Through systematic parameter-sensitivity studies, we
establish a direct relation between a normal positive T-wave and the non-uniform distribution of the controlling parameter,
which we have termed refractoriness. To establish a healthy baseline model, we calibrate the refractoriness using clinically
measured action potential durations at different locations in the human heart. We demonstrate the potential of our model by
comparing the computationally predicted and clinically measured depolarisation and repolarisation profiles across the left
ventricle. The proposed framework allows us to explore how local action potential durations on the microscopic scale
translate into global repolarisation sequences on the macroscopic scale. We anticipate that our calibrated human heart model
can be widely used to explore cardiac excitation in health and disease. For example, our model can serve to identify optimal
pacing sites in patients with heart failure and to localise optimal ablation sites in patients with cardiac fibrillation.

Keywords: electrophysiology; depolarisation; repolarisation; electrocardiogram; T-wave; refractoriness; finite element
method

1. Introduction

Formore than a century, the electrocardiogram has served as

a cheap, non-invasive, highly accurate and easily reprodu-

cible diagnostic tool to monitor the electrical activity of the

human heart. In the healthy heart, the electrocardiogram

consists of three characteristic segments: a small hump, the

P-wave, associated with atrial depolarisation; a sharp dip-

rise-dip sequence, the QRS-complex, associated with

ventricular depolarisation; and a small hump, the T-wave,

associated with ventricular repolarisation (Noble and

Cohen 1978; Keener and Sneyd 1998), see Figure 1.

Although the depolarisation sequence and theQRS-complex

are relatively well characterised, the repolarisation sequence

and the T-wave remain poorly understood (Opthof et al.

2009; Patel et al. 2009).However, the clinical significance of

the T-wave cannot be underestimated: inverted T-waves can

indicate coronary ischaemia, Wellens’ syndrome, left

ventricular hypertrophy or central nervous system disorders;

tall and narrow symmetrical T-waves can indicate

hyperkalaemia; flat T-waves can indicate coronary ischae-

mia or hypokalaemia (Klabunde 2005). In the healthy

heart, the T-wave is positive in all three limb leads. Positive

T-waves reflect the fact that the last cells to depolarise are the

first to repolarise (Franz et al. 1991). The central hypothesis

of this work is that we can incorporate this regional

information through a novel non-uniform material par-

ameter, the refractoriness, and that the heterogeneity of this

parameter is critical to accurately capture the T-wave profile

in the electrocardiogram.

Within the past three decades, computer models of the

heart have gained increasing popularity (Clayton et al.

2011). Computer models have the potential to visualise

regional depolarisation and repolarisation sequences of the

heart (Kotikanyadanam et al. 2010), to localise disturb-

ances (Bacharova et al. 2011), to identify optimal locations

for intervention and to virtually probe different treatment

options. Conceptually speaking, we can distinguish two

classes of electrophysiological models: ionic models and

phenomenological models.

Ionic models characterise the electrophysiological

behaviour by explicitly considering the transport of charged

ions across the cell membrane (MacLachlan et al. 2007;

Wong et al. 2011). Their major advantage is that they are

mechanistic in origin, providing detailed information
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about ion concentrations and ion channel dynamics.

However, their inherent disadvantages are their high

computational cost and their large number of material

parameters. Because of the inherent lack of human tissue

samples, the calibration of these parameters is traditionally

based on experiments with non-human cells, usually under

conditions that barely represent the full physiological

regime (Pullan et al. 2005).

Phenomenological models characterise the electro-

physiological behaviour by capturing empirical obser-

vations on the macroscopic scale. One inherent advantage is

their low computational cost. As such, they have played a

significant role in advancing the frontiers of computer

simulation in cardiac electrophysiology. The majority of

cardiac cell models derive from the Hodgkin–Huxley

model of the giant squid axon (Hodgkin and Huxley 1952).

Simplified two-variable versions of the Hodgkin–Huxley

model, e.g. the FitzHugh–Nagumo model (Fitzhugh 1961;

Nagumo et al. 1962), have enabled further progress in

the mathematical analysis and numerical simulation of

cardiac electrophysiology.Amodification of the FitzHugh–

Nagumo model, the Aliev–Panfilov model for cardio-

myocytes (Aliev and Panfilov 1996), has shown excellent

agreement with all the salient features of the depolarisation

and repolarisation cycle of individual cardiomyocytes,

including the dependence of action potential duration on

cycle length.

The major disadvantage of phenomenological models

is that they typically introduce several material par-

ameters, which lack a direct physiological interpretation.

In general, those parameters are calibrated by tuning the

proposed model to fit available experimental data. To

simplify the calibration process, a common assumption in

cardiac electrophysiology is to consider a uniform

distribution of the model parameters throughout the entire

cardiac domain (Clayton et al. 2011). In reality, however,

electrophysiological properties of cardiomyocytes may

display large regional variations, sometimes also referred

to as dispersion. The observed heterogeneity can be

attributed to locally varying densities of gap junctions, ion

channels, pumps and exchangers to name but a few

(Burton and Cobbe 2001). Spatial heterogeneities give rise

to non-uniform conduction velocities and non-uniform

action potential durations. Experimental evidence supports

the heterogeneity of the action potential duration, both

regionally and transmurally (Antzelevitch et al. 1991;

Viswanathan et al. 1999; Stoll et al. 2008). In particular,

the last regions to depolarise are commonly known to be

the first to repolarise, giving rise to positive T-waves in the

electrocardiogram (Franz et al. 1987; Cowan et al. 1988;

Conrath and Opthof 2006).

Mathematical models of electrophysiology have been

solved numerically using finite-difference methods (Panfi-

lov and Keener 1995; Winslow et al. 2000), finite-volume

methods (Johnston 2010) and finite-element methods

(Rogers and Mc Culloch 1994). In addition to their

complete geometric flexibility, finite-elementmethods have

the advantage of seamlessly coupling the primary potential

field with other fields, e.g. with a second potential field in

bidomain models (Dal et al. 2012), with a mechanical field

(Göktepe et al. 2011) in excitation–contraction coupling

(Göktepe and Kuhl 2010), or with an optical field in

optogenetics (Abilez et al. 2011; Wong et al. 2012).

Furthermore, they allow us to use existing finite element

infrastructures, e.g. adaptive time stepping schemes, which

can reduce the computational time down to the order of

minutes or seconds (Wong et al. 2011). Here, we make

use of yet another benefit of finite element schemes which

comes at almost no additional cost: finite element

algorithms allow us to extract computational electrocardio-

grams in a simple, standard post-processing step (Kotika-

nyadanam et al. 2010; Bacharova et al. 2011; Okada et al.

2011).

In this study, we use a novel robust, stable and efficient

finite element algorithm to systematically explore how the

regional variation of cellular action potential profiles affects

the repolarisation sequence in a human heart. After briefly

summarising the continuous problem of cardiac excitation

in Section 2, we illustrate the algorithmic realisation in

Section 3. In Section 4, we identify a functional relation

between the local action potential duration and a

phenomenological model parameter, which we introduce

as the refractoriness. In Section 5, we utilise this relation

to calibrate our model by means of clinically measured

action potential durations at different locations in the

human heart. We confirm our simulations by computational

electrocardiograms which display a normal positive T-wave.

Finally, we demonstrate the potential of our model by

comparing computationally predicted and clinically

measured depolarisation and repolarisation profiles across

Figure 1. Schematic of electrocardiogram sequence for a
healthy human heart, showing the P-wave, QRS-complex and T-
wave.
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the left ventricle. We conclude with a brief discussion and

outlook in Section 6.

2. Continuous problem of cardiac excitation

In what follows, we model the excitation of cardiac tissue

through a coupled system of equations (Fitzhugh 1961;

Nagumo et al. 1962), which characterise the electrical

response through the action potentialf and the biochemical

response through the recovery variable r (Aliev and

Panfilov 1996; Göktepe and Kuhl 2009). To account for the

propagating nature of excitation waves, we introduce a flux

term in the electrical conservation law, while the recovery

variable r remains strictly local and governed by local

kinetics.

2.1 The global electrical problem

We model the electrical problem through the spatio-

temporal evolution of the action potential f, initiated by

the flux div q and by the source f f,

_fþ divqðfÞ ¼ f fðf; rÞ: ð1Þ

The flux term characterises the propagating nature of

excitation waves,

q ¼ 2D�7f; ð2Þ

parameterised in terms of the second-order diffusion

tensor D ¼ d isoIþ d anin^n, which can account for both

isotropic diffusion d iso and anisotropic diffusion d ani along

a preferred direction n. The source term characterises the

local action potential profile,

f f ¼ cf½f2 a�½1 2 f�2 rf; ð3Þ

parameterised in terms of a cubic polynomial,

cf½f2 a�½1 2 f�, and a coupling term, rf, introducing

the recovery variable r. Herein c is a scaling parameter and

a is the oscillation threshold. While positive a values

characterise stable non-pacemaker cells, negative a values

characterise oscillatory pacemaker cells. Experimentally,

we can calibrate the global flux term q using

microelectrode array recordings (Chen et al. 2012) and

the local source term f f using single-cell patch clamp

experiments (Abilez et al. 2011).

2.2 The local biochemical problem

While we assume that the electrical signal f can propagate

in space, we model the biochemical problem through the

temporal evolution of the recovery variable r, initiated

exclusively by the source f r,

_r ¼ f rðf; rÞ: ð4Þ

The source term characterises the slow features of the

action potential profile,

f r ¼ ½gþ r �gðfÞ�½2r 2 cf½f2 b2 1��; ð5Þ

parameterised in terms of the weighting factor ½gþ r �g�

with �g ¼ m1=½m2 þ f� and the additional phenomeno-

logical parameter b. Parameters m1 and m2 are essential to

calibrate the shape of the restitution curve. In this study,

we adopt common parameter values from the literature for

the standard FitzHugh–Nagumo parameters c, a and b

(Fitzhugh 1961; Keener and Sneyd 1998) and for the non-

standard parameters m1 and m2 (Aliev and Panfilov 1996).

In what follows, we focus in particular on parameter g, its

physiological interpretation and its role in cardiac

excitation across the scales.

Remark. To simulate physiological values of the

transmembrane potential and of the time, it is common to

scale the non-dimensional field f and the non-dimensional

time t using the following the expressions,

F ¼ 100f2 80 mV and t ¼ 12:9 tms:

This implies that the transmembrane-potentialFwill range

from280 toþ20 mVand a typical action potential will last

a real time t of 200–300 ms, which is in agreement with the

physiological values for healthy human hearts.

3. Discrete problem of cardiac excitation

For an efficient and robust computational solution of the

governing equations (1) and (4), we follow Göktepe and

Kuhl (2009) and use a finite difference scheme for time

discretisation and a finite element scheme for the spatial

discretisation. For the sake of completeness, we summar-

ise the formulation and key aspects of the method in the

following. We introduce the action potential f as C0-

continuous global degree of freedom on each finite

element node and the recovery variable r as C21-

continuous internal variable on the integration point

level. To solve the resulting system of equations, we apply

an incremental iterative Newton– Raphson solution

strategy, which allows us to adopt an adaptive time

stepping scheme (Wong et al. 2011).

3.1 The global electrical problem

On the global level, we transform the electrical problem

(1) into its residual format evaluated in domain B, and
complement it with the corresponding boundary con-

ditions on the Dirichlet and Neumann boundary ›Bf and

Computer Methods in Biomechanics and Biomedical Engineering 3
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›Bq, respectively,

Rf ¼ _fþ divðqÞ2 f f ¼ 0 in B ð6:1Þ

f ¼ �f on ›Bf ð6:2Þ

q�n ¼ �q on ›Bq: ð6:3Þ

By multiplying the residual equation (6.1) by

admissible test functions, integrating it over domain

B, applying the standard integration by parts and including
the Neumann boundary conditions (6.3), we obtain the

weak form of the electrical residual. For the spatial

discretisation, we discretise the domain of interest B with

nel finite elements Be as B ¼ <nel

e¼1Be and apply the

standard isoparametric concept to interpolate the trial

functions fh and the test functions dfh,

dfhjBe ¼
Xnen

i¼1

N idfi and fhjBe ¼
Xnen

j¼1

N jfj: ð7Þ

Here, N are the standard shape functions on the element

level and i; j ¼ 1; . . . ; nen are the element nodes. For the

temporal discretisation, we partition the time interval of

interest T into nstp sub-intervals ½tn; tnþ1� as T ¼

<
nstp21

n¼0 ½tn; tnþ1� and apply a standard backward Euler time

integration scheme in combination with a finite difference

approximation of the first-order time derivative _f,

_f ¼
fh 2 fh

n

Dt
: ð8Þ

Here, we have introduced the common abbreviation Dt :¼

t2 tn . 0 for current time increment. For the sake of

clarity, we omit the index ð+Þnþ1 of the current time point of

interest. With the discretisations in space (7) and time (8),

the discrete algorithmic residual Rf
I takes the following

explicit representation:

Rf
I ¼ A

nel

e¼1

ð
Be

N i f
h 2 fh

n

Dt
2 7N i�q dV

þ

ð
›Be

q

N i �qdA2

ð
Be

N if fdV 8 0: ð9Þ

Operator A symbolises the assembly of all element

contributions at the element nodes i ¼ 1; . . . ; nen to the

overall residual at the global node points I ¼ 1; . . . ; nnd. To

solve the discrete system of nonlinear equations (9), we

apply an incremental iterative Newton–Raphson solution

scheme based on the consistent linearisation of the residual

(9), which introduces the global iteration matrix,

Kf
IJ ¼ dfJ

Rf
I

¼ A
nel

e¼1

ð
Be

N i 1

Dt
N j þ 7N i�D�7N j

2 N idff
fN jdV: ð10Þ

For each incremental iteration step, we update the global

vector of unknowns fI ˆ fI 2
Pnnd

J¼1K
f21
IJ Rf

J at all I ¼

1; . . . ; nnd global nodes. In the following sub-section, we

illustrate the iterative calculation of the source term f fðf; rÞ
required to evaluate the global residual (9) and the

calculation of its sensitivity with respect to the action

potential f,

df f f ¼ c½23f2 þ 2½1 þ a�f2 a�2 r 2 fdfr; ð11Þ

required to evaluate the global iteration matrix (10). We end

this section by noting that all integrals in (9) and (10) are

calculated using standard numerical quadrature techniques,

where values of f at quadrature points for time t ¼ tnþ1

result from evaluating the corresponding finite-element

interpolation (7).

3.2 The local biochemical problem

On the local level, we introduce the recovery variable r as

an internal variable and store it locally at each integration

point. For the temporal discretisation, we apply a finite

difference approximation

_r ¼
r 2 rn

Dt
; ð12Þ

combined with a classical implicit Euler backward time

integration scheme. With the discretisation in time (12),

the discrete residual Rr of the recovery equation (4) takes

the following representation

Rr ¼ r 2 rn 2 ½½gþ r �g�½2r 2 cf½f2 b2 1���Dt

8 0:
ð13Þ

Its consistent linearisation

Kr ¼ drR
r ¼ 1 þ ½gþ �g½2r þ cf½f2 b2 1���Dt ð14Þ

defines the iteration scheme for the incremental update of

the recovery variable r ˆ r 2 Kr21Rr on the integration

point level. At local equilibrium, we finally compute the

source term f f from equation (5) for the global electrical

problem (9) and its consistent algorithmic linearisation

dff
f from Equation (11) for the global Newton iteration

(10). To evaluate this linearisation, we calculate the

D.E. Hurtado and E. Kuhl4
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sensitivity

dfr ¼ 2½Kr�21›fR
r; ð15Þ

where Kr is the tangent (14) at local equilibrium, and ›fR
r

is the sensitivity of the residual,

›fR
r ¼½½gþ r �g�c½2f2 b2 1�

þ r›f �g½r þ cf½f2 b2 1���Dt;
ð16Þ

with ›f �g ¼ 2m1=½m2 þ f�2. Within a classical finite

element setting, these source and tangent terms are passed

to the higher scales, from the biochemical problem (13)

and (14) at the integration point level to the electrical

problems (9) and (10) at the node point level. Once the

global Newton iteration has converged, we store the

updated recovery variable r on the integration point level.

4. Local excitation of individual cells

In this section, we study the temporal evolution of the

local action potential to gain insight into the excitation of

individual cardiac muscle cells. This implies that we can

neglect the diffusion term div q in (1). The local electrical

and biochemical Equations (1) and (4) reduce to the

following set of ordinary differential equations,

_f ¼ cf½f2 a�½1 2 f�2 rf

_r ¼ ½gþ r �gðfÞ�½2r 2 cf½f2 b2 1��

with �g ¼ m1=½m2 þ f�, which we solve numerically using

standard integration schemes. The dynamics of this system

and the role of the standard FitzHugh–Nagumo para-

meters c, a and b have been studied intensely in the past

(Fitzhugh 1961; Keener and Sneyd 1998). Here, we have

added the non-standard parameters m1 and m2 to calibrate

different restitution curves (Aliev and Panfilov 1996). The

additional parameter g controls the action potential

duration. To date, this parameter has not been thoroughly

explored, although it plays a critical role in cardiac

repolarisation, as we will demonstrate in the sequel.

Since the action potential duration directly controls the

effective refractoriness of system (Conrath and Opthof

2006), from now on, we will refer to parameter g as the

refractoriness.

To quantify the relation between the action potential

duration and the refractoriness g, we solve the local

excitation problem and systematically vary the refractori-

ness g. In all simulations, we choose c ¼ 8;a ¼ 0:05;
b ¼ 0:15;m1 ¼ 0:2;m2 ¼ 0:3, which are common para-

meter values for human cardiomyocytes (Aliev and Panfilov

1996; Kotikanyadanam et al. 2010). As initial conditions,

we choose Fjt¼0 ¼ 250 mV and rjt¼0 ¼ 0, such that the

cardiomyocyte is excited with a transmembrane potential

slightly above the critical excitation threshold. Figure 2, left,

displays the sensitivity of the action potential profile with

respect to the refractoriness g. Despite the inherent

nonlinearity of the underlying system of equations, the

only property affected by changes in g is the duration of the

action potential itself, while all other features, i.e. the slope

of the upstroke, the slope of the recovery and the baseline

voltage at the resting stage, remain virtually unchanged.

Figure 2, right, displays the corresponding action potential

duration APD, i.e. the time until the cardiomyocyte is

repolarised by 90%. The curve suggests that the functional

relation between APD and g can be approximated by the

following logarithmic expression,

APD90 ¼ acell þ mcell�log10ðgÞ:

(
)

(
)

Figure 2. Sensitivity of the action potential profileF with respect to the refractoriness g, left, and functional relation between the action
potential duration APD90 and the refractoriness g, right. The refractoriness g affects the duration of the action potential, but not the slopes
of the upstroke, nor the slope of the repolarisation, and neither the baseline voltage at the resting stage.
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Using a least-squares linear regression, we obtain the values

acell ¼ 230:5 and mcell ¼ 2150:6 for the constants of this

model, see Figure 2, right. In further sensitivity studies, we

confirmed that these model constants are insensitive to the

initial conditions of the boundary value problem.

5. Global excitation of a human heart

Next, we study the spatio-temporal evolution of the action

potential to gain insight into the baseline excitation pattern

of a human heart. In the healthy heart, the last cells to

depolarise are the first to repolarise. As anticipated in

Section 1, this characteristic depolariation–repolarisation

pattern explains the positive T-wave in normal electro-

cardiograms. This observation has also been confirmed by

electrophysiological studies in human hearts (Cohen et al.

1976; Franz et al. 1987). By mapping the transmembrane

potential in different regions of the left and right

ventricles, in both the endocardium and epicardium,

clinical studies have revealed a linear relation between

action potential duration and activation time (Franz et al.

1987; Cowan et al. 1988). This empirical relation can be

summarised by the following linear expression,

APD90 ¼ aheart þ mheart�tact; ð17Þ

where tact is the activation time, i.e. the interval between

the onset of the QRS-complex and the upstroke of the

individual action potential. The constants aheart and mheart

are determined from a least-squares fit of expression (17)

to the experimental data. Typical values for the slopemheart

range from 20.83 to 22.11, with a mean of 21.32 and a

standard deviation of 0.45, for healthy patients with

positive T-waves (Franz et al. 1987; Cowan et al. 1988).

Motivated by these clinical observations, we

partition the geometry of a patient-specific human heart

(Kotikanyadanam et al. 2010) into sub-domains according

to their activation times. To this end, we solve the global

electrical and biochemical equations (1) and (4) described

in Section 3 using a finite-element implementation. The

elements in the atrioventricular node region are electrically

excited, generating wavefronts that travel throughout the

entire heart domain. As the initial wavefront propagates, it

activates cells in different locations at different times. The

time elapsed between the excitation of the elements in the

atrioventricular node and the activation of a particular

element defines its activation time tact.We then partition the

domain into 10 sub-domains and assign each element its

corresponding sub-domain according to its local activation

time tact, see Figure 3. For each sub-domain, we calculate

the average APD90 using the empirical relation APD90 ¼

aheart þ mheart�tact with aheart ¼ 360 and mheart ¼ 21:8
(Franz et al. 1987; Cowan et al. 1988). For each APD90, we

calculate the refractoriness g using the local equation

APD90 ¼ acell þ mcell�log10ðgÞ with acell ¼ 230:5 and

mcell ¼ 2150:6. Finally, for each refractoriness g, we

define an individual cell type and assign it to the

corresponding sub-domain. In a finite element setting,

this assignment is carried out simply via introducing

individual material groups, see Figure 3. Table 1

summarises the average activation times tact, the action

potential durations APD90 and refractoriness parameters g

considered for all 10 sub-domains.

Once the refractoriness is assigned to the different

regions in the heart domain, we proceed to solve the

electrical propagation problem using the finite element

formulation described in Section 3. Parameters c;a; b;m1

and u2 are considered uniform in the domain of analysis,

and take the same values reported in Section 4. The

isotropic and anisotropic conduction parameters have been

set to d iso ¼ 2 mm2=ms and d ani ¼ 8 mm2=ms, respect-

ively. The tetrahedral mesh consists of 11,347 elements

and 3129 nodes (Kotikanyadanam et al. 2010), where

linear shape functions have been selected as the

interpolation basis. We set F ¼ 280 mV in the entire

domain as initial conditions. Boundary conditions reflect

the flux-free condition q�n ¼ 0 at the domain surface. The

time step is set to Dt ¼ 5 ms.

Figure 4 illustrates the action potential profile at

different locations in the left ventricle for simulations

Figure 3. Human heart model partitioned into 10 subregions
based on activation times obtained from simulation. The colour
code indicates that the dark blue regions depolarise first, whereas
the dark red regions depolarise last. In the healthy heart, the
regions to depolarise last are the regions to repolarise first. This is
modelled through a heterogeneous refractoriness g with largest
values in the red regions and smallest values in the blue regions.
Notation: RV represents right ventricle; LV, left ventricle; AV,
atrioventricular node; nI; nII; nIII, limb leads; naVR; naVL; naVF,
augmented limb leads.

D.E. Hurtado and E. Kuhl6

D
ow

nl
oa

de
d 

by
 [

D
an

ie
l H

ur
ta

do
] 

at
 0

6:
18

 0
1 

N
ov

em
be

r 
20

12
 



considering a uniform and a non-uniform distribution of

the refractoriness g, respectively. In the uniform case

shown in Figure 4, left, the action-potential duration is

similar for all cardiomyocytes, irrespective of their

location and their activation time. In the non-uniform

case shown in Figure 4, right, the action-potential duration

varies with location and time, in keeping with experimen-

tal observations where last regions to depolarise are the

first to repolarise. Action potentials in cells immersed in

an aggregate can differ from the behaviour of single

isolated cells. In particular, one is to expect some

differences in the action potential durations for these

cases. Since we have established a relation between the

refractoriness and APD90 based on single-cell simulations,

we assessed the error between the target APD90 described

in Table 1 and the APD90 obtained from biventricular

simulations. To this end, we computed the APD90 from

curves in Figure 4, right, and compared them to their

corresponding target values in Table 1, and found a

maximum relative error of 8%. Thus, we can use activation

time, the empirical relation between activation time and

action potential duration, and the relation that defines the

refractoriness to calibrate our model on the microscopic

cell. We will now elaborate how this microscopic

calibration translates into clinically relevant macroscopic

readouts.

Table 1. Regional variation of refractoriness g in a healthy human heart model.

Material group, region Average activation time, tact (ms) Action potential duration, APD90 (ms) Refractoriness, g

1, 11 7.5 346.5 0.0031
2 17.5 328.5 0.0041
3 27.5 310.5 0.0055
4 37.5 292.5 0.0072
5 47.5 274.5 0.0095
6 57.5 256.5 0.0124
7 67.5 238.5 0.0164
8 77.5 220.5 0.0216
9 87.5 202.5 0.0284
10 97.5 184.5 0.0374

Note: The heart is partitioned into 10 sub-domains. For each sub-domain, we calculate the average activation time tact using the global electrical and biochemical equations. For
each activation time tact, we calculate the average APD90 using the global equation for the action potential duration. For each APD90, we calculate the refractoriness g using the
local equation for the action potential duration.

Figure 4. Action potential profiles for seven representative sub-regions in the heart. Uniform distribution of refractoriness g, left,
generates similar action potential profiles at all locations. Non-uniform distribution of refractoriness g, right, generates spatially varying
action potential profiles, where the regions to depolarise last are the regions to repolarise first. Notation: usw represents upper septal wall;
msw, mid septal wall; lsw, lower septal wall; va, ventricular apex; lvw, lower ventricular lateral wall; mvw, mid ventricular lateral wall.
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Using the non-uniform distribution of the refractoriness

g as summarised in Table 1, we simulate the excitation of a

healthy human heart (Kotikanyadanam et al. 2010) based

on our fully implicit finite element algorithm (Göktepe and

Kuhl 2009). In an additional post-processing step, we

compute the electrical flux q from the diffusion-weighted

transmembrane potential gradient 7f, and integrate it

numerically over the entire domain to obtain the mean

electrical vector q, also known as the heart vector,

qk ¼

ð
B
qdV with q ¼ 2D�7f:

To calculate the chest electrocardiogram, we project the

heart vector qk onto the standard six chest leads

(Kotikanyadanam et al. 2010) characterised through the

six vectors n as illustrated in Figure 3,

I ¼ qk�nI II ¼ qk�nII III ¼ qk�nIII

aVR ¼ qk�naVR aVL ¼ qk�naVL aVF ¼ qk�naVF:

The first set of vectors, i.e. the vectors between the left arm

and the right arm nI, between the left leg and the right arm

nII and between the left leg and the left arm nIII,

characterises the limb leads I, II and III. The second set

of vectors, i.e. naVR, naVL and naVF, characterises the

augmented limb leads,aVR,aVL andaVF, which are linear

combinations of the standard limb leads.

Figure 5, left, displays the electrocardiogram simulated

with the uniform parameter distribution according to

Figure 4, left. The uniform-parameter model nicely

captures the QRS-complex, i.e. the downward–upward–

downward sequence at the beginning of the cardiac cycle

associated with a normal depolarisation wave. However,

the model generates a markedly inverted T-wave, i.e. a

negative hump at time t , 300 ms associated with a

disturbed repolarisation wave. We conclude that the

uniform-parameter model is capable of correctly predicting

the depolarisation phase of a healthy human heart, but that it

is incapable of correctly predicting the repolarisation phase.

Figure 5, right, displays the electrocardiogram

simulated with the non-uniform parameter distribution

according to Figure 4, right. The non-uniform-parameter

model nicely captures the QRS-complex, i.e. the down-

ward–upward–downward sequence at the beginning of

the cardiac cycle associated with a normal depolarisation

wave. In contrast to the uniform-parameter model, the

non-uniform-parameter model generates a normal T-wave,

i.e. a positive hump at time t , 300 ms associated with a

normal repolarisation wave. We conclude that the non-

uniform-parameter model is capable of correctly predict-

ing the electrophysiology of the healthy human heart, in

both the depolarisation and repolarisation phases.

Finally, to validate our model, we compared the

sequences of cardiac depolarisation and repolarisation in

the lateral left ventricular wall with clinically measured

sequences averaged over 10 patients with healthy hearts

Figure 5. Electrocardiogram for a representative cardiac cycle with limb leads I, II and III and augmented limb leads aVR, aVL and
aVF. Uniform distribution of refractoriness g, left, generates an inverted T-wave, i.e. a negative hump in leads I and II at time
t ¼ 300 ms. Non-uniform distribution of refractoriness g, right, generates a normal T-wave, i.e. positive hump in leads I and II at time
t ¼ 300 ms. The QRS-complex, i.e. the downward–upward–downward sequence at the beginning of the cardiac cycle, is captured nicely
by both models, left and right.
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and normal T-waves (Cowan et al. 1988). Figure 6 shows

the clinically measured and the computationally predicted

depolarisation sequences, top row, and repolarisation

sequences, bottom row. During the depolarisation phase,

the action potential propagates bottom-up and inside-out

across the left ventricular free wall. The computational

simulations agree nicely with these findings and closely

match the clinical excitation pattern. During the repolar-

isation phase, the action potential returns to its resting state

top-down and outside-in. The last regions to depolarise are

the first to repolarise. Since the repolarisation time is the

sum of activation time and action potential duration, in

contrast to the depolarisation pattern, the repolarisation

pattern is rather uniform. Again, the computational

simulations are in excellent agreement with the clinical

observations. Unfortunately, the clinical measurements do

not include data on the repolarisation of the septum. Our

simulations indicate that the cardiomyocytes in the septal

region repolarise later than the cardiomyocytes in the

ventricular free walls. Overall, this repolarisation sequence

results in the formation of a positive T-wave characteristic

for the electrocardiogram of healthy human hearts.

6. Concluding remarks

In the healthy heart, the last cells to depolarise are the first to

repolarise. This implies that the action potential durations

display significant regional and transmural variations.

Here, we reinterpret a phenomenological scaling parameter

as the refractoriness, and establish a functional relation

between the local action potential duration and this material

parameter. We then utilise this function to calibrate

our model by means of clinically measured action potential

durations at different locations in the human heart.

Our calibrated model displays the major characteristic

features of a healthy human heart; in particular, it correctly

reproduces the normal positive T-wave. When mapped

across the left ventricle, its depolarisation and repolarisation

sequences are in excellent agreement with its clinically

measured counterparts.

Transmural variations of action potential durations

(Myles et al. 2010; Tsamis et al. 2011) have recently been

incorporated into numerical simulations of cardiac

electrophysiology to obtain more realistic electrocardio-

grams (Boulakia et al. 2010). In particular, the

experimentally observed linear relation between action

potential duration and activation time (Franz et al. 1987)

has been successfully integrated into computational

models to assure an upright T-wave (Winslow et al.

2000). However, to date, the importance of non-uniform

action potential durations has only been recognised

phenomenologically, and the regional assignment of the

corresponding model parameters has been rather heuristic.

Using the concept of a non-uniform refractoriness,

Figure 6. Depolarisation and repolarisation sequences in the healthy human heart. The experimental sequences, top rows, represent the
depolarisation and repolarisation of the left ventricle, averaged over 10 healthy individuals, where grey regions indicate activated
epicardium; reprinted with permission from Cowan et al. (1988). The computational sequences, bottom rows, represent the depolarisation
and repolarisation of a healthy human heart, where the red regions indicate activated myocardium.
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our proposed approach offers an elegant framework to

calibrate phenomenological models by means of clinically

measured excitation sequences obtained under physio-

logical conditions.

Although the relation between global T-wave polarity

and local action potential durations was recognised more

than a century ago (Mines 1913), the heterogeneity of

cardiac repolarisation remains largely controversial

(Opthof et al. 2009; Patel et al. 2009). In particular, the

relative contributions of regional and transmural action

potential variations to the genesis of a positive T-wave are

still a matter of ongoing debate (Bakker and Opthof 2002;

Conrath and Opthof 2006). There is strong experimental

evidence, which supports that action potential duration and

activation time are closely correlated under physiological

conditions, irrespective of the location in the heart

(Franz et al. 1987; Cowan et al. 1988; Myles et al.

2010). The proposed model could help to further elucidate

this hypothesis by using a high-resolution patient-specific

model with a non-uniform refractoriness distribution.

Numerical simulations would then allow us to study the

complex interplay between regional and transmural action

potential durations, and assess their role in the formation

of positive T-waves in electrocardiograms of healthy

individuals (Winslow et al. 2000; Okada et al. 2011). We

anticipate that our correctly calibrated baseline model of

the human heart has the potential to be widely applicable

to explore cardiac excitation profiles in health and disease.
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