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Abstract - The combined effects of Navier slip and Newtonian heating on an unsteady hydromagnetic 
boundary layer stagnation point flow towards a flat plate in the presence of a magnetic field are studied. The 
self-similar equations are obtained using similarity transformations and solved numerically by a shooting 
algorithm with a Runge-Kutta Fehlberg integration scheme. The velocity profiles, temperature profiles, the 
local skin friction coefficient, and the local Nusselt number are computed and discussed in details for various 
values of the different parameters. Numerical results are presented both in tabular and graphical forms, 
illustrating the effects of these parameters on the thermal and concentration boundary layers.  It is revealed 
that the thermal boundary layer thickens with a rise in the flow unsteadiness and as Newtonian heating 
intensifies, while the local skin friction and the rate of heat transfer at the plate surface change significantly 
due to the slip parameter.  
Keywords: Unsteady flow; Flat plate; Navier slip; Newtonian heating; Magnetic field; Similarity solution. 

 
 
 

INTRODUCTION 
 

Analysis of unsteady hydromagnetic boundary 
layer flow and heat transfer of electrically 
conducting fluids is of great interest in many 
branches of engineering. Practical applications are 
found in the design of cooling systems for electronic 
devices, in the field of solar energy collection, 
geothermal reservoirs, heat exchangers, cooling of an 
infinite metallic plate in a cooling bath, 
magnetohydrodynamic (MHD) stirring of molten 
metal, magnetic-levitation casting, MHD marine 
propulsion, the boundary layer along a liquid film in 
condensation processes, and a polymer sheet or 
filament extruded continuously from a dye. 
Considerable reviews of this area have been made by 
many researchers such as Chamkha and Khaled 

(2000), Makinde and Ogulu (2008), Beg et al. 
(2009), Makinde (2010), etc. Vajravelu and Nayfeh 
(1992) discussed the hydromagnetic flow of a dusty 
fluid over a stretching sheet. The MHD heat and 
mass transfer in a flow of viscous incompressible 
fluid past an infinite vertical plate has been studied 
by Singh and Singh (2003). Ali and Magyari (2007) 
reported a numerical solution for unsteady boundary 
layer flow and heat transfer induced by a submerged 
stretching surface while its steady motion is slowed 
down gradually. An unsteady hydromagnetic free 
convection flow of elastico-viscous fluid past an 
infinite vertical plate taking into account the Hall 
effect has been investigated by Chaudhary and Jha 
(2008). A computational analysis of MHD boundary-
layer flow and mass transfer past a vertical plate in a 
porous medium with constant heat flux was 
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presented by Makinde (2009). Dulal and Hiremath 
(2009) investigated the heat transfer over an 
unsteady stretching surface embedded in a porous 
medium. In spite of the importance of these MHD-
related studies on boundary layer flow problems, the 
possibility of fluid exhibiting apparent slip 
phenomenon on the solid surface has received little 
attention. The no-slip condition at the fluid–solid 
interface is a hypothesis rather than a condition 
deduced from any principle, and thus its validity has 
been continuously debated in the scientific literature 
(Choi et al., 2002). Meanwhile, many experimental 
results have provided evidence to support the slip 
condition (Pit et al., 2000; Huang and Breuer, 2007). 
In a pioneering work, Navier (1823) introduced a 
more general boundary condition, namely the fluid 
velocity component tangential to the solid surface, 
relative to the solid surface, is proportional to the 
shear stress on the fluid–solid interface. The 
proportionality is called the slip length, which 
describes the slipperiness of the surface. Matthews 
and Hills (2008) investigated numerically the effects 
of slip on momentum boundary layer thickness on a 
flat plate. Recently, Bhattacharyya et al. (2011) 
presented numerical results on the effects of velocity 
slip on hydromagnetic boundary layer flow and heat 
transfer over a flat plate. The combined effects of 
Hall current and wall slip on unsteady MHD flow of 
a viscoelastic fluid past an infinite vertical porous 
plate through a porous medium was investigated by 
Kumar and Chand (2011). 

The objective of this study is to determine the 
combined effects of Navier slip and Newtonian 
heating on an unsteady hydromagnetic boundary 
layer flow over a flat surface. In the subsequent 
sections the classical similarity reductions of the 
boundary layer equations are derived and the 
resulting ordinary differential equations are solved 
numerically using shooting algorithm together with a 
Runge-Kutta Fehlberg integration scheme. Finally, 
we present a discussion of the results and we make 
some concluding remarks. 
 
 

MATHEMATICAL MODEL 
 

Consider an unsteady two-dimensional 
magnetohydrodynamic boundary layer stagnation 
point flow with heat transfer and Navier slip towards 
a flat plate. The lower surface of the plate is assumed 
to be heated by convection from a hot fluid at 
temperature Tf, which provides a heat transfer 
coefficient hf,  while the upper surface is subjected to 
a stream of an electrically conducting cold fluid at 

temperature T∞ in the presence of magnetic field of 
strength B0 imposed along the y-axis, as shown in 
Fig. 1. The induced magnetic field due to the motion 
of the electrically conducting fluid is negligible. It is 
also assumed that the external electrical field is zero 
and that the electric field due to the polarization of 
charges is negligible.  
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Figure 1: Flow configuration and coordinate system 
 

Under the usual boundary layer approximation, 
the continuity, momentum, and energy equations 
describing the flow can be written as (Vajravelu and 
Nayfeh, 1992; Dulal and Hiremath, 2009):  
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where the free stream velocity is given as 
(Bhattacharyya et al., 2011): 
 

xcU
1 t∞ =
− λ

,              (4) 

 
where c represents the straining parameter due to 
stagnation point flow of the fluid towards the plate 
surface, as shown in Fig.1 . The boundary conditions 
at the plate surface and far into the cold fluid may be 
written as: 
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The situation β = 0 corresponds to no-slip, while 

full lubrication is described in the limit β→∞. The 
stream function ψ, satisfies the continuity Eq. (1) 
automatically, with: 
 

u
y
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 and v
x
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= −
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.               (6) 

 
In order to simplify the mathematical analysis of 

the problem, we introduce the following 
dimensionless variables:  
 

f

c cy ,   x f ( ),
(1 t) (1 t)

T T( )
T T

∞

∞

υ
η = ψ = η

υ − λ − λ

−
θ η =

−

      (7) 

 
Substituting Eq. (7)  into Eqs. (1)-(6), we obtain: 
 

2f "' ff " f A f f 1
2

Ha(f ' 1) 1 0
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f (0) 0,f (0) f (0),   (0) Bi[ (0) 1],  ′ ′′ ′= = δ θ = θ −    (10) 
 
f ( ) 1,    ( ) 0,′ ∞ = θ ∞ =            (11) 
 
where the prime symbol represents the derivative 
with respect to η and: 
 

2
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(the local magnetic field parameter), 
 

fh (1 t)Bi
k c

υ −λ
=      

(the local Biot number), 

A
c
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(Unsteadiness parameter), 
 

Pr υ
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(the Prandtl number), 
 

c
(1 t)

δ = β
υ − λ

      

(the local slip parameter). 
 

The set of Equations (8)–(9) under the boundary 
conditions (10)-(11) have been solved numerically 
using a shooting algorithm with a Runge-Kutta 
Fehlberg integration scheme (Nachtsheim and 
Swigert, 1965). From the process of numerical 
computation, the plate surface temperature, the skin-
friction coefficient and the Nusselt number, which 
are respectively proportional to θ(0), f (0)′′  and 

(0)′−θ , are also worked out and their numerical 
values are presented in a tabular form. The accuracy 
of this numerical method was validated by direct 
comparison with the numerical results reported by 
Dulal and Hiremath (2009) for the unsteady 
boundary layer flow over a moving plate in the 
absence of a magnetic field (Ha=0), Navier slip       
(δ =0) and Newtonian heating (Bi=0) modelled as:  
 

2f "' ff " f A f f 0 with
2

f (0) 0,f (0) 1,   f ( ) 0 ,

η⎛ ⎞′ ′ ′′+ − − + =⎜ ⎟
⎝ ⎠

′ ′= = ∞ =
     (12) 

 
and a perfect agreement is observed, as demonstrated 
in Table 1 below; 
 
Table 1: Computations showing comparison 
with Dulal and Hiremath (2009) results for δ = 0, 
Ha=0.  
 

A 
′′f (0)  

D-H (2009) 
′′f (0)  

Present  
0.5 -1.167221 -1.167221 
1.0 -1.320540 -1.320540 
1.5 -1.459687 -1.459687 
2.0 -1.587403 -1.587403 

 
Also, we conducted a direct comparison with the 

numerical results reported by Bhattacharyya et al. 
(2011) for the unsteady boundary layer stagnation-
point flow towards a stretching sheet with slip in the 
absence of  magnetic field (Ha=0) modelled as:  
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2 2f "' ff " f A f f R R 0
2

with f (0) 0,f (0) 1 f ,   f ( ) R ,

η⎛ ⎞′ ′ ′′+ − − + − + =⎜ ⎟
⎝ ⎠

′ ′′ ′= = + δ ∞ =
   (13) 

 
where R is the parameter representing the velocity 
ratio between the stretching sheet and that of the free 
stream. The results in Table 2 below agree almost 
perfectly with those of Bhattacharyya et al. (2011).     
 
Table 2: Computations showing comparison with 
Bhattacharyya et al. (2011) results for Ha=A=δ=0. 
 

 
R 

′′f (0)  
Bhattacharyya et al.  

(2011) 

′′f (0)  
Present  

0.1 −0.969386 −0.9693871 
0.2 −0.918107 −0.918110 
0.5 −0.667263 −0.667263 
2.0 2.017503 2.017510 
3.0 4.729284 4.729283 

 
 

RESULTS AND DISCUSSION 
 

The numerical computation results are 
demonstrated in Table 3 and Figures 2-8. In order to 
have greater insight into the qualitative analysis of 
the results, we have taken the values of various 
parameters controlling the flow systems as 0.72 (Air) 
≤ Pr ≤ 7.1 (Water),  0 ≤ A ≤ 1, 0≤ δ ≤ 5, 0.1 ≤ Bi ≤ 1, 
0 ≤ Ha ≤ 5. Table 3 illustrates the effects of 
thermophysical parameters on the local skin friction 
coefficient and local Nusselt number. It is 
noteworthy that the temperature gradient (0)′θ  is 
negative for all parameter values considered in this 
study. This simply implies that the heat flow is from 
the hot fluid at the lower surface of the plate to the 

cold fluid on the upper surface of the plate. 
Moreover, it is interesting to note that the local heat 
transfer rate at the plate surface increases with 
increasing values of Bi, Ha, Pr, δ and decreases with 
increasing values of A. This can be attributed to the 
fact that the magnitude of the temperature gradient at 
the plate surface increases with an increase in local 
Biot number, magnetic field intensity, Prandtl 
number and slip length. Meanwhile, the effect of 
Navier slip parameter (δ) is to decrease the local skin 
friction. We also note that the local skin friction 
increases with an increase in the magnetic field 
intensity and flow unsteadiness.   
 
Effects of Parameter Variation on Velocity 
Profiles 
 

The illustrations of the velocity profiles with 
respect to the transverse distance are displayed in 
Figures 2-4. Generally, the fluid velocity is lowest at 
the plate surface and increases gradually to its free 
stream values satisfying the far field boundary 
condition. For the set of parameter values utilised, 
it is interesting to note that the far field conditions 
for velocity profiles are satisfied at a transverse 
distance η = 3. However, this is not the case for 
temperature profiles with the same set of parameter 
values. From Figure 2, we observe that the fluid 
velocity at the plate surface increases with an 
increase in the slip parameter (δ). This is consistent 
with the fact that higher δ means an increase in the 
lubrication and slipperiness of the surface. In Figure 
3, a slight increase in the fluid velocity towards the 
plate surface is observed with an increase in the flow 
unsteadiness. An increase in the magnetic field 
intensity Ha causes an overshoot of the fluid velocity 
towards the plate surface. 

  
 

Table 3: Computation showing ′′f (0), θ(0) and ′θ (0) for various values of key parameters 
 

Bi Ha A δ Pr ′′f (0)  ′-θ (0)  θ(0)  
0.1 0.1 0.1 0.1 0.72 1.186380878 0.08358870 0.16411293 
0.5 0.1 0.1 0.1 0.72 1.186380878 0.25231253 0.49537492 
1.0 0.1 0.1 0.1 0.72 1.186380878 0.33745722 0.66254277 
0.1 0.5 0.1 0.1 0.72 1.296927194 0.08383121 0.16168785 
0.1 1.0 0.1 0.1 0.72 1.418129883 0.08406929 0.15930705 
0.1 0.1 0.5 0.1 0.72 1.267686514 0.08128091 0.18719082 
0.1 0.1 1.0 0.1 0.72 1.361534490 0.07638725 0.23612748 
0.1 0.1 0.1 1.0 0.72 0.603133607 0.08563567 0.14364329 
0.1 0.1 0.1 3.0 0.72 0.275659634 0.08635366 0.13646331 
0.1 0.1 0.1 0.1 1.00 1.186380878 0.08534327 0.14656723 
0.1 0.1 0.1 0.1 3.00 1.186380878 0.09000268 0.09997318 
0.1 0.1 0.1 0.1 7.10 1.186380878 0.09262444 0.07375555 
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Figure 2: Velocity profiles for Pr = 0.72,  
A = 0.1, Bi=0.1, Ha = 0.1. 

Figure 3: Velocity profiles for Pr = 0.72,  
δ = 0.1, Ha = 0.1, Bi=0.1 
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Figure 4: Velocity profiles for Pr = 0.72, δ = 0.1, A = 0.1, Bi=0.1 

 
Effects of Parameter Variation on Temperature 
Profiles 
 

Figures 5 and 6 show the effect of the Newtonian 
heating and the flow unsteadiness on the temperature 
profiles. The maximum value of fluid temperature is 
attained at the plate surface and decreases 
exponentially to the free stream zero value away 
from the plate, satisfying the boundary condition. It 
is seen that, in both cases, the thermal boundary 
layer thickness increases with an increase in the local 
Biot number (Bi) and the unsteadiness parameter 
(A). This can be attributed to the fact that, as Bi 
increases, the heat transfer rate from the hot fluid at 
the lower side of the plate to the cold fluid at the 
upper side increases. This results in an elevation of 

the fluid temperature at the upper side. The effects of 
the slip parameter and Prandtl number on the 
temperature profiles are plotted in Figures 7 and 8. It 
is evident from these figures that the presence of the 
surface slipperiness affects the temperature of the 
fluid inversely. This can be seen clearly from the 
temperature curves, which decrease as the slip 
parameter δ increases.  A similar trend is observed 
with an increase in the Prandtl number Pr. The 
thermal boundary layer thickness decreases as the 
Prandtl number increases from 0.72 (Air) to 7.1 
(Water) due to a decrease in the fluid thermal 
diffusivity. This is in agreement with the physical 
fact that, at higher Prandtl number, the fluid has a 
thinner thermal boundary layer and this increases the 
gradient of temperature.  
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Figure 5: Temperature profiles for Pr = 0.72, 
A = 0.1, δ = 0.1, Ha = 0.1 

Figure 6: Temperature profiles for Pr = 0.72,  
δ = 0.1, Ha = 0.1, Bi=0.1 
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Figure 7: Temperature profiles for Pr = 0.72, 
A = 0.1, Bi=0.1, Ha = 0.1. 

Figure 8: Temperature profiles for Ha = 0.1,   
δ = 0.1, A = 0.1, Bi=0.1 

 
 
 

CONCLUSIONS 
 

The problem of unsteady hydromagnetic 
boundary layer stagnation point flow towards a flat 
plate with Navier slip and Newtonian heating was 
studied. The governing equations were developed 
and transformed into a self-similar form and solved 
numerically by a shooting algorithm with a Runge-
Kutta Fehlberg integration scheme. Our results 
revealed that the fluid velocity increases, while the 
local skin friction decreases, with an increase in the 
slip parameter (δ). The thermal boundary layer 

thickness is enhanced by increasing the intensity of 
Newtonian heating (Bi) and flow unsteadiness (A), 
while a decreases in the thermal boundary layer 
thickness is observed with an increase in the velocity 
slip (δ) and Prandtl number (Pr). 
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NOMENCLATURE 
 
(u, v) velocity components  m/s
(x, y) coordinates  m
B0 magnetic field strength 
Pr  Prandtl number 
Bi  Biot number 
T∞  free stream temperature  °C
f  dimensionless stream function 
t  time  s
T  temperature  °C
Ha  local magnetic field parameter 
c  free stream flow rate 
Tf hot fluid temperature  °C
hf  heat transfer coefficient 
A  unsteadiness parameter 
k  thermal conductivity 

coefficient 
U∞  free stream temperature  m/s
 
Greek Symbols   
 
Ψ stream function  
θ  dimensionless temperature  
µ dynamic viscosity  
α  thermal diffusivity  
η  similarity variable    
λ  unsteadiness parameter  
ρ  fluid density  
υ    kinematic viscosity  
σ     fluid electrical conductivity  
δ      Navier slip parameter  
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