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Computational Models of Human Visual Attention and Their

Implementations: A Survey

Akisato KIMURA†a), Senior Member, Ryo YONETANI††b), Student Member,
and Takatsugu HIRAYAMA†††c), Member

SUMMARY We humans are easily able to instantaneously detect the

regions in a visual scene that are most likely to contain something of in-

terest. Exploiting this pre-selection mechanism called visual attention for

image and video processing systems would make them more sophisticated

and therefore more useful. This paper briefly describes various computa-

tional models of human visual attention and their development, as well as

related psychophysical findings. In particular, our objective is to carefully

distinguish several types of studies related to human visual attention and

saliency as a measure of attentiveness, and to provide a taxonomy from

several viewpoints such as the main objective, the use of additional cues

and mathematical principles. This survey finally discusses possible future

directions for research into human visual attention and saliency computa-

tion.

key words: human visual attention, computational model, saliency,

bottom-up, top-down

1. Motivation

Developing sophisticated algorithms for detecting and rec-

ognizing something like objects from a given image and

video has been a long distance challenge in pattern recog-

nition and computer vision research fields. In fact, a huge

number of studies, techniques and theories related to ob-

ject detection and recognition have already been developed.

In particular, several methods for detecting certain specific

categories of objects such as human bodies and human faces

have already been put to practical use in for example surveil-

lance, authentication and the human-centric enhancement of

image quality, with the best possible use of the prior knowl-

edge of target objects (human bodies and faces) [1], [2].

However, generic object detection and recognition without

any constraints as regards the target objects has remained

major challenge, because (1) various kinds of objects might

constitute the targets and (2) target objects in the same cat-

egory might have different appearances due to variations of

instances in a specific category, illumination changes and so

on.
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Fig. 1 One promising way of understanding human visual attention

based on visual saliency. The model assumes that for a given input im-

age (left) a gray-scale image called a saliency map (right) is automatically

calculated in the brain, and we would first pay attention to the position

yielding the maximum pixel value in the saliency map.

On the other hand, human beings seem to be able to de-

tect various kinds of objects without any thought or effort.

For example, from Fig. 1 left, we can easily and instantly

detect a red car, a blue traffic sign and a broad white line. Vi-

sual attention [3] is considered to play an important role in

achieving this function. Visual attention is one of the built-in

mechanisms of the human visual system that quickly selects

regions in a visual scene, which are most likely to contain

items of interest. Such a pre-selection mechanism focusing

only on relevant data would be essential in enabling com-

puters to undertake subsequent processing such as generic

object recognition and sentence generation from images.

With the above background, mimicking visual atten-

tion and computing saliency as a measure of attentiveness

have attracted much attention in relation to both biologi-

cal and artificial systems, especially in the last couple of

years. A lot of researches on this issue are under way in sev-

eral fields including psychophysics, neuroscience and com-

puter vision. These researches take a bottom-up approach,

meaning that a given image is the only resource for comput-

ing visual attention and saliency. In contrast, recent stud-

ies have attempted to incorporate additional cues such as

prior knowledge about search targets, human intention and

cognitive states, which are generally called a top-down ap-

proach. Moreover, the research dealing with regions-of-

interest (ROI) extraction or salient region extraction has also

been actively pursued in various fields such as image pro-

cessing, computer vision and machine learning. This re-

search is mainly aimed at real-world applications includ-

ing medical imaging, intelligent cars, surveillance, image

segmentation, object detection, generic object recognition

and content-based image retrieval. Consequently, the word

“saliency” is becoming a buzzword with certain undesirable
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side effects:

1. we are facing too many different types of saliency, each

of which depends on the policies of researchers, back-

ground theories and applications,

2. this fact makes the definition of saliency ambiguous,

fragile, and application-driven,

3. and therefore we cannot find any common procedures,

measures and benchmark data for appropriately evalu-

ating their validity.

Based on the above discussions, this paper systemati-

cally reviews previously reported studies related to human

visual attention modeling and saliency computation, and

provides a taxonomy from several viewpoints. We mainly

focus on computational models of human visual attention,

especially models that can be implemented on computers.

First, Sect. 2 presents several scientific theories and find-

ings, which provide useful basic knowledge for understand-

ing computational models. With the help of these theories

and findings, Sect. 3 offers a general overview of related

research issues, and categorizes them from several points

of view. Section 4 reviews representative or epoch-making

methods based on the bottom-up approach, namely those

methods that do not rely on any specific tasks, targets, inten-

tions and cognitive states. Section 5 describes several com-

putational models based on top-down approaches that con-

sider the prior knowledge, intentions and cognitive states of

humans, which build on the theories and findings presented

in Sect. 2. Section 6 introduces public resources, especially

datasets and source codes, all for evaluating computational

models of human visual attention and methods of salient re-

gion detection. Section 7 summarizes this paper and dis-

cusses promising future work related to human visual atten-

tion, not limited to computational models.

2. Scientific Theories and Findings

This section presents some psychophysical theories and

findings that lead to understanding of visual attention mod-

els.

2.1 Visual Search

Visual search is a task that involves detecting a specific vi-

sual target from various other stimuli (the distractors), which

is widely accepted as clarifying human visual perception.

The visual search can be classified into the following two

types based on the relationship between the target and dis-

tractors: feature search that employs a target which can

be distinguished from the distractors by a unique feature

(e.g., intensity, color and edge orientation), and conjunction

search with a target involving several features different from

the distractors.

Many studies including the pioneering work under-

taken by Neisser [4] have examined visual perception mech-

anisms via the visual search with various relationships of

targets and distractors. In following sections, we introduce

Fig. 2 Feature integration theory.

the two major theories: the feature integration theory [5] and

the guided search model [6], [7].

2.2 Feature Integration Theory

The basic methodology in a study on visual search is to mea-

sure a reaction time to detect a target from several differ-

ent numbers of distractors under the condition of the feature

and conjunction searches. If the reaction time is constant

independently of the number of distractors, the search is as-

sumed to be conducted in parallel under such conditions.

On the other hand, if the reaction time increases according

to the number of distractors, the search is assumed to be se-

quential†.

The feature integration theory (FIT), which has been

proposed by Treisman and Gelade [5], has argued that the

feature search and the conjunction search are conducted in

parallel and sequentially, respectively (see Fig. 2). The FIT

consists of the following points:

• Each single feature (e.g., color, edge orientation, size,

motion and orientation) is processed individually by

the corresponding specific module, spatially in paral-

lel. Thus, humans are not required to pay attention to a

specific location to search targets (the bottom of Fig. 2).

This claim explains that feature search is processed in

parallel.

• In the case of conjunction search, humans have to lo-

calize and integrate the results from multiple modules

†It is often referred to as a set-size effect [8].
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Fig. 3 Concept figure of the guided search. (a) bottom-up map, (b) top-

down map, and (c) activation map, where lighter regions obtain higher ac-

tivation.

of a unique feature. This integration requires an atten-

tional shift to a specific location. Because of this at-

tentional shift, the conjunction search is processed se-

quentially.

The FIT has received broad attention thanks to the clear

explanation on parallel processing for feature search and se-

quential processing for conjunction search. On the other

hand, several following studies have conducted experiments

under various conditions and have revealed many phenom-

ena, which are impossible to be explained by the FIT:

1. Reaction times can differ greatly according to the given

tasks despite of the same sets of visual stimuli [9], [10].

This phenomenon is interpreted in terms of trade-off

between the spatial coverage and resolution of atten-

tion.

2. Several studies have reported the results indicating

that both feature and conjunction search have a diffi-

culty depending on the similarity between targets and

distractors as well as the similarity between distrac-

tors [11]–[13].

Moreover, there are some findings on “search asymmetry”

that occurs when a search for stimulus A among stimulus B

produces different results from a search for B among A [14],

[15].

2.3 Guided Search Model

The model of guided search, proposed by Wolfe et al. [6],

[7], has introduced top-down knowledge on characteristics

of target stimuli in visual search.

The guided search model employs an activation map

computed from both bottom-up activation based on the ex-

isting feature-search process and top-down activation based

on the characteristics of target stimuli (see Fig. 3). The

bottom-up activation in the guided search comes from

saliency in each feature channel (e.g., color, orientation) in

input stimuli, and it is obtained thanks to the “guide” by

feature maps obtained from feature search (Fig. 3 (a)). On

the other hand, the top-down activation is obtained based on

the correlation between input and target stimuli with regard

to each of the features. For instance, if the target stimulus

has features consisting of “black” and “vertical line”, the

black regions in the top-down color map and the vertical-

line regions in the top-down orientation map are activated

(Fig. 3 (b)). The activation map is achieved by summing

up the top-down and bottom-up activation maps (Fig. 3 (c)).

Consequently, the focus of attention is oriented in the order

of activation levels.

Guided search is a model that explicitly implements

the characteristics of target stimuli in visual search, and it

has now become important as a basis for recent top-down

computation models. The literatures above [6], [7] only con-

ducted some primal examinations using artificial images. In

addition, recent studies tackle visual search and target char-

acteristics using more general images and videos. Those

studies are specifically presented in Sect. 5.

2.4 Relationship between Visual Attention, Human Inten-

tions and Cognitive States

Visual attention is closely related to human internal states

such as his/her intentions, cognitive states, and given tasks.

Together with target characteristics, these human states can

be regarded as top-down aspects as shown in the related sur-

vey [16]. Here, we present several psychophysical findings

on the relationship between visual attention and the human

states.

Yarbus has revealed that visual attention highly de-

pends on human intentions [17]. His experiments measur-

ing eye movements toward “The Unexpected Visitor” have

demonstrated that different tendencies of gaze distributions

can be observed according to the given tasks (e.g., free ex-

amination, give the ages of the people). The same results

have been reported in the tutorial by Tatler et al. [18]. More-

over, The tutorial by Hayhoe et al. [19] presents some ex-

amples that human attention can be oriented to task-relevant

locations rather than salient locations in the case humans are

given some tasks.

Another important finding provided by Yarbus’s exper-

iments is that eye movements of several subjects toward the

same images and those in several examinations by individ-

ual subjects are similar but not identical. This finding indi-

cates the possibility to realize an estimation of the human

states based on statistical learning of gaze information.

Several studies aim to clarify the relationship between

visual attention and various cognitive states. For instance,

Balkenius et al. [20] regard orienting of attention as an “ac-

tion”, and apply the mechanism in psychology of learning

such as habituation and conditioning. Moreover, Taylor et

al. [21] have discussed the possibility to associate endoge-

nous/exogenous attention with emotion in view of neuro-

physiology.

3. Brief Classification of Related Research

This section offers a general taxonomy of human attention

models in a broad sense from several viewpoints, which
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Fig. 4 Classifying human attention models (in a broad sense) from 4 standpoints: the main objective,

usage of additional cues, fundamental policy and principle for building models, and way of incorporating

additional cues.

would help us to understand individual computational mod-

els and their implementations. Note that the models and im-

plementations introduced in the following sections do not al-

ways have a biological background such as the feature inte-

gration theory and the guided search model shown in Sect. 2.

Figure 4 depicts an overview of the taxonomy. The first

standpoint is the main objective of individual computational

models. Studies of “saliency” include not only scientific

studies that aim to implement the psychophysical findings of

human visual attention systems but also engineering studies

simply designed to extract meaningful objects. These dif-

ferent objectives inevitably lead to different approaches, dif-

ferent outputs and different evaluations. More specifically,

the first approach computes how much attention a pixel in

a given image or video attracts, and compares outputs of

methods with actual human gaze data. These outputs are of-

ten referred to as saliency maps. The second approach aims

to estimate regions in a given image that contain meaningful

objects, and utilizes ground-truth region labels for evalua-

tion. This approach is often referred to as salient region ex-

traction. Recently, the term “saliency” often appears indis-

tinguishably in both two types of studies, which may some-

times result in inappropriate evaluations. One of the main

goals of this paper is to carefully distinguish between these

two approaches and provide a taxonomy of human visual

attention models.

All the computational models of human visual atten-

tion can be separated into two categories from the second

standpoint, namely the existence and availability of specific

tasks, targets or intentions. As introduced in Sect. 4, studies

on modeling visual attention have started with the imple-

mentation of feature integration theory and the shift of selec-

tive attention, which play a fundamental role in bottom-up

attention. However, it has often been pointed out that such

bottom-up models cannot completely explain entire visual

attention systems, and some top-down concepts have been

proposed (e.g., the guided search presented in Sect. 2.3). To

this end, we introduce the second standpoint to classify the

visual attention models into two categories, meaning the ex-

istence of specific tasks, targets or intentions. If some spe-

cific tasks or targets are given in advance, it is natural for

computational models to utilize knowledge or side informa-

tion related to the targets or tasks. This type of computa-

tional models are called top-down models. In contrast, with-

out any specific tasks and targets, the signal is the only avail-

able resource for activating computational models. This

type of computational models are called bottom-up models.

Note that the bottom-up attention dealt with in this paper

is mainly location-based attention [22], [23] that depends on

only image stimuli at the location, and we do not take par-

ticular note of object-based attention [24]–[26] that relies on

only high-level knowledge of objects to be focused rather

than image features at the location.

The third standpoint relates to their background, math-

ematical principles and specific approaches to their imple-

mentation. Both bottom-up and top-down models have this

standpoint. For instance, the center-surround differences,

which play a central role in modeling bottom-up atten-

tion, were implemented by Itti et al. [27] as faithful as psy-

chophysical theories and findings related to human vision,

i.e., FIT and selective attention. By contrast, several models

find irregularity or non-stationarity in a given image with

the help of information theory and signal processing tech-

niques, and other models employ general knowledge and

pre-trained features that characterize visual attention from

actual gaze data in a machine-learning manner. Note that

the knowledge-based methods are essentially different from

top-down ones, where the former categorization approach

forms scientific findings and basic principles, and the lat-

ter relies on the use of knowledge obtained from targets or

tasks.

Moreover, top-down models have three ways of intro-

ducing additional cues. Two of them relate closely to the

guided search shown in Sect. 2.3, which directly modifies

bottom-up saliency maps or combines them with top-down

attention maps derived from the additional cues. The last

model extracts both bottom-up and top-down related fea-

tures and learns their importance from the gaze data using

machine learning techniques.
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4. Bottom-Up Models

4.1 FIT-Based Computational Models

As described in Sects. 2.2 and 2.3, the feature integration

theory (FIT) took the central role in the development of

bottom-up visual attention models for two decades after its

proposal. Several conceptual models modifying FIT were

proposed during this process [3], [9], [28]–[30]. In addition

to these conceptual models, computational models have also

been developed that enable us to clarify the process of vi-

sual search and to verify their performance by implement-

ing them on computers. A significant work regarding com-

putational models of visual attention is the saliency map

model proposed by Itti, Koch and Niebur [27]. The follow-

ing briefly describes this computational model, which we

call the Itti saliency map model for simplicity.

The Itti saliency map model is based on the bottom-

up architecture of visual attention proposed by Koch and

Ullman [3]. This architecture introduces a multi-resolution

structure to solve the first problem of FIT shown in Sect. 2.2,

and serves as a foundation for later computational models.

The Itti saliency map model can be regarded as a represen-

tative implementation of the Koch-Ullman architecture.

Figure 5 is a sketch of the Itti saliency map model. The

details can be seen in the original paper [27] and some other

reviews [31], [32]. In the first stage of the procedure, sev-

eral fundamental features such as intensity, color opponents

and edge directions are extracted from an input image, and a

Gaussian pyramid is constructed for each fundamental fea-

ture. Taking pixel-wise differences across the center (= fine)

and surround (= coarse) scales of the Gaussian pyramid,

we can compute multi-scale spatial contrasts for combina-

tions of three center scales and two center-surround scale

Fig. 5 Computational model of saliency maps by Itti et al.

differences. These pixel-wise differences can be viewed

as an approximation of the convolutions of difference-of-

Gaussian (DoG) filters. Each center-surround difference is

normalized to obtain a sparse representation, called a fea-

ture map, so that only outlier locations have larger pixel val-

ues than those of their surroundings. Feature maps with the

same feature channel (intensity, color opponent and edge

directions) are integrated into a single map and again nor-

malized to obtain a conspicuity map. All the conspicuity

maps finally contribute to a unique saliency map represent-

ing the uniqueness of each location in the visual field. The

Itti saliency map model introduces a mechanism, winner-

takes-all (WTA), which selects the location where the pixel

value of the saliency map is greater than at any other lo-

cations. From this viewpoint, the concept behind the Itti

saliency map model is somewhat similar to that behind

guided search [6], [7].

The Itti saliency map model is very simple, easy to im-

plement and provides reasonable outputs for various kinds

of input images. Therefore, this model has had a consider-

able impact on broader research areas such as image pro-

cessing, pattern recognition, computer vision, robotics and

neuroscience [33]–[37]. Several extended models have also

been developed in parallel: Leung et al. [38] were inspired

by neural adaptation [39], which describes the habituation

caused by a continuously displayed visual stimulus, and pro-

posed a neural adaptation mechanism that employs standard

image processing. Maki et al. [40] took particular note of

the feature whereby regions that are closer in terms of depth

are more salient [41], and they proposed a model for esti-

mating human visual attention that integrates several fea-

tures obtained from binocular cameras such as motion and

disparity. Ouerhani and Hugli [42] directly incorporated a

depth feature taken from a range finder into the Itti saliency

map model. Jeong et al. [43] proposed a model for comput-

ing saliency maps from every image taken from binocular

cameras and correcting the maps with the help of disparity

information in highly salient regions.

4.2 Introducing Stochastic Ambiguity

Although the Koch-Ullman architecture and Itti saliency

map model provide good explanation of the bottom-up hu-

man visual attention, they pose one crucial problem: A

saliency map is extracted from an input image in a determin-

istic way, which implies that all the subjects would focus on

the same location for the same input image. However, ac-

cording to the finding described in Sect. 2.4, humans may

focus on different locations in the same input image.

As shown in Sect. 2.4, conventional theories state that

this inconsistent visual attention is mainly caused by top-

down intention, knowledge and preferences, and a lot

of psychophysical studies supported this hypothesis (See

e.g. [44]).

On the other hand, another theory to understand human

visual attention was introduced, called the signal detection

theory, which has widely been employed in the field of com-
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Fig. 6 Intuitive interpretation of the signal detection theory applied to

the understanding of human visual attention.

munication theory and psychology [45], [46] for about 50

years. Eckstein et al. [47], [48] applied the signal detection

theory to visual attention modeling, and described a mech-

anism that causes attention ambiguity using only bottom-

up processing. The idea behind the signal detection theory

can be intuitively explained with the help of Fig. 6, where

a visual search task is considered with a single 45◦ target

among a lot of distractors†. The essential difference between

conventional theories and the signal detection theory lies in

whether or not distractors can be recognized as an (incor-

rect) target. The feature integration theory never allows us

to detect a distractor as a target, and thinks of humans as

capable of making mistakes. In contrast, the signal detec-

tion theory assumes that distractors might be recognized as

a target due to internal noise of a visual cortex.

Based on the Itti saliency map model, a saliency map

can be uniquely obtained for a given input image. Here we

assume that people may observe a different map from the

saliency map because of the internal noise of the visual cor-

tex, where every internal noise is emitted from an indepen-

dent Gaussian distribution [47]. The observed saliency map

is called a stochastic saliency map, and each of its pixel val-

ues is called a stochastic saliency. The stochastic saliency

at every position can be represented as a Gaussian random

variable with the same mean value as the saliency value at

this position, as shown in Fig. 6 below. Namely, the re-

sponse of a distractor tuned to the target orientation†† is rep-

resented as a Gaussian density with a lower mean than that

of the target.

In Fig. 6 left with a 45◦ target and vertical distractors,

these densities barely overlap, which implies that we can im-

mediately detect the target. On the other hand, in Fig. 6 right

with a 45◦ target and very similar distractors, the target den-

sity is identical to the easy search case, while the distractor

density is shifted to the right, so that the two densities over-

lap considerably. This implies that the probability that we

first focus on the distractors becomes high, and therefore it

takes a lot of time to detect the target. This is the mech-

anism that causes attention ambiguity with only bottom-up

processing.

Several findings [11]–[13] have already indicated some

relationships between the complexity of a visual search and

the similarity between a target and distractors, as shown

in subsection 2.2. The major contribution of Eckstein et

al. [47] is that they were the first to clarify the computational

mechanism of those relationships.

Several stochastic models of human visual attention

have been proposed based on the finding derived from sig-

nal detection theory. Koike and Saiki [49] first introduced a

stochastic mechanism of human visual attention into a com-

putational model, and verified it with psychophysical set-

tings. Pang et al. [50], [51] extended this model to video

inputs, and constructed a dynamic Bayesian network that

considered the stochastic ambiguity and temporal smooth-

ness of visual saliency simultaneously. Miyazato et al. [52]

achieved real-time computing of this model with the full use

of parallel processors in GPUs.

4.3 Temporal Aspects in Saliency

The computational models presented so far in this paper

have focused only on spatial aspects of visual attention and

saliency. Namely, they were interested in where is salient

in a given still image, and saliency values were computed

based on the spatial contrasts of image features. However,

when dealing with a video as a saliency calculation target,

certain temporal events such as sudden changes in (parts of)

image frames and the motions of objects would be signifi-

cant cues for visual attention, which implies that the tempo-

ral dynamics of image features should be considered when

modeling human visual attention.

Itti and Baldi [53], [54] first incorporated the temporal

dynamics of image features into computational models of

human visual attention, and proposed the Bayesian Surprise

model that regards the difference between the visual features

that are expected to be obtained and those that are actu-

ally obtained as indicating saliency. Figure 7 outlines the

Bayesian Surprise model. Its basic idea involves the para-

metric modeling of the distributions of visual features. First

assume that a prior distribution of visual features at time t

can be modeled by a Poisson distribution. For a given set of

visual features at time t, a posterior distribution of the visual

features at time t can also be obtained as a Poisson distri-

bution via a state-space model. From the definition of the

state-space model, the posterior at time t can be re-used as

the prior at time t+1. The main contribution of the Bayesian

Surprise model is that it adopts a Kullback-Leibler diver-

gence from the prior to the posterior as a saliency measure.

More specifically, a sequence of similar visual features con-

tinuously gives low saliency values, while unexpected vi-

sual features such as sudden scene changes provides high

saliency values.

†This example is task-driven and includes top-down factors
even if a subject does not know the target stimuli. However, we
have to note that the principle of the signal detection theory does
not rely on any top-down factors.
††Note that responses from any other filters would be useless in

this example, and therefore the mechanism for filter selection does
not necessarily depend on the target information.
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Fig. 7 Model of Bayesian surprise proposed by Itti and Baldi [53].

When incorporating temporal aspects into computa-

tional models, dynamic visual features such as motion and

flicker would be significant. Studies by Maki et al. [40] and

Marat et al. [55] are typical examples of the exploitation

of motion features for computational models of human vi-

sual attention. According to the psychophysical findings re-

ported by Reichardt [56], several computational models uti-

lize the spatial contrasts of motion and flicker [35], [57].

4.4 Novelty-Based Models

In addition to computational models based on psychophys-

ical theories and findings, novelty-based models have also

been developed that try to find spatial irregularities and

temporal non-stationarity as saliency in a given image and

video. Most of these models would not rely on any kinds of

physiological or psychophysical theories and findings. In-

stead, their priority is mainly placed on the performance of

extracting salient regions that would be useful for further

applications. As a result, novelty-based approaches are now

becoming mainstream techniques, especially in the field of

image processing and computer vision.

Hou and Zhang [58] took particular note of 1/ f noise

phenomenon [59] in a frequency spectrum, where the power

spectral density is inversely proportional to the frequency.

If we assume that images with natural scenes also obey this

system, the log power spectrum is proportional to the fre-

quency. Hou and Zhang employed a differential of the log

power spectrum with respect to the frequency as a measure

of saliency, and approximated it by subtracting the log spec-

Fig. 8 Center-surround measures proposed by Gao and Vasconce-

los [64], [65] (top; discriminant measure) and Seo et al. [66] (bottom; self-

resemblance measure).

trum at the current position from the averaged log spectrum

around this position. This model is called the spectral resid-

ual model. The saliency map can be obtained by applying

an inverse Fourier transform to the spectral residual. A vari-

ant of spectral residual model has also been developed by

employing a phase spectral density [60].

Achanta et al. [61] slightly modified the Itti saliency

map model where a Lab color space is used instead of an

RGB space. Later, they further simplified the procedure for

computing multi-scale contrasts, and eventually exploited

the difference between smoothed and averaged input images

as a basis for salient region extraction [62]. This model is

called the frequency-tuned method. The simplification of

the frequency-tuned method can also be derived from the

spectral residual model [58].

Avraham et al. proposed Esaliency (extended

saliency) [63], which detects salient regions based on the

similarity of regions in a whole image. It begins with the

segmentation of an image into small regions, and some fea-

tures are extracted from them. A Bayesian network is in-

troduced to describe the co-occurrence of region indices

that can be a salient region, while considering the similarity

of region features. Saliency of the regions is finally com-

puted based on the joint probability of the Bayesian net-

work. Esaliency can incorporate top-down knowledge about

target locations, and it is applied to natural scenes by learn-

ing target locations from several datasets (see Section 5.3).

Several models evaluate a local novelty at each location

against its neighbors as a measure to evaluate the center-

surround differences. The following two models introduce

two windows of different sizes, the center and surround win-

dow, to compute saliency on a certain location.

Gao and Vasconcelos [64], [65] proposed a discrimi-

nant measure based on the decision theory. The basic con-

cept behind the discriminant measure is that the center-

surround difference at a location is evaluated using expected

error probabilities when discriminating the feature distribu-

tions of the center and surround windows (top of Fig. 8).

That is, saliency values become high when the two fea-

ture distributions are easy to discriminate. The discriminant

measure is applied to each feature map (such as intensity,

color and orientation), and a saliency map is finally obtained
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by summing up the results. The neurophysiological plausi-

bility of the measure is discussed in [65].

Moreover, Seo et al. [66] introduced a self-resemblance

measure. Unlike the discriminant measure, the self-

resemblance measure slides a window within the surround

window, and computes the similarity of features between

the center window and the cropped window (the bottom of

Fig. 8). A collection of resemblance scores finally indicates

how rarely (how salient) the features are at the center loca-

tion.

4.5 Knowledge-Based Models

When visual features that would generally contribute to

saliency calculation or salient region extraction are available

in advance, the problem might become easier with the full

use of this generic prior knowledge. Also in some cases, we

may be able to obtain a number of pairs of images and their

ROIs as ground-truth, which would be promising for captur-

ing useful visual features via machine learning techniques.

This section briefly reviews several models and methods

based on generic prior knowledge independent of or unspec-

ified by targets to be focused on or tasks to be executed.

One typical example is the self-information model by

Bruce et al. [67], where the concept of self information is

incorporated into computational models of visual attention.

It is well known that a process for learning a sparse code for

natural image statistics has been achieved through the emer-

gence of simple-cell receptive fields in the primary visual

cortex of primates [68], [69]. Based on this finding, the self-

information model first derives the bases of image patches

by performing independent component analysis (ICA) on a

lot of samples of small image patches in advance. For a

given image, the probability distribution of each basis co-

efficient is estimated across the entire image by employing

non-parametric kernel density estimation. The product of

these distributions over local neighborhoods yields the joint

distribution of the entire set of basis coefficients. The level

of saliency is finally computed as the negative log likelihood

(self information) of the basis coefficient. Several similar

models have also been presented by Renninger et al. [70]

and Li et al. [71]. Furthermore, as an extended variant of

those approaches, Sun et al. [72], [73] recently proposed a

framework for modeling saccadic eye movements via on-

the-fly FastICA [74]–[76].

Kienzle et al. [77] proposed a framework to discover

relevant visual features for saliency calculation using human

gaze data. They assume that there are local image patterns

(perceptive fields) that guide human gaze. The discovery

of such patterns begins with non-linear mapping of image

patch textures to target/non-target labels, where the labels

are derived from the gaze data. The perceptive fields that

excite and inhibit visual attention are then obtained as lo-

cal patches that maximize and minimize the mapping func-

tion, respectively. They found that the excitatory perceptive

fields exhibit center-surround structures and the inhibitory

fields exhibit a flat, ramp-like structure. A saliency map is

finally computed based on a feed-forward network with the

excitatory and inhibitory perceptive fields.

Ma and Zhang [78], [79] employed various cues that

have the possibility of being related to human visual atten-

tion from videos, and combined them to compute saliency.

The cues include not only visual features but also acous-

tic and linguistic features: motions, contrasts, faces, camera

motions, audio loudness peaks, and how similar the sound

is to speech and music.

5. Top-Down Models

Many researchers have proposed computational models

involving top-down processes, including Wolfe’s guided

search model [6], [7]. The models fall into the following two

classes based on what kind of top-down knowledge man-

ages the computational processes: (1) computational mod-

els based on prior knowledge of the search target in a visual

search task, (2) computational models based on contextual

knowledge in a specific task situation other than a visual

search task. The former deals with the situation where the

humans determine a visual object to which they turn their

attention before beginning the task, while the latter never

pre-specifies an object but the subjects focus on an object

linked to the controlled cognitive state under the situation

such as where they memorize something or play a game.

The former has been proposed more than the latter because

psychophysics has long focused on visual search tasks.

Each also falls into the following three classes based

on how a model computes top-down saliency.

(a) Weight modulation of bottom-up features, which learns

each weight of feature channels (e.g., color, orien-

tation) by reference to psychophysical findings on

top-down processes so that some regions related

to top-down knowledge have higher saliency values

(Fig. 9 (a), Fig. 3 (b)).

(b) Weighted combination of outputs from bottom-up and

top-down models†, which combines the bottom-up

saliency map with visual similarity map between an

appearance model of object/scene and an image region

or the target-/task-dependent saliency map (Fig. 9 (b),

Fig. 3 (c)). The weight parameters to combine them are

modulated by top-down knowledge.

(c) Joint learning of bottom-up and top-down features,

which learns a function from a pair consisting of fea-

ture vectors including top-down factors and supervi-

sory signals reflecting top-down knowledge (e.g., the

corresponding eye positions) to a saliency value using

machine learning techniques (Fig. 9 (c)).

Classes (a) and (c) modulate the relationships among the

features, while class (b) modulates the relationship between

the maps using a weight.

†Overall saliency maps computed using the process (class (b))
are called “activation map” in the guided search model [6], [80],
[81] or “priority map” in cognitive science [82].
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Fig. 9 (a) Weight modulation of bottom-up features, (b) weighted combination of bottom-up and top-

down saliency maps, (c) joint learning of bottom-up and top-down features.

Table 1 Classification of top-down computational models.

(a) Weight modulation of (b) Weighted combination of (c) Joint learning of

BU features BU and TD saliency maps BU and TD features

(1) Target search Guided search [80], [81], Guided search [6], [80], [81],

Navalpakkam et al. [83], VOCUS [84], Zelinsky et al. [85],

VOCUS [84], SalBayes [86] Cerf et al. [87], Rao et al. [88],

Contextual guidance [89], SUN [90], [91]

(2) Other tasks Peters et al. [92], Borji et al. [93], Judd et al. [94], Borji [95],

Yamada et al. [96], [97] Esaliency [63], Ozeki et al. [98]

Some typical computational models are classified ac-

cording to the above two categories as shown in Table 1.

To the best of our knowledge there are no models in the

two blank cells. This shows that the biologically plausible

approaches have been useful for computing saliency in tar-

get search tasks, while the psychophysics have not fully re-

ported the findings needed to compute visual attention in the

other tasks. We present an overview of these approaches in

the next section.

5.1 Weight Modulation of Bottom-Up Features

The human performance of a visual target search depends on

both the visual features of the target and those of the distrac-

tors [12], [15], [99]–[101]. Most weight modulation models

learn each feature channel weight based on the differences

between bottom-up features representing the target and the

distractors (or background scenes). As regards the guided

search model, the second version [80] gives more weight

to feature channels that uniquely represent the target. The

weighted response of each channel to the target is compared

with its average response to the distractors. The channel

with the greatest positive difference is selected to compute

the top-down saliency map.

The signal-to-noise ratio (SNR), i.e., the ratio between

target salience and distractor salience, is effective informa-

tion for controlling the weights of feature channels. Naval-

pakkam et al. improved the Itti saliency map model by ex-

ploiting SNR maximization as an objective function of the

weight modulation [83], [102] (Fig. 10). Frintrop et al. also

Fig. 10 Weight modulation of feature channels realized by maximization

of SNR.

proposed VOCUS [84], which directly applies SNRs com-

puted from the feature channels of training images to their

weights. The top-down saliency map results from the dif-

ference between the excitation map, which consists of the
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weighted responses of channels indicating SNR > 1, and the

inhibition map, which is computed by SNR < 1. However,

they never evaluated quantitatively the advantage of using

the distractor knowledge to modulate the weight. Also, they

do not confirm that the model acquires sufficient knowledge

about every distractor, especially the background scene, to

learn of the weight.

The above-mentioned computational models, which

learn the optimum weight of each feature channel, multi-

ply the learned value by every response of the channel. The

uniform bias does not provide a greater ability to express

visual saliency. One solution is to learn the likelihood dis-

tribution of the channel for the target. It can also deal with

the uncertainty of an object’s appearance. Elazary et al. pro-

posed a Bayesian model called SalBayes, which regards the

posterior probability that the visual features extracted from

an image region belong to an object class as saliency [86].

The model recognizes the object and detects the target by

means of maximum a posteriori probability estimation. It

is worth remarking that SalBayes is a novel top-down and

simple machine learning approach for computing visual at-

tention in conjunction with object classification.

5.2 Weighted Combination of Bottom-Up and Top-Down

Saliency Maps

(1) In visual target search

The guided search model, which was covered in the pre-

vious sections, is a pioneering model of the combination

of bottom-up and top-down saliency [6], [80]. Bottom-

up saliency is combined using equal weight with top-

down saliency calculated using the selected feature chan-

nels shown in Sect. 5.1. The model has evolved through

several versions. The latest version [81] has an additional

top-down mechanism to handle a scene context and the in-

hibition tagging mechanism [103] to simulate visual atten-

tion more accurately. As a feature of the guided search,

the guidance module of attention is separated from the main

pathway to object recognition. VOCUS [84] also computes

a global saliency map as the weighted sum of the top-down

saliency map and the Itti saliency map. Giving more weight

for the top-down saliency provided high performance in a

complex scene that was even difficult for subjects to search.

Zelinsky et al. analyzed the relationships between the

weighted parameters and the computed saliency maps [85].

The computation process first convolves a filter that sim-

ulates the spatial distortion of the retina [104] with an in-

put image, and computes the bottom-up saliency based on

several basic features (intensity, color, and orientation) and

the top-down saliency based on the correlation between the

model features of a target and an image region. They var-

ied the weights of the combination of bottom-up and top-

down saliency. The analysis revealed that the eye move-

ments predicted using only the top-down saliency, that is

with the bottom-up saliency completely-suppressed, closely

matched human search behaviors. The finding did not agree

with the observation by Navalpakkam et al. [83] that the

visual search performance of a purely top-down model is

extremely good beyond human ability. In contrast to this,

Zelinsky et al. insisted that some traits of human vision

such as central visual field, saccade distance limitation, and

the inhibition of return (IOR) [105]† contributed to improve

performance.

A computational model specialized for one specific

search target may optimize the visual search performance.

Cerf et al. focused on the high-level feature of faces

that fires a specific neuron in a nervous system [87]. The

proposed model detects face regions using the Viola &

Jones face detector [1] and computes the top-down saliency

around the regions by convolving a Gaussian filter ac-

cording to the size of the regions and the graph-based vi-

sual saliency [106] as the bottom-up saliency, and combines

them using equal weight††. The model provided a good fit

to human fixations not only in a face search task but also

during free viewing. Its accuracy was better than that of the

purely bottom-up saliency model. In addition, Walther et al.

proposed a specific face search model that assigns a higher

weight to the feature channel detecting skin hue [107].

Rao et al. revealed that human search performance im-

proves by having subjects observe a scene before inform-

ing a target [88]. The prior knowledge of the scene includes

visual information about both the target and the distractor.

That is, the knowledge helps to promote a visual search as a

top-down component. Rao’s computational model simulates

an initial saccade toward the center of the scene (center-of-

gravity) by computing a weighted average of the top-down

saliency map. The weighting is based on a weight function

with a sharper peak near the center of a higher spatial res-

olution filter used to extract the basic features. It provided

a very small error of 0.7 deg. between the model and the

human gaze position.

Torralba et al. focused on the role of global features in

a target search and proposed a Bayesian model of attentional

guidance called the contextual guidance [89]. The model

computes the probability of the presence of the target ob-

ject at a location by integrating a pure bottom-up prior not

depended on the target and a context-based prior on the loca-

tion of the target as top-down knowledge of global features.

In the experimental evaluation, they gave the subjects the

task of counting target objects within an image and com-

pared the model and human visual search behavior. The

consistency when the model predicted the location of the

target was superior to that of a purely bottom-up saliency

model. The use of contextual knowledge improved the pre-

diction of the first few fixations of the early stage of the

search. However, it was poorer than the consistency of the

fixations of the subjects.

Based on a Bayesian framework as well as the con-

†In psychology, this mechanism in visual search is not called
inhibition of return but inhibitory tagging [103].
††The model does not employ only bottom-up processes to com-

pute a higher saliency of face. We therefore grouped it under the
top-down models.
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Fig. 11 Combination of the Itti bottom-up saliency map and the top-

down prediction map learned from a series of visual features and the corre-

sponding eye positions.

textual guidance, Zhang et al. proposed SUN (saliency

using natural statistics) [90], [91] which incorporated top-

down knowledge of target appearances, rather than the scene

context. SUN computes a bottom-up prior and likelihood

that denotes local features consistent with prior knowledge

of the target appearance to derive the posterior probability

that the local features belong to the target class. It can be

interpreted in an information theoretic way by looking at

the log salience. The probability can be computed using the

probabilistic support vector machine for the ICA features

presented in Sect. 4.5. The accuracy of the predicted fixa-

tions based on SUN was better than that achieved with the

contextual guidance. Zhang et al. also showed that SUN

can be regarded as a natural statistics-based saliency model

simulating the visual search asymmetry [14], [15].

(2) In a situation other than a visual target search

Peters et al. addressed visual attention in an interactive vi-

sual task that consisted of playing a video game [92]. Their

model learns to pair the basic visual features from a se-

ries of video clips with the corresponding eye positions

that reflect the top-down factor; once trained, it generates

a top-down eye position prediction map of previously un-

seen video frames. Finally, the Itti bottom-up saliency map

and the top-down map are combined via point-wise multi-

plication (Fig. 11). The individual and combined maps were

compared against the observed eye positions. The test re-

sults suggested that the predictions by the proposed model

were better than those of the purely bottom-up model and

top-down models. A concern is for over-training resulting

from tasks undertaken by subjects with individual differ-

ences and skill improvement.

Borji et al. learned a Bayesian network that has some

feature variables (scene gists [108], bottom-up saliency

maps, game controllers, game events) connected to the cor-

responding eye positions and incorporated MEP (mean of

the distribution of all training eye positions) as a prior dis-

tribution [109]. The approach obtained higher prediction

of eye fixations than classical discriminative classifiers, in-

cluding regression, support vector machine, and k nearest

neighbor. They also proposed a framework that introduces a

hidden Markov model to predict time-varying visual atten-

tion maps using a previous gaze point, subjects’ inputs from

game controllers, and the scene gist using features shared

with a visual attention model [93].

Yamada et al. focused on human egocentric vi-

sual attention during walking [96], [97]. They generated

an egomotion-based attention map by integrating motion

maps using egomotion information and a purely bottom-

up saliency map. The computation consists of the follow-

ing steps: 1) estimating camera motion (rotation and trans-

lation) from an egocentric video that includes visual mo-

tions caused by human head motions, 2) computing angular

velocity and generating a rotation-based attention map, 3)

computing the focus of expansion (FOE) of a moving scene

and generating a translation-based attention map, 4) com-

bining the maps and the graph-based visual saliency [106]

using equal weights. They demonstrated that the combina-

tion of the bottom-up saliency map and the rotation-based

attention map could achieve the most accurate predictions

of human attention in egocentric scenes [97], whereas they

revealed that saliency maps using typical dynamic features

(motion and flicker) reduced a prediction accuracy [96].

5.3 Joint Learning of Bottom-Up and Top-Down Features

Judd et al. measured human eye movements during a land-

scape and portrait image memory task [94]. They used the

top-down controlled eye movement data as training and test-

ing examples to learn a saliency model based on a large

set of image features (low-level: 33 local features, middle-

level: a horizontal line, and high-level: face, human, car

region [110]). Each weight for a linear combination of the

features was learned from the eye movement data. They

demonstrated the importance of the center prior feature,

which indicates the distance to the center for each pixel. A

similar approach was recently proposed by Borji [95]. This

approach describes saliency as being binary (i.e., salient

or not salient), and it obtains the weights using classifica-

tion algorithms such as support vector machine and Ad-

aboost [111].

Avraham et al. asked their experimental subjects to

mark the interesting objects in each scene and evaluated

their proposed model Esaliency [63] (for details, see Sec-

tion 4.4). In a human-robot interaction, the user gives the

robot some tasks. To realize a natural interaction, the robot

needs to control its attention according to the user’s com-

mand. Ozeki et al. employed bottom-up features and face

pose detection, and simulated the dynamic variation of vi-

sual attention using a particle filter [98]. The set of parti-

cles that approximates the spatial probability density distri-

bution of the attention is distributed with weight placed on a

saliency region close to the command such as “pay attention

to the red object” and “establish joint attention with human

partner”.

6. Evaluating Computational Models

6.1 Evaluation Measures

As surveyed in the previous sections, there have been pro-
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posed a huge variety of computational models and their im-

plementations for human visual attention. This section in-

troduces several evaluation measures commonly used in the

state-of-the-art studies.

Given gaze data while examining targets, the strength

of saliency at gaze locations is often evaluated. The normal-

ized scan path saliency (NSS) is a measure of comparing

the strength of saliency at gaze locations with the average

strength of saliency in input images, which is employed in

[50]–[52], [92], [106]. Moreover, the Kullback-Leibler di-

vergence between saliency distributions sampled from gaze

locations and those sampled at random is regarded as a mea-

sure to evaluate saliency map from videos [53].

Studies that assume search tasks including visual

search can employ an evaluation measure that counts the

number of shifts of gaze locations to find targets, by simulat-

ing such gaze shifts based on obtained saliency maps. This

measure is employed not only in the pioneer work by Itti et

al. [27] but in several other studies [49], [84], [85], [90].

Especially for the still input images, gaze data are of-

ten regarded as gaze-point distributions. Some studies es-

timated human attention map resulted from convolving a

Gaussian kernel to the gaze-point distributions and measure

the correlation between the human attention map and com-

puted saliency maps [67], [112].

Other studies binalize a saliency map based on a thresh-

old and evaluate how often human gazes locate at high

salient regions (region of interests; ROI) [63], [86], [89].

Furthermore, the studies which aim at detection of ROI of-

ten compare the ROI obtained from their saliency map with

those annotated manually [58], [61], [113]. In such cases

no subjects nor gaze data are required for the evaluation.

With this, salient region extraction techniques such as [114],

[115] also employ this measure. Those techniques have

different goals from the saliency computation as shown in

Sect. 3. Consequently, it is important to evaluate methods

appropriately based on their goals.

Several computational models have been quantitatively

evaluated by Toet [116]. Qualitative evaluations are also

released in https://sites.google.com/site/saliencyevaluation/

home. In addition, Borji et al. have presented a quantitative

evaluation of several salient object detection (i.e., salient re-

gion extraction) techniques in [117].

6.2 Dataset for Model Evaluation

When evaluating visual attention models, datasets are usu-

ally required consisting of image or video for gaze target as

well as the corresponding gaze data. CRCNS eye-1† (eye-

1) is a dataset containing all of those data, which is mainly

used in [53]. Eye-1 contains totally 50 videos consisting of

TV programs, video games as well as artificial visual stim-

uli, and the corresponding gaze data obtained from 4 to 6

subjects. In addition, several research groups publish gaze

datasets associated with static images or videos, as shown

in the following list. Notice that this list and the list in the

next section include not only the models introduced in this

survey paper but several other models excluded.

• Bruce et al. [67] (http://www-sop.inria.fr/members/

Neil.Bruce/)

• Torralba et al. [89] (http://people.csail.mit.edu/torralba/

GlobalFeaturesAndAttention/)

• Judd et al. [94] (http://people.csail.mit.edu/tjudd/

WherePeopleLook/)

• Cerf et al. [87] (http://www.fifadb.com/)

• Le Meur et al. [118] (http://www.irisa.fr/temics/staff/

lemeur/visualAttention/)

• Ehinger et al. [119] (http://cvcl.mit.edu/searchmodels/)

• Rajashekar et al. [120] (http://live.ece.utexas.edu/

research/doves/)

• The DIEM (Dynamic Images and Eye Movements)

Project (http://thediemproject.wordpress.com/)

• NUSEF: The National University of Singapore Eye-

Fixation database (http://mmas.comp.nus.edu.sg/

NUSEF.html)

6.3 Open Source Codes

Finally, here is a partial list of open source codes which im-

plement existing computational models. See the links to ac-

cess the detail of the codes.

• Biologically-plausible models

– iLab Neuromorphic Vision C++ Toolkit [27], [53]

(http://ilab.usc.edu/toolkit/)

– Saliency Toolbox [27], [121] (http://www.

saliencytoolbox.net)

– Graph-based visual saliency [106] (http://www.

klab.caltech.edu/˜harel/share/gbvs.php)

– Implementation of Itti saliency map with

OpenCV [27] (http://pub.ne.jp/akisato/

?entry id=4437100)

– The bottom-up visual saliency of Itti et al. [27]

to run on the Nokia N810 internet tablet

(http://maemo.org/downloads/product/OS2008/

saliency/)

• Novelty-based models

– Spectral residual [58]

(http://www.klab.caltech.edu/˜xhou/projects/

spectralResidual/spectralresidual.html)

– Frequency-tuned salient region detection [61],

[62] (http://ivrgwww.epfl.ch/

supplementary material/RK CVPR09/)

– Esaliency [63]

(http://isl.cs.technion.ac.il/index.php/research/

research-projects/30)

– The incremental coding length [122] (http://www.

klab.caltech.edu/˜xhou/projects/dva/dva.html)

†http://crcns.org/data-sets/eye/eye-1
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• Knowledge-based models

– Saliency based on information maximization [67]

(http://www-sop.inria.fr/members/Neil.Bruce/)

• Top-down models

– Learning to predict where to look [94] (http://

people.csail.mit.edu/tjudd/WherePeopleLook/)

– Predicting human gaze using low-level saliency

combined with face detection [87] (http://www.

fifadb.com/)

– A combined source model of eye guidance [119]

(http://live.ece.utexas.edu/research/doves/)

A list of model implementations as well as perfor-

mances is also provided at http://people.csail.mit.edu/tjudd/

SaliencyBenchmark/.

7. Concluding Remarks

This paper overviewed computational models of human vi-

sual attention and their implementations, which consists of

bottom-up models that compute a saliency map from images

(or videos) and top-down models that exploit some knowl-

edge on human cognitive states, tasks, or prior knowledge of

the images. Both bottom-up and top-down models were in-

dividually classified into several types based on their math-

ematical backgrounds or the formulations. We conclude the

paper with foresight of in models of human visual attention,

which includes not only a pure computational model of vi-

sual attention but salient region extraction.

In computer science communities, traditional

biologically-plausible models of bottom-up saliency, which

include Itti’s saliency map [27], are basically utilized to

serve a baseline, and now novelty-based and knowledge-

based models seem to be dominant. Whereas novelty-based

models are well studied for these 5 years, knowledge-based

models do not mature so much. The knowledge-based mod-

els have a potential to apply various machine learning tech-

niques. For instance, Li et al. [123] introduced multi-task

learning to simulate the conjunction search (cf. Sect. 2.1),

where each task corresponds to a simple function of feature

search such as color, intensity or edge orientation.

On top-down models, many weighted combination and

joint-learning models have been introduced recently. Top-

down information on target characteristics is easy to be

introduced because of its familiarity with various pattern

recognition and computer vision techniques such as Viola-

Jones face detector [1] and deformable part models [110].

On the other hand, it still remains undiscovered to build

practical models and implementation with human cognitive

states because of the difficulties in experimental setup and

validation. As shown in Sects. 2.4 and 5, many psychophys-

ical findings and conceptual models on such human-states-

related aspects have been already reported. When exper-

imental setups including the introductions of eye trackers

become much easier, top-down models with human states

will be one of the important topics in the future.

Finally, visual attention models have many applica-

tions. Recently the models have been used to boost

some computer vision and pattern recognition techniques

such as object detection [113], [124], [125], object recog-

nition [126]–[131], action recognition [132], [133], segmen-

tation [37], [114], [115], [134], [135] and background sub-

traction [136]. Besides, specific applications include video

summarization [137] and compression [138], scene un-

derstanding [139]–[141], computer-human interaction [98],

[142]–[147], robotics [132], [148]–[150], and driver assis-

tance [151], [152]. The potential of the visual attention mod-

els that are capable of extracting important regions promises

their contributions to many other domains.
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[128] S. Frintrop, A. Nüchter, H. Surmann, and J. Hertzberg, “Saliency-

based object recognition in 3D data,” Proc. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp.2167–

2172, 2004.

[129] D. Walther and C. Koch, “Attention in hierarchical models of

object recognition.,” Progress in Brain Research, vol.165, no.6,

pp.57–78, 2007.

[130] J.Y. Zhu, J. Wu, Y. Wei, E. Chang, and Z. Tu, “Unsupervised ob-

ject class discovery via saliency-guided multiple class learning,”

Proc. IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp.1–8, 2012.

[131] G. Sharma, F. Jurie, and C. Schmid, “Discriminative spatial

saliency for image classification,” Proc. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp.1–8, 2012.

[132] Y. Nagai, “From bottom-up visual attention to robot action learn-

ing,” IEEE International Conference on Development and Learn-

ing (ICDL), pp.5198–5203, 2009.
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