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Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is directly involved in cancer cell-cycle regulation because it
catalyses the cis-trans isomerization of prolyl amide bonds in proteins. In this sense, a modeling evaluation of the inhibition of
Pin1 using quinazoline, benzophenone, and pyrimidine derivatives was performed by using multilinear, random forest, SMOreg,
and IBK regression algorithms on a dataset of 51 molecules, which was divided randomly in 78% for the training and 22% for the
test set. Topological descriptors were used as independent variables and the biological activity (pIC50) as a dependent variable.-e
most robust individual model contained 9 features, and its predictive capability was statistically validated by the correlation
coefficient for adjusting, 10-fold cross validation, test set, and bootstrapping with values of 0.910, 0.819, 0.841, and 0.803, re-
spectively. In order to improve the prediction of the pIC50 values, the aggregation of the individual models was performed through
the construction of an ensemble, and the most robust one was constructed by two individual models (LR3 and RF1) by applying
the IBK algorithm, and a substantial improvement in predictive performance is reflected in the values of R2

ADJ= 0.982,
Q2

CV= 0.962, and Q2
EXT= 0.918. Mean square errors <0.165 and good fitting between calculated and experimental pIC50 values

suggest a robustness on the prediction of pIC50. Regarding the docking simulation, a binding affinity between the molecules and
the active site for the Pin1 inhibition into the protein (3jyj) was estimated through the calculation of the binding free energy (BE),
with values in the range of −5.55 to −8.00 kcal/mol, implying a stabilizing interaction molecule receptor. -e ligand interaction
diagrams between the drugs and amino acid in the binding site for the three most active compounds denoted a good wrapper of
these organic compounds into the protein mainly by polar amino acids.

1. Introduction

Pin1 has been used as a target for treating cancer since its
discovery [1] because it plays a critical role in cell-cycle
regulation, it catalyses the cis-trans isomerization of prolyl
amide bonds in its substrate proteins, and deregulated
proteins are common human cancer cells [2]. Also, Pin1
induces apoptosis and mitotic arrest. -en, the inhibition of
Pin1 presents new opportunities for the development of new
anticancer treatments [3]. A potential prognostic marker in

human cancers should be the overexpression of Pin1, as
demonstrated for the breast [4], prostate [5], and lung [6].
Moreover, it has been reported that 38 of 60 tumours have
more than 10% of Pin1 overexpression, compared with the
corresponding normal controls [7].

Focused on the importance of Pin1 in the cancer
treatment, some inhibitors for Pin1 have been reported
such as 2-{[4-(4-tert-butylbenzenesulfonamido)-1-oxo-1,4-
dihydronaphthalen-2-yl]sulfanyl}acetic acid (KPT-6566)
[8], all-trans retinoic acid (ATRA) [9], and inhibitors
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based on aromatic compounds [10]. With respect to the last-
mentioned compounds, the Bailing Xu’s group had reported
the synthesis of several compounds as potential Pin1 in-
hibitors. In their earlier efforts, in 2011, they synthesized 2,4-
disubstituted quinazoline derivatives (Scheme 1). All qui-
nazoline synthesized structures are available in Table S1 in
the supplementary material. �e most potential inhibitor,
compound 13, with the 50% inhibitory concentration (IC50)
equal to 2.90 μM, has two chlorine atoms bonded in the
position 3 of the aromatic ring on the substituent R4, a
carboxylic acid linked to the benzene in the position R5, and
an NO2 group in the quinazoline nucleus. Clearly, the set of
molecules depicted in Table S1 in the supplementary ma-
terial have several heteroatoms present in their structures
[11], which suggest a large dipole moment due to the
electronegative differences between the atoms involved in
the compound. �ese set of compounds were separated into
two parts, the first containing an amine group to link the R1,
while in the second, an amide functional group is linked with
the R4 group.

In the same context, in 2012, Liu et al. [12] prepared a
series of Pin1 inhibitors with benzophenone skeleton
(Scheme 2). �e investigation on structure-activity re-
lationships (SAR), varying the substituents on the position
(R6 and R7), the binding (1 and 2), and the molecules (X and
Y) was performed (complete structures are shown in
Table S2 in the supplementary material). �e author sug-
gested that the Pin1 inhibition could be related to two
molecular characteristics: an oxo-acetic group linked to the
benzophenone moiety and the aromatic bicyclic ring, having
different heteroatoms, linked to amide group moiety. In
addition, the author suggested the methoxy group could
enhance the activity substantially. �e most active substrate
of this set was compound 24 with an IC50 value of 5.99 μM,
which contains a bicycle nitro-benzothiophene, which can
increase substantially the polarity of the molecules in the
corresponding evaluated set.

On the contrary, recently Cui et al. [13] reported the
synthesis and Pin1 inhibitory activities of pyrimidine de-
rivatives, and their core structures are shown in Scheme 3. A
set of twenty-six compounds was prepared by the authors,
and different aromatic substituents including the hetero-
atoms nitrogen, oxygen, sulphur, and some halogen were
used as substituents, presenting a very interesting dataset
with important variations between their structures (Table S3
in the supplementary material). �e authors suggest that
compounds 28, 33, 38, and 49 with IC50 values lower than
3 μM demonstrate potent inhibitory activities against Pin1,
compound 38 being the most active with an IC50 value of
1.68 μM. �is compound in analogy to the most active
compounds of the other two sets is shown in Tables S1 and
S2 in the supplementary material (13 and 24), and it also
presents a bicyclic structure as substituent involving oxygen
and nitrogen as heteroatoms in R9 (4-benzoxazole). Addi-
tionally, the chlorine and nitro groups on 38 also suggest a
large polarity of the molecule.

Based on the hypothesis of the existence of a relationship
between the molecular structure and the biological activity,
the drug design in general terms can be assisted by

quantitative structure-activity relationship (QSAR) model-
ing, which has become a widely used tool in computer-aided
drug design (CADD), fate modeling and predictive envi-
ronmental risk assessment, property prediction, and toxicity
of pharmaceuticals and chemicals [14]. Several molecular
descriptors can be used to obtain QSAR models, and they
can be achieved from quantum mechanics calculation and/
or topological indexes for two- and three-dimensional
structures [15–17]. In this sense, Ghalia et al. [18] re-
ported a 3D-QSAR study of the TC50, which was calculated
by the Reed and Muench method and represents the con-
centration that inhibits 50% cellular growth compared to
that untreated control, and IC50 (antiviral activity) by using
quantum chemical descriptors, which were estimated on
twenty-one molecules of novel N-phenyl benzamide and N-
phenylacetophenone derivatives. Multilinear regression and
non-multilinear regression models were obtained for the
dataset, which was divided as the training and test set. �e
authors suggest that the results represent an excellent sta-
bility for high values based on correlation coefficients
RpIC50� 0.91 RpTC50� 0.96 for the RNLM and RpIC50� 0.87
and RpTC50� 0.95 for MLR. In addition, a QSAR predictive
analysis through an assembly of a regression model to
predict the inhibition of aldose reductase for flavonoids was
carried out on 55molecular structures, including parameters
of all types calculated using the software DRAGON 5.0 [19].
�e predicted power of this model was measured with the
following parameters Qloo� 0.934 and l−n%–o
Rl–30%–o� 0.803 [20]. Furthermore, another study has de-
veloped QSARmodels to predict the inhibitory activity of 88
organic bromodomain modulators. In this case, the de-
scriptors were developed using QuBiLs-MIDAS and MAS
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Scheme 1: Quinazoline derivatives as potential Pin1 inhibitors core
structures for molecules (a) 1–10 and (b) 11–17.

X

R6

R7

O

N
H

O

H
NHO

O

O

Y

2

1

Scheme 2: Series of Pin1 inhibitors with benzophenone skeleton
core structure for molecules 18–26.
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(Quadratic, Bilinear and N-Linear Maps based on N-tuple
Spatial Metric [(Dis)-Similarity] Matrices and Atomic
Weightings). One of the best models with 9 variables showed
the following statistical parameters R2

� 0.794, Q2
loo � 712,

Q2
Boot � 0.683, Q

2
EXT � 0.8563, and 1 outlier [21].

On the contrary, a useful tool and widely used on drug
design is the molecular docking, which is a computational
procedure used to predict the binding affinity between a
micromolecule (ligand) and a macromolecule (receptor),
which has a particular importance in drug development [22].
In a recent study was reported a molecular docking study on
the evaluation of potential anticancer agents, related with the
half maximal inhibitory concentrations (IC50) and their
effect on microtubule assembly [23]. Docking programs
have become popular to find the proper position ligands
(orientation and conformation) into a protein-binding site
[24]. Some scoring functions predict the ligand’s biological
and complementary activity; usually, docking scores are
more important than having the correct position [25, 26].
One of the widely used docking programs is AutoDock Vina,
which uses a sophisticated gradient optimization method in
the optimization procedure [22]. By using AutoDock Vina
docking algorithm, the platform Mcule’s online app 1-click
docking provides the highest quality purchasable molecular
modeling and compound database tools, where the calcu-
lations are running on cloud machines [26].

In reference to the above description, this work is
seeking a reasonable computational modeling for the in-
hibition of the Pin1 by six-membered aromatic derivative
compounds involving the three set of molecules included in
Tables S1–S3 in the supplementary material (quinazoline,
benzophenone, and pyrimidine derivatives). �en, a total of
fifty-two compounds with important variations into their
structures, which imply a robust dataset, have been used for

a molecular modeling simulation. Multilinear algebraic map
descriptors were used in the modeling process, and different
regression techniques were employed in the model con-
struction as well as for the aggregation of these models
through the construction of an ensemble.

2. Methodology

2.1. Dataset. A dataset was employed and separated ran-
domly as the test set (22%) and training (78%). Compound
52 was considered as outlier based on the statistical pa-
rameters and adjusted on the training and test set; in ad-
dition, it is well-known in the literature that it failed to show
cellular effects due to the poor permeability of the phosphate
group [27]. �eir biological activity expressed as IC50 was
collected from the literature by the Bailing Xu research
group, where 17 possess quinazoline structures (Table S1 in
the supplementary material) [11], 9 are benzophenone
structure (Table S2 in the supplementary material) [12], and
26 of the molecules possess pyrimidine and naphthalemic
nucleus (Table S3 in the supplementary material) [13]. In
Table S4 (Supplementary Materials) is shown all the IC50

values on μM, and a logarithmic transformation was applied
(equation (1)), which was used as a dependent variable.

pIC50 � − log
10−6

IC50

( ). (1)

2.2. Descriptors Calculation. All the molecules were drawn
into the GaussView (Version 5.0) software, and the 3D
structure was optimized with the semiempirical PM6
(parametric method 6) [28] by using the software Gaussian
16 suite [29], where the convergence criterion for the self-
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Scheme 3: Pyrimidine derivatives as potent Pin1 inhibitor core structure (a) for molecules 27–37, (b) for molecules 38–43, (c) for molecules
44–46, (d) for molecules 47 and 48, (e) Molecule 49, and (f) Molecule 52.
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consistent field (SCF) was set as default. -e molecules
were characterized as minimum stationary points, which
were obtained by a frequency calculation on the optimized
structures at 298.15 K [30]. 892 topological descriptors
were calculated by using the free software QuBiLs-MIDAS
and MAS, available on http://tomocomd.com/ [31], and
that pool wad enlarged by the addition of 5 descriptors:
cLogP, cLogS, druglikeness, total surface area, and polar
surface area were calculated using the software OSIRIS
DataWarrior [32]. -e hydrophilicity of a drug is measured
by the logarithm of the concentration of a drug in n-octanol
over water (equation (2)); values of marked drugs are
between −10 and 8. Another feature used to measure the
drug effect is cLogS, which measures its distribution and
absorption.

One aim for drug design is to avoid poorly soluble
compounds; typical clogS values of traded drugs are greater
than −8 and smaller than 2. It is calculated by applying a base
10 logarithm to solubility (S) in mol/liter. In addition,
druglikeness is a qualitative concept for drug design and is
estimated based on topological descriptors, clogP, molecular
weighs, and other properties. Although positive values are
recommended for traded drugs, it is not mandatory because
it does not measure the biological activity or specific effect
[33].

cLogP � log
Coctanol

Cwater

( ). (2)

Also, the total surface area and the polar surface area
(psa) were also estimated. -e total surface area, which
considers all polar and nonpolar fragments of the molecule,
as well as polar surface area (psa), which is a measure of the
degree polarity of molecules, was estimated. psa is equal to
the sum of surface contributions from polar fragments. “psa”
of nontoxic compounds, which do not cause death or an
adverse histological change, is greater than 75 Å2, and
compounds with psa <75 Å2 are more likely to be toxic
drugs. [34].

-e modeling process was done with the software Weka
3.8 [35] which offers several machine learning techniques,
and the following regression techniques were used: multi-
linear regression (MLR), Smola and Scholkopf’s algorithm
for solving regression problem (SMOreg) [36], instance-
based learning with parameter k (IBK) [37], and random
forest (RF) [38, 39], which are described briefly.

2.2.1. MLR. It is a classical statistical method that calculates
the “weights” or coefficients of the dependent variables of a
linear expression, and the predicted value is the sum of the
attributes multiplied by its weight and the Akaike criterion
for model selection.

2.2.2. SMOreg. -is method overcomes the sources of in-
efficiency and confusion caused by SMO, which maintains a
single threshold value, while the SMOreg uses two criteria
parameters, which significantly improve the adjusted value
on regression as well as the model predictability.

2.2.3. IBK. -is method is amended in the lazy algorithms
set to implement in Weka and widely used for classification
and regression, which uses cross validation to select the best
number of k, which is the same value for k nearest neighbour
(KNN) approach. It measures simple distances to find the
training instance closest to the test set. In case of same
distance obtained in multiple instances, the first one found
will be used.-e parameter KNN specifies the number of the
nearest neighbors to use when predicting a test instance and
the outcome is determined by majority vote.

2.2.4. Random Forest. It consists of unpruned classification
or regression trees by using a bootstrap sample of random
feature and training data selection. -e prediction values are
made by the averaging or majority of votes of the ensemble.
In addition, the relation with the dependent variable and the
descriptors are hidden inside a “black box” and does not
produce an explicit model. RF algorithm overcomes the
instability of decision caused by its hierarchical nature
applying subset selection and bagging techniques and re-
duces the bias due to class imbalance and overfitting.

2.3. Statistical Analysis. In order to determinate the ro-
bustness of a model, several statistical parameters must be
calculated [40]. First, in case the coefficient of determination
for adjusting (R2) value is close to 1, the model is considered
robust. Second, a model is considered suitable when the
average bootstrapping (Q2

boot), which provides information
about the predictability of a particular model, is close to 10-
fold cross validation (Q2

CV). -ird, the values of a(R2)< 0.3
and b(Q2)< 0.05 are accepted to validate the model. Also, the
difference between the total correlation in the attributes
(Kxx), which value is lower than 50, and the correlation in the
set specified by attributes plus the dependent variable (Kxy)
must be positive (ΔK� (Kxy−Kxx)> 0). For the purpose of
evaluating the internal predictability of eachmodel, standard
deviation error of prediction (SDEP), and standard de-
viation error of calculation (SDEC) values must be close to
zero. Finally, models good fitting are corroborated by a high
value of Fisher ratio (F) and a low-value standard deviation
(s) [41].

Scheme 4 summarizes the process of this work step by
step. To begin with, molecules are drawn in GaussView,
followed by an optimization in Gaussian 16 at the PM6 level.
-en, the following software is used to calculate features:
QuBiLs-MIDAS, MAS, and DataWarrior. Subsequently,
regression algorithms are applied in Weka 3.8 and the most
robust models are selected. Finally, an ensemble by using
IBK and/or RF regression techniques was assembled. -e
parameters to select the best assemble are coefficient of
determination of adjust (R2

ADJ), cross validation (Q2
CV), and

test set (Q2
EXT), as well as the corresponding mean square

errors (MAE).

2.4. Docking Analysis. -e docking analysis was done by
using the platform Mcule’s online app 1-click docking,
where the 3D structure of the receptor description file

4 Journal of Chemistry

http://tomocomd.com/qubils-midas


(RDF), Pin1, can be found as 3jyj on the PDB library. �e
protein 3jyj was selected because in the previous reports in
the literature it has been identified as the most adequate
receptor binding site for the evaluation and screening of
possible active organic compound in pin1 inhibition [42].
�e cartesian 3D coordinates were identified for the binding
site as X: 1.1902, Y: 29.3651, and Z: 22.2862, which was
established as default, and the size of the binding site was
22Angstrom. �e water molecules in Pin1 protein was re-
moved, hydrogen was added, and incomplete residues were
corrected. According to the binding free energy (BE) of the
molecules, the 6 final docked conformations were ranked.

3. Result and Discussion

A total of 51 compounds were used in this study. In order to
show the random distribution of the pIC50 values of the
training and test datasets, a histogram is represented in
Figure 1. It shows an adequate distribution taking values
between the application domains defined by the training
dataset.

A total of seventeenmodels were selected by applying the
first condition, which implies that the models must contain a
maximum of nine descriptors in order to obtain a ratio
number of molecules/descriptors >5. In this sense, 5 models
were obtained by applying the regression technique IBK,
four with MLR, six with RF, and two with SMOreg. �e
adjusted and cross-validation correlation coefficient only for
the training dataset is available in Supplementary Materials
(Table S5). To select the most robust models, some criteria
were applied as follows: for R2

ADJ > 0.78, for 10-fold
Q2

CV > 0.51, and for the test set, aQ2
EXT > 0.64. In this sense, in

Table 1, the most robust models comply with all the con-
ditions are shown with the corresponding correlation co-
efficients and MAE for adjusting, cross validation, and test
set. Four of these models were obtained by using the
technique MLR, and the remaining one was found by using
random forest.

For the case of models obtained by MLR techniques, the
equations to calculate pIC50 values are presented as follows:

pIC50−LR1 � 8.26 + 0.0686AMh + 0.332ACIch− 4.82TSch
− 0.202N3h + 0.0988ACRch− 0.0115Q1ve
+ 124Q1ch− 2.31SICh,

(3)

pIC50−LR2 � 11.6− 12.4TSh− 0.412GVpsa− 266TSs
− 1.45SICpsas− 0.0199GVph− 0.0226Q1ve
+ 0.247TSms,

(4)

pIC50−LR3 � 10.9− 20.5P2Ach− 0.0248Q1ve− 0.0159GVph
+ 0.207TSms + 0.0601Sre− 229TSs
− 0.615GVpsa + 0.771Amme− 0.435RAa,

(5)

pIC50−LR4 � 12− 0.148She + 0.101Sre + 0.228TSms

− 0.0237Q1ve− 0.0151GVph− 223TSs
− 0.595GVpsa− 16.4P2Tch− 0.363RAa.

(6)

�e independent variables included in the robust models
described above were named only by the invariants and the
physical-chemistry (PC) properties and abbreviated in
capital letters and lowercase letters, respectively. In case of
two or more descriptors having the same invariant and PC
property but differ at least in one characteristic, the name
includes a capital letter in the middle. �e description and
abbreviations of the independent variables invariants used in
equations (3)–(6) are presented in Table 2. �e whole name
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Table 1: �e five most robust models based on regression co-
efficients and MAE values for adjusting, cross validation, and test
set estimated by using Weka 3.8.

Model LR 1 LR 2 LR 3 LR 4 RF1

Num. var. 8 7 9 9 8

Adjust
R2
ADJ 0.781 0.843 0.889 0.910 0.978

MAEADJ 0.157 0.131 0.108 0.099 0.089

Cross validation
Q2

CV 0.684 0.773 0.755 0.819 0.514
MAECV 0.190 0.162 0.159 0.143 0.249

Test set
Q2

EXT 0.645 0.819 0.922 0.841 0.962
MAEEXT 0.211 0.129 0.098 0.156 0.189
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for each feature is available in the supplementary materials
(Table S6).

�e PC parameters found in the models described above
are shown in Table 3, and they have become popular in the
description of many biological activities; for example, van
der Waals volume (v) performs a key role in the interaction/
orientation for biological activity of an organic compound.
While “s” and “h” are linked with donor-acceptor properties
of a molecule, “c” has a significant effect on the enzyme-
substrate electrostatic interaction. Additionally, “psa” pro-
vides information about the capability of bond formation of
a particular compound and has exhibited as an essential
property on QSAR studies [41]. Furthermore, “r” is the
refractivity calculated by Lorentz–Lorenz Formula, related
not only to the London dispersive forces but also to the
volume of the molecules [43]. Finally, polarizability (p)
delineates the interactions between molecules, nonpolar
atoms, and polar and ions molecules with dipole moments
[44].

In order to validate LR models, all statistical parameters
were calculated and reported in Table 4. In all the cases, the
values of Q2

boot are greater than 0.59; SDEP and SDEC values
and the difference betweenQ2

loo andQ
2
boot are all near to zero.

�e K values smaller than 50 suggest a noncollinearity
between the selected attributes, and the ΔK values are
positive except for those of the LR2 model, which was
discarded for further analysis.

By taking into account the statistical parameters de-
scribed in Table 4, the most robust model is LR4, which is
composed by a total of nine attributes, with a Q2

boot value of
0.803. It is important to highlight that all the physical-
chemical parameters described above are present in the
features of this model. In Figure 2 shows the graphical
correlation between experimental and predicted pIC50

values for the training and test dataset. �is result suggests a
good fitting and predictability for this model. For example,
for the three most potent inhibitor compounds, 13, 24,
and 38, the predicted pIC50 values were 6.64, 6.78, and
6.33, correspondingly, while the experimental values were
6.46, 6.78, and 6.23. �is result suggests an excellent pre-
diction of the absolute values as well as the order of pIC50

(24> 13> 38), with a small error in the prediction of the Pin1
biological activity.

It is important to note that individual models normally
present highly sensitive to a small perturbation in the
training set. �en, to tackle this problem, the construction of
an ensemble modeling, which has become popular in recent
years, aggregates results from different individual models
[45]. IBK and RF machine learning techniques were used to
construct the ensemble model where predicted values from
individual models were taken as independent variables and
experimental pIC50 as the dependent variable. Because R

2
ADJ,

Q2
CV, and Q2

EXT are all over 0.89 for obtained ensembles
(Table 5), the criterion of selection for the ensemble was the
smaller number of variables.

Table 2: Invariants used on the attributes calculations.

Complete description Abbreviation

Autocorrelation with a lag value of # AC[#]
Arithmetic mean (alfa� 1) AM
Geometric mean GM
Gravitational with a lag value of # GV#
Minimum MN
Minkowski distance N3
Quadratic mean (alfa� 2) P2
Range RA
Skewness S
Standarized information content SIC
Percentile 25 Q1
Total sum with a lag value of # TS[#]

Table 3: Physical-chemistry properties found in models LR1–4 and
RF1.

Physical-chemistry properties Abr.

AlogP a
Charge c
Electronegativity e
Hardness h
Mass m
Polarizability p
Topological polar surface area psa
Refractivity r
Softness s
Van der Waals volume v

Table 4: Statistics parameters used for robustness evaluation of the
MLR selected models by using MATLAB.

Model Q2
boot Kxx Kxy ΔK F

LR 1 0.594 33.1 36.2 3.12 13.9
LR 2 0.729 40.5 39.9 −0.62 24.6
LR 3 0.754 39.5 39.6 0.10 26.5
LR 4 0.803 36.6 37.1 0.55 33.7

Model a(R2) b(Q2) SDEP SDEC s
LR 1 0.179 −0.399 0.233 0.185 0.211
LR 2 0.121 −0.383 0.191 0.157 0.176
LR 3 0.188 −0.474 0.179 0.133 0.153
LR 4 0.18 −0.499 0.159 0.119 0.138

R2 = 0.910 Q2 = 0.840
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Figure 2: Graphical plot between experimental and calculated
pIC50 by LR4.
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Consequently, the ensemble model IBK was chosen as
the most robust one, and its independent variables, which
are individual models, are LR3 and RF1. Similar to the
results found with the most robust individual model (LR4),
the predicted pIC50 by the ensemble for the molecules 13, 24,
and 38 were 6.462, 6.739, and 6.313 correspondingly, which
are also in agreement with the experimental values and the
order of the inhibitory activity. -e graphical plot for the
experimental and predicted values obtained by the ensemble
is depicted in Figure 3, where an excellent fitting was
obtained.

OSIRIS DataWarrior descriptors: clogP, clogS, drug-
likeness, and polar surface area values are shown in Figure 4
as histograms, and they were used in order to corroborate if
the compounds used in this study can be considered as
drugs. clogP and clogS values calculated are in the range for
being declared as drugs from −9.9 to 3.6 and between −5.5
and 0, respectively. With respect to druglikeness values,
most of the molecules are in the range from −17 to 2, which
also support that these compounds can be considered as
drugs. However, molecules 9 and 10 cannot be considered as
drug trades because of present values<−17. Lastly, psa values
showed a uniform distribution from 54 to 194.4, where more
than 92% of molecules have values greater than 75, and
consequently can be considered nontoxic drugs. -e larger
psa, as well as the lower clogP, is in agreement with the high
polarity of these molecules due to the presence of hetero-
atoms in their structures. -e most active compound (38)
has values of clogP, clogS, and psa of −4.54, −2.74, and
100.7 Å2, respectively; consequently, this compound com-
plies with all the necessary requirements to be considered as
a drug.

3.1. Docking Simulation. -e docking simulation represents
a powerful tool in the drug design; thus, in the present study,
all structures were docked into the binding site described for
the 3jyj protein, which is reported to be related with the most
common action mechanism for the Pin1 inhibitor biological
activity. In Figure 5 is presented, as a histogram, the dis-
tribution of values for the binding free energy (BE), which
suggest a strong-affinity protein drugs with negative values
from the range −5.2 to −8.2 kcal/mol. Also, a good distri-
bution for the test set into the training set was found, which
suggests a good representation of the data by the selected
training and test.

In order to gain more insight into the binding affinity
on these series of compounds, three compounds from the

total (13, 24, and 38) were selected and are presented in
Figure 6. -ese molecules were selected because they are
representative of the three subsets described in
Tables S1–S3 in the supplementary material and are the
most active compounds in each subset. -e compounds 13,
24, and 38 have values of pIC50 of 6.5, 6.8, and 6.2, re-
spectively; compound 38 is the most active compound in
the total dataset. In contrast, values on the binding free
energy of −7.5, −7.9, and −6.2 kcal/mol were found for the
docked 13, 24, and 38, respectively, which suggest a good
affinity interaction between the receptor and the organic
compound. -ey have in common a bicyclic compound in
their structures, where compound thirteen is a quinazoline
derivative (two six-membered merged rings), twenty-four
is a benzophenone derivative with a bicyclic as substituent
(a five and six merged rings), and thirty-eight is a py-
rimidine derivative with a bicyclic compound (five and six-
membered rings). With respect to the ligand interaction
diagram of these three compounds with the different
present amino acids (right on Figure 6), the interaction
with the residues lysine (LYS), arginine (ARG), serine
(SER), leucine (LEU), aspartame (ASP), methionine
(MET), glutamine (GLN), histidine (HIS), glycine (GLY),
and phenylalanine (PHE) can be observed. -e interaction
of the three evaluated compounds with the mentioned
amino acids are almost the same in each one and for the
smaller one, which is the most active compound and
presents a psa value of 100.7 A ̊2, also a good wrapper of
these amino acids in the ligand is observed. All the amino
acids mentioned are polar in nature, and as expected, they
can have a strong interaction with the drugs considered in

Table 5: -e ensemble models with the corresponding regression coefficients and MAE values.

Model IBK RF

Num. var. 2 4

Adjust
R2
ADJ 0.982 0.994

MAEADJ 0.041 0.024

Cross validation
Q2

CV 0.962 0.960
MAECV 0.060 0.064

Test set
Q2

EXT 0.918 0.891
MAEEXT 0.164 0.146

R2 = 0.982 Q2 = 0.918
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Figure 3: Graphical plot between experimental and calculated
pIC50 by IBK ensemble.
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this study due to their polar nature because in the struc-
tures can be found some heteroatoms, which increase
reasonably their polarity.

4. Conclusions

A molecular modeling simulation for the Pin1 inhibition by
an organic compound containing an aromatic ring in their
structure was evaluated by using QSAR approach. A total of
51 compounds, divided randomly as training (78%) and test
set (22%), were used in the calculations and topological
descriptor was employed for the models construction.
Models were obtained by different regression techniques
such as MLR, SMOreg, IBF, and RF. Five individual models
were selected based on the statistical parameters, and the
most robust one was constructed by using MLR approach
with a total of 9 descriptors, which are weighted by the
physical-chemical properties, which affect significantly the

biological activity, such as aLogP, charge, electronegativity,
hardness, mass, polarizability, topological polar surface area,
refractivity, softness, and van der Waals volume. �ese
properties are closely related to the biological activity of
organic compounds. Regression coefficients of 0.910, 0.819,
and 0.841 were obtained for adjusting, 10-fold cross vali-
dation, and test set, respectively, while the MAE values are
less than 0.156. In order to improve the predictability of
these models, an ensemble was constructed by using the five
obtained employed IBK and RF techniques. A significant
improvement was obtained in the predictability by using a
multiclassifier constructed with IBk involving only two
individual models (LR3 and RF1), with values of
R2
ADJ � 0.982, Q

2
CV � 0.962, and Q

2
EXT � 0.918. Consequently,

this ensemble can be used for the prediction of the Pin1
inhibition activity of analogs compounds to the series used
in this study. With respect to the druglikeness, clogP, clogS,
and psa values, it is possible to conclude that the majority of
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Figure 4: Distribution of (a) cLogP, (b) cLogS, (c) druglikeness, and (d) polar surface area values of the whole compounds.
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the dataset comply with the criteria to be drugs. Finally, the
docking simulation suggests a good affinity between the
molecules and the Pin1 receptors with BE values in the range
−5.55 to −8.00 kcal/mol.
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