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Recent advances in tracking technologies result in geographic information
representing the movement of individuals at previously unseen spatial and
temporal granularities. This new, inherently spatiotemporal, kind of geo-
graphic information offers new insights into dynamic geographic processes
but also challenges the traditionally rather static spatial analysis toolbox.
This chapter presents an introductory overview to movement data in gen-
eral, the theory for modeling and analyzing movement, as well as a set of
key application fields of movement analysis. Finally, the chapter addresses
privacy concerns relevant to the analysis of human movement.

1 Introduction

Mobility is key in a globalized world, where people, goods, data and even ideas move
in increasing volumes at increasing speeds over increasing distances. Moving objects
are the building blocks of dynamic geographic processes in natural and built environ-
ments. Recent advances in localization (GPS, RFID), wireless communication, mobile
computing, and environmental sensing technologies allow for a near ubiquitous tracking
of moving individuals in spacetime, resulting in large information volumes capturing
dynamic processes of high socio-economic relevance.

Be it mobile and wireless communication [42], transportation [55], video surveillance
for security and sports applications [4], or even fundamental behavioral ecology research
[49], movement data is accumulated in previously unseen volumes and granularities.
However, whereas the technologies for capturing movement are intensely researched
and hence reach considerable sophistication, the analytical toolbox to aid enriching the
thereby captured data to higher-level exploitable information and process knowledge is
much less developed.

This chapter first portrays movement traces as a new and intrinsically spatiotemporal
kind of geographic information. Then it discusses the scientific fundamentals required for
analyzing such information, introducing techniques from a wide range of contributing
science fields. The following part is structured as a grand tour of application fields
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dealing with the analysis of spatiotemporal movement. After a short introduction of
privacy issues inseparable from movement analysis, the chapter concludes with final
remarks and an outlook.

2 Movement Traces – A New Kind of Geographic Information

The computational analysis of movement data is for two main reasons a relatively young
and little developed research field. First, emerging from static cartography, geograph-
ical information systems and its underlying GIScience struggled for a long time with
the admittedly substantial challenges of handling dynamics. For many years, occasional
changes in a cadastral map were challenging enough, not to mention the constant change
of location as is needed for modelling movement. Second, for many years, the tracking of
movement entities has been a very cumbersome and costly undertaking. Hence, move-
ment analysis could only address single individuals or very small groups.

Figure 1: Grazing sheep near lake Taupo, NZ. Photo: Patrick Laube.

Only in recent years has the technological advancement in tracking technology reached
a level that allowed the fine-grained seamless tracking of sufficient numbers of individu-
als needed for studying the dynamism of individual moving objects and collectives on a
larger scale [39]. With GPS, RFID, and various other outdoor and indoor tracking tech-
nologies movement pattern research entered a new era, moving beyond ‘thread trailing’
and ‘mark and recapture’ apporaches [24]. Current tracking technology allows for low
cost, almost continuous capture of individual trajectories with possibly sub-second sam-
pling rates [91]. Within a few years the situation completely reversed from a notorious
data deficit to data overload, with a lack of suited analytical concepts coping with the
sudden surge of movement data [71].

Movement traces, capturing the spatiotemporal footprint of the movement of individ-
ual moving entities, emerged as a new kind of dynamic geographic information along
the established rather static points, lines, and polygons. So far, most applications and
related analysis techniques choose to model moving entities as point objects, and their
movement as a sequence of time-stamped observation points. However, also more com-

2



plex spatial entities such as linear or areal objects can move, producing much more
complex movement data. For instance, the path and constantly changing shape of a
tropical cyclone can be derived from image analysis of multi-temporal remote sensing
data. It cannot be stressed enough that movement data is inherently spatiotemporal
and hence cannot be represented just by its geometric footprint of a set of static points
and a connecting line.

The potential and challenge of providing the new tools and techniques required for an-
alyzing movement traces as a new kind of geographic information has recently attracted
the interest of many research fields, both in theory and applications, as is outlined in
the next two sections.

3 Scientific Fundamentals of Computational Movement

Analysis

Assume that the entities in Figure 1 are sheep on a pasture and that they are observed
by a database expert, a computational geometer, and a geographer. Even though all
three experts see the very same sheep, they may all perceive totally different things.
For the database expert each sheep may represent a leaf in a dynamic tree optimised
for fast queries. In contrast, the geographer might want to segment the trajectories into
semantically meaningful segments or interpolate a sheep density surface of the pasture.
Finally, the computational geometer might build the convex hull of the sheep in order
to data mine a flocking movement pattern.

Even though the sheep will not care, their grazing challenges various research fields
interested in movement analysis. The following overview bundles the scientific funda-
mentals underpinning the analysis of movement data, drawn from as diverse research
fields as database research, geography and geographic information science, computer
science and computational geometry, as well as data mining and knowledge discovery.

3.1 Modeling Movement and Movement Spaces

Modeling movement means modeling the moving entities, but equally modeling the space
they move in [61]. The chosen conceptual data model embedding the movement – for
instance a 2D or 3D Euclidean space, a network space or a space partition – rules how
the entities can move, and consequently impacts on what analysis tools are required
to understand that movement. Figure 2 illustrates basic movement spaces and how
movement can be modeled therein.

In the most simple case, space is modeled as a 2D Euclidean space (Fig.2(a)). Entities
are free to move around and are only limited by potential obstacles, such as, for instance,
buildings b1 and b2. The space can be modeled using an entity or field conceptual data
model. The movement of an entity is then modeled as a set of locations (x, y) that
the entity has visited over time (in 3D a location is a triple: (x, y, z)). Even though
the actual movement may be a smooth curve, for simplicity reasons, the movement in
between known fixes is typically modeled as straight line connectors (see e1). Such a
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Figure 2: Four basic movement spaces. (a) 2D Euclidean space, (b) 3D Space-time cube,
(c) network space, (d) irregular tesselation, e.g. phone tower cells.

movement trace is called a trajectory. Formally, a trajectory is defined as a sequence
of time-stamped locations (x, y)T1

, . . . , (x, y)Tt
, where T1, . . . , Tt are t consecutive time

steps. Connecting the locations of a trajectory in temporal order yields a polygonal line
that can self-intersect [45].

A visually elegant way of incorporating time in the depiction of 2D-movement is
the use of a 3D space. Here, the two spatial dimensions x and y are combined with
an orthogonal temporal axis t (Fig. 2(b)). Such a space-time cube (sometimes called
a space-time aquarium) underpins Hägerstrand’s time geography [48]. This concept
furthermore allows the modeling of potential mobility, that is where an entity could
have been between two known fixes. The space-time prism illustrated for e3 indicates as
a volume where e3 could have been between t1 and t2, given the constraint of a maximal
speed [72].

Most human movement is restricted to some form of network. For instance, when
tracking the movement of a commuter in an urban area, the movement is most adequately
modeled as the progression of the visited edges and nodes of the transit network [83].
Figure 2(c) depicts the movement of entities e10 and e11, using a transit network featuring
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streets, and train lines. Even when the actual movement is captured with a GPS tracking
device and deviates from the network, it is semantically given that the movement is
bound to the network. Map matching is the preprocessing step matching the inaccurate
fixes to the respective edges and nodes [14].

Finally, when tracking a cell phone, the movement trace is only captured in the se-
quence of identifiers of the cell phone towers the phone was connected to [30]. For
example, in Fig. 2(d) entity e12 has been connected to the cell phone towers A, E, F,
C, and B. Even though this form of movement information does not offer precise point
locations, in many application contexts such vague traces are sufficient for the task at
hand (e.g. a proximity query in a location-based service).

All four movement spaces can accommodate the movement of individuals, but they
are so different that they need different movement analysis tools and techniques. The
following subsections present various analysis techniques for a variety of movement forms.

3.2 Indexing Trajectories

In the database community, considerable research has been focussing on spatial and
temporal databases. Research in the spatiotemporal area in many ways started with
the dissertations by Lorentzos [65] in 1988 and Langran [59] in 1989. Not surprisingly
research has mainly focussed on indexing databases so that basic queries concerning the
data can be answered efficiently. The most common queries considered in the literature
are variants of nearest neighbour queries and range searching queries, such as:

• Spatiotemporal range query, e.g. ‘Report all entities that visited region S during
the time interval [t1, t2].’

• Spatial nearest neighbours given a time interval, e.g. ‘Report the entity closest to
point p at time t.’

• Temporal nearest neighbours given a spatial region, e.g. ‘Report the first entity
visiting region S.’

In general one can classify indexing methods used for spatiotemporal data into Para-
metric Space Indexing methods (PSI) and Native Space Indexing methods (NSI). The
PSI method uses the parametric space defined by the movement parameters, and is an
efficient approach especially for predictive queries. A typical approach, described by
Sǎltenis et al. [87] is to represent movement defined by its velocity and projected loca-
tion along each spatial dimension at a global time reference. The parametric space is
then indexed by a new index structure referred to as the TPR-tree (Time Parameterised
R-tree). The TPR-tree is a balanced, multi-way tree with the structure of an R-tree.
Entries in leaf nodes are pairs of the position of a moving point and a pointer to the
moving point, and entries in internal nodes are pairs of a pointer to a subtree and a
rectangle that bounds the positions of all moving points or other bounding rectangles
in that subtree. The position of a moving point is represented by a reference position
and a corresponding velocity vector. To bound a group of d-dimensional moving points,
d-dimensional bounding rectangles are used that are also time parameterised, i.e. their
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coordinates are functions of time. A time-parameterised bounding rectangle bounds all
enclosed points or rectangles at all times not earlier than the current time. The search
algorithm for a range query also performs computation on the native space by checking
the overlap between the range of the query and the trapezoid representation of the node.

The NSI methods represent movement in d dimensions as a sequence of line segments
in d + 1 dimensions, using time as an additional dimension, see for example the work by
Hadjieleftheriou et al. [47]. A common approach is to use a multi-dimensional spatial
access method like the R-tree. An R-tree would approximate the whole spatiotemporal
evolution of an entity with one Minimum Bounding Region (MBR) that tightly encloses
all the locations occupied by the entity during its lifetime. An improvement for indexing
movement trajectories is to use a multi version index, like the Multi Version R-tree
(MVR-tree), also known as a persistent R-tree. This index stores all the past states of
the data evolution and allows updates to the most recent state. The MVR-tree divides
long-lived entities into smaller intervals by introducing a number of entity copies. A
query is directed to the exact state acquired by the structure at the time that the query
refers to; hence, the cost of answering the query is proportional to the number of entities
that the structure contained at that time.

3.3 Segmenting Trajectories and Trajectory Simplification

An important piece of information in many application fields is the activity the object is
performing during the time it is tracked. Can, for example, in a transportation context
the mode of transport be inferred from the trajectory? And in behavioral ecology,
is it possible to extract an animal’s activity by only studying its trajectory? As an
example consider seagulls. They can perform several different activities when they are
flying. This could involve playing with other seagulls (their flight is then highly sinous
with highly variable speed and moving in a small spatial area), flying towards their
nest (straight flight with an almost fixed energy-conserving speed) or following a fishing
vessel (piecewise straight flights over water with occasional changes in altitude and a
steady speed over the time interval of about 7m/s). This example indicates that some
information about a seagull’s activity can be extracted automatically from the trajectory.

Segmenting a trajectory into relevant segments representing specific activities is clearly
highly dependent on the context. It would not be possible to perform the above seg-
mentation without expert domain knowledge and context information. In this section
we will only discuss the general version of the problem.

The segmentation problem for a trajectory is to partition it into a number of pieces,
which are called segments (subtrajectories). The movement characteristics inside each
segment is uniform in some sense. Movement characteristics are for example, speed,
heading, altitude or sinousity. The firstPL: [Are you sure that this is really the first time, in such

an absolute form? What about Dykes and Mountain 2003?] approach to specifically focus on seg-
menting the trajectory into segments of similar movement characteristics was by Buchin
et al. [20]. Their approach defines an attribute function for each movement character-
istic that specifies a value at each point on the trajectory (assuming the characteristic
attribute can be calculated locally). They then define criteria that specify that within

6



a segment the attribute values at any location within a segment are sufficiently similar.
This guarantees a similarity of each incorporated attribute within each segment. They
further show that if the characteristic attributes are monotone then a simple approach
will generate an optimal segmentation in linear time.

A very different trajectory segmentation approach but also with a very different ob-
jective was considered by Anagnostopoulos et al. [5], Rasetic et al. [80] and, Yoon and
Shahabi [102]. They consider segmenting the trajectory using minimum bounding boxes
which leads to simplification of the original objects into smaller, less complex primi-
tives that are better suited for storage and retrieval purposes. These segmentations
are specifically effective for index structures that use minimum bounding boxes to store
the trajectories. Usually the objective is to find segmentation for all the trajectories
such that the cost is minimized, that is, the total number of segments is bounded by
some number k. Many different cost functions have been suggested ranging from simply
minimizing the volume of the bounding boxes to highly complex combinations of many
different attributes, see [5, 80, 102] for more details.

Note that many trajectory simplification algorithms produce a segmentation of the
trajectory, usually using a simple distance measure to “shortcut” the trajectory. A com-
mon approach is to use an algorithm based on the Douglas-Peucker algorithm [29], see
for example the papers by Cao et al. [21], Gudmundsson et al. [44] and, Meratnia and de
By [70]. For a real number ε > 0, the polygonal path P = 〈p1, . . . , pn〉 is simplified by the
Douglas-Peucker algorithm as follows. Start with the segment (p1, pn). If the distance
between the segment (p1, pn) and P is at most ε, accept the line segment (p1, pn) as an
approximation for the whole path. Otherwise, split the path at a point and recursively
approximate the two pieces. A crucial aspect of path-simplification algorithms is the
tolerance criterion used: When is a line segment accepted as an appropriate approxima-
tion for a subpath? Originally in the Douglas-Peucker algorithm, the Euclidean distance
between the points on the given subpath and line through the endpoints of the subpath.
However, in principle any tolerance criterion could be used.

3.4 Trajectory Similarity

Many fundamental problems in trajectory analysis have one issue in common, namely
calculating the similarity between two trajectories. How do we measure the similarity
between two curves, or trajectories?PL: [Could we here in the intro work out clearly the crucial

difference between a curve (not time), and a trajectory (with time). I’d rather have not the two mentioned

just like this in a sentence, as if they were the same.]

That is, given two (polygonal) curves P and Q in Rd, one would like to establish a
mapping between the two curves that is associated with an appropriate metric. The
mapping should match up the two curves in an optimal way (i.e., find a continuous
mapping from the points of P to the points of Q, so that the mapping maps the endpoints
of one curve to the endpoints of the other curve). However, the choice of distance measure
is problematic and crucially dependant on the context. Here we will only consider the
most general attempts to define similarity measures.

The perhaps simplest approach to define similarity between two trajectories is to map
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each sequence into a vector and then use an Lp-distance metric to define the similarity
measure. Various early work extended and generalised this distance metric, see for
example [1, 23, 79, 100]. The main drawback using an Lp-metric as a distance measure
is that it is not robust against noisy data or outliers.

In an attempt to develop more robust measures researchers, considered edit distances,
such as Dynamic Time Warping (DTW), which was first used to match signals in speech
recognition. Berndt and Clifford [13] were the first to apply the technique to measure
the similarity in time-series data. The technique was later refined in several follow-up
papers [56, 57, 82, 101].

A similar measure, and also an edit distance, is to find the Longest Common Subse-
quences (LCSS) between two sequences and then define the distance using the length
of the subsequence. The LCSS shows how well two sequences can match one another
if one is allowed to stretch them without rearranging (very similar to DTW). Typically
one would allow approximate matchings between the values. Several variants have been
proposed, see Agrawal et al. [2], Das et al [25] and Vlachos et al. [97]. One drawback
with the edit distance measures is that they are not metric, which usually makes them
less attractive to use for certain problems, such as clustering.

Buchin et al. [19] claimed that these and many other measures for trajectory similarity
are too shape-dependent and do not consider temporal aspects such as speed enough.
Sinha and Mark [85] consider the trajectory of a geospatial lifeline which is the set of
discrete space-time observations of an individuals residence history. As distance measure
they use the average distance between residences weighted by the length of residence.
Trajcevski et al. [92] also propose a distance measure for trajectories that takes the tem-
poral aspect into account. They give algorithms for optimal matching under rotations
and translations. They consider the maximum distance of geographic locations at equal
points in time. These approaches provide a natural time-dependent trajectory similarity
measure: the average or maximum distance at corresponding times. Nanni and Pe-
dreschi [73] handled this problem by using the average Euclidean distance between two
trajectories as the distance measure. Note that this requires a temporal domain com-
mon to the two objects. Van Kreveld and Luo [95] generalised their definition allowing
for time shifts and subtrajectory similarity by parameterizing the trajectories over time.
This model was further studied in [19] where it was shown how the distance measure
can be effectively approximated.

The most fundamental and successful distance measure to this date is probably the
Fréchet metric, which is one of the most natural measures of this type. The Fréchet
metric between two curves P and Q was first defined by Fréchet [37] in 1906. It re-
quires finding a continuous mapping f between the curves P and Q so that W (f) =
maxx∈P |x, f(x)| is minimized. Note that the first location of P has to be mapped to
the first location of Q, and the last location of P has to be mapped to the last location
of Q. This is also known as the person-dog metric: imagine a person walking on P and
a dog walking on Q. The Fréchet distance between P and Q is the length of a shortest
leash that enables both the person and the dog to travel along P and Q, respectively,
with a leash connecting them (person or dog are not allowed to backtrack; a location
on P and its mapped location on Q correspond to the locations of the person and the
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dog connected by a leash). Alt and Godau [3] introduced the free space diagram of
two curves as a data structure to compute the Fréchet distance between them. This
structure was later used by Buchin et al. [17] (see also [67]) to extend the concept of
the Fréchet distance to not only find a mapping that minimizes the Euclidean distance
but in principle to any distance function. In their paper they state several examples, for
example when the distance depends on the visibility between the two moving objects or
the relative speed between the objects.

Closely related to similarity is clustering, which heavily depends on the distance mea-
sure used. In general clustering can be performed more efficiently if the distance measure
is a metric, for example, clustering using the Fréchet distance [18] or the average Eu-
clidean distance [73]. While using non-metric measures such as DTW or LCSS usually
complicates the clustering step [103].

3.5 Mining for Movement Patterns

This section will focus on mining trajectories for movement patterns, which has mainly
been done using algorithmic or data mining approaches.

Some of the most interesting spatiotemporal patterns are periodic patterns. For ex-
ample, consider a trajectory obtained by tracking an elephant; it is easy to detect which
areas are important for the elephant, i.e. where it spends a certain amount of its time.
However, ideally one would like to be able to detect if this area is visited with some
regularity which might indicate that it could be used as a grazing or mating area during
certain times of year. Note however, that the visits may be regular even though the
region is not visited every night, every week or every year. It might be a regular event
even though it only takes place 50% of the times. Djordjevic et al. [26] gave a generic tool
that given a sequence of events with time stamps detects if there is a periodic pattern
of the events. They consider several settings, depending on the available information.

Mamoulis et al. [68] considered the special case when the period is given in advance.
They partition space into a set of regions which allows them to define a pattern P as a
τ -length sequence of the form r0, r1, . . . , rτ−1, where ri is a spatial region or the special
character *, indicating the whole spatial universe. If the entity follows the pattern
enough times, the pattern is said to be frequent. However, this definition imposes no
control over the density of the regions, i.e. if the regions are too large then the pattern
may always be frequent. Therefore an additional constraint is added, namely that the
points of each subtrajectory should form a cluster inside the spatial region.

Chawla and Verhein [96] defined spatiotemporal association rules (STARs) that de-
scribe how entities move between regions over time. They assume that space is parti-
tioned into regions, which may be of any size and shape. The aim is to find interesting
regions and rules that predict how entities will move through the regions. A region is
interesting when a large number of entities leaves (sink), a large number of entities enters
(source) or a large number of entities enters and leaves (thoroughfare).

In 2004 Laube et al. [64] defined a collection of spatiotemporal patterns based on
direction of movement and location, e.g. flock, leadership, convergence and encounter,
and they gave algorithms to compute them efficiently. As a result there were several
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subsequent articles studying the discovery of these patterns. Benkert et al. [12] modified
the original definition of a flock to be a set of entities moving close together during
a time interval, see Fig. 3. Note that in this definition the entities involved in the
flock must be the same during the whole time interval. Benkert et al. [12] observed
that a flock of m entities moving together during k time steps corresponds to a cluster
of size m in 2k dimensional space. Thus the problem can be restated as clustering
in high dimensional space. To handle high dimensional space one can use well-known
dimensionality reduction techniques. There are several decision versions of the problem
that have been shown to be NP-hard, for example deciding if there exists a flock of a
certain size, or of a certain duration. The special case when the flock is stationary is
often called a meeting pattern.PL: [Do we need a reference here?]

Kalnis et al. [53] define and compute moving clusters where entities might leave and
join during the existence of a moving cluster. For each fixed discrete time-step ti they
use standard clustering algorithms to find clusters with a minimum number of entities
and a minimum density. Then they compare any cluster c found for ti with any (moving)
cluster c′ found for time-step ti−1. If c and c′ have enough entities in common, which is
formally specified by a threshold value, then c′ can be extended by c, which results in
a moving cluster.PL: [Do we want to add how this relates to the last paragraph on clustering in Sec.

3.4?] They propose several ideas to increase the speed of their method, e.g. by avoiding
redundant cluster comparisons, or approximating moving clusters instead of giving exact
solutions, and they experimentally analyse their performance.

While not discussed in this chapter, additional movement patterns have been stud-
ied such as leadership patterns [6], popular places [11], single file [17] and commuting
patterns [18].

For the detection of a flock the chosen disk size has a substantial effect on the results of
the discovery process. And the selection of a proper disc size can turn out to be difficult
as situations can occur where objects that intuitively belong together or do not belong
together are not quite within any disk of the given size or are within such a disk. To get
around this problem Jeung et al. [50, 51] employ the notion of density connection, which
enables the formulation of arbitrary shapes of groups. They define a convoy as a group
of objects each of which has at least m objects and they are so-called densityconnected.
Intuitively, two objects in a group are densityconnected if a sequence of objects exists
that connects the two objects and the distance between consecutive objects is small.

Be it exploratory analysis approaches, indexing techniques or data mining algorithms,
all effort put in theory ultimately leads to more advanced ways of inferring high level
process knowledge from low level tracking data. The following section will illustrate a
wide range of fields where such fundamentals underlie various powerful applications.

3.6 Visual and Exploratory Movement Analysis

Given Geography’s legacy in cartography, it is not surprising that movement analysis
is often addressed by a combination of geovisualisation and exploration. Visual and
exploratory movement analysis approaches combine the speed and patience of comput-
ers with the excellent capability of humans to detect the expected and discover the
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Figure 3: Illustrating the trajectories of four entities moving over 20 time steps. The
following patterns are highlighted: a flock of three entities over five time-steps,
a periodic pattern where an entity shows the same spatiotemporal pattern with
some periodicity, a meeting place where three entities meet for four time steps,
and finally, a frequently visited location which is a region where a single entity
spends a lot of time.

unexpected given an appropriate graphical representation.
Some basic movement patterns become obvious from simple mapping of movement

trajectories on a two-dimensional map. Trajectories bundled in narrow, directed bottle-
necks represent often used corridors. Less focussed trajectory footprints represent more
arbitrary movement, such as in grazing animals or visitors at a sports event strolling
around a stadium. The application of conventional GIS analysis tools on points and lines
representing moving entities has proven to be a very effective approach. For example,
GIS tools for generalisation, interpolation and surface generation may be applied to sup-
port the analysis of movement data. Brillinger et al. [16] use a regularly sampled vector
field to illustrate the overall picture of animals moving in their habitat, with each vector
coding in orientation and size for mean azimuth and mean speed at that very location.
Dykes and Mountain [36] use a continuous density surface and a ‘spotlight’ metaphor for

11



the detection of activity patterns. Again, common GIS tools such as algorithms initially
designed for the analysis of digital terrain models can easily be adopted, for instance to
identify ‘peaks’ of frequent visitation and ‘ridges’ of busy corridors [36].

Animation is suited to uncover specific movement behaviours of individuals and groups.
Animating moving entities with a constant moving time window in the so-called dynamic
view uncovers speed patterns of individuals [9, 36]. Flocking or converging are more
complex patterns of coordination in groups. Such group patterns are very striking when
animating even large numbers or individuals in a movie-like animation.

The 3D spacetime cube is an often used representation for the visual exploration
of movement information. In the specific geometry in such a three-dimensional space-
time aquarium episodes of immobility and certain speed behaviours produce distinctive
patterns of vertical and inclined time lines, respectively. It has to be noted, however,
that the concept of lifelines in the spacetime cube are most efficient with small numbers
of moving entities. The larger the number of entities populating a spacetime aquarium,
the more trajectories overlap and occlude each other, and hence the less clarifying the
3D representation becomes.

Exploration and analysis of typically very large movement data sets requires often
more than just visual approaches. Most recently, a growing number of authors sug-
gest the use of visual analytics for the analysis of massive collections of movement data
[7]. Visual analytics combines database technology, computational data processing and
analysis techniques with visualization, facilitating synergetic collaboration between com-
puters and human explorers whereby the strengths of each ‘partner’ can be utilized [8].

As a further development of existing exploratory data analysis approaches, visual
analytics especially involves methods suited for data of multiple types and multiple
sources, and even data that is conflicting and incomplete [90]. With respect to movement,
visual analytics tools include methods for data aggregation, grouping/dividing movement
data, transformations of space and time, trajectory clustering [8]. Such methods are
typically linked in an interactive setting, where the results of one step can build the
input of a subsequent step [81].

4 Application Fields of Movement Analysis

4.1 Behavioral Ecology

The observation of behavioural patterns is crucial to animal behaviour science. So far,
individual and group patterns are rather directly observed than derived from tracking
data. However, there are more and more projects that collect animal movement infor-
mation by equipping them with GPS-GSM collars [91]. In a comprehensive study in
ecology, Holyoak et al. found nearly 26000 published articles in the last decade referring
to the movement of organisms [49]. It is even possible to track the positions of insects,
e.g. butterflies or bees. However, most of the times non-GPS based technologies are used
that allow for very small and light sensors or transponders.

Analysing movement patterns of animals can help to understand their behaviour in
many different aspects. In behavioral ecology, scientist especially try to understand
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from movement traces how internal and external factors rule movement behavior [74].
Biologists can learn about places that are popular for individual animals, or ‘hot spots’
that are frequented by many animals. It is possible to investigate social interactions,
ultimately revealing the social structure within a group of animals. A major focus lies
on the investigation of leading and following behaviour in socially interacting animals,
such as in a flock of sheep or a pack of wolves [35]. On a larger scale, animal movement
data reflects very well the seasonal or permanent migration behaviour. In the animation
industry, software agents implement movement patterns in order to realistically mimic
the behaviour of animal groups. Most prominent is the flocking model implemented in
NetLogo which mimics the flocking of birds [98].

4.2 Mobility and Transportation

Human mobility in urban spaces can be collected and exploited in several ways. For
instance, using mobile phones that communicate with a base station is one way to
gather data about the approximate locations of people [42]. A profound understanding
about how humans move about in an urban context is key to urban planning, e.g. to
plan where to build new roads or where to extend public transport.

The analysis of human urban mobility can furthermore be used to optimise the design
of location-based-services (LBS). The services offered to a moving user could not only be
dependent on the actual position, but also on the estimated current activity, which may
be derived from a detected movement pattern [36]. Once identified as either ‘pedestrian’,
‘cyclist’ or ‘motorist’, a user could be offered tailored services.

Automatic analysis of the flows in an urban movement network are used for traffic
management in order to detect undesirable or even dangerous constellations of moving
entities, such as traffic jams or aeroplane course conflicts. Traffic management applica-
tions may require basic Moving Object Database queries, but also more sophisticated
movement patterns involving not just location but also speed, movement direction and
other activity parameters [86]. Computational movement analysis if furthermore an
important corner stone method underpinning the emerging field of computational trans-
portation science (CTS), the computer science foundation of intelligent transportation
systems [40]. CTS aims at improving the safety, mobility, and sustainability of the
transportation system by taking advantage of information technologies and ubiquitous
computing.

4.3 Surveillance and Security

Surveillance and intelligence services might have access to more detailed data sets cap-
turing the movement of people, e.g. coordinates from mobile phones or credit card usage,
video surveillance camera footage or maybe even GPS data. Apart from analysing the
movement data of a suspect to help prevent further crime, it is an important task to
analyse the entire data set to identify suspicious behaviour in the first place. This leads
to define ‘normal behaviour’ and then search the data for any outliers, i.e. entities that
do not show normal behavior, which often appears to be challenging [75]. Some spe-
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cific activities and the corresponding movement patterns of the involved moving entities
express predefined signatures that can be automatically detected in spatiotemporal or
footage data. One example is that fishing boats in the sea around Australia have to
report their location in fixed intervals. This is important for the coast guards in case of
an emergency, but the data can also be used to identify illegal fishing in certain areas.
Another example is that a car thief is expected to move in a very characteristic and hence
detectable way across a surveilled car park. Movement patterns have furthermore at-
tracted huge interests in the field of spatial intelligence and disaster management. Batty
et al. [10] investigated local pedestrian movement in the context of disaster evacuation
where movement patterns such as congestion or crowding are key safety issues.

4.4 Marketing

In recent development, supermarkets have been equipped with tracking technology.
Shopping trolleys and baskets are tracked using Ultra Wide Band technology with the
aim to analyse the visibility of product categories, movement of different shopper cate-
gories and establish the connection between product penetration (how many customers
pass a product), dwell time (amount of time spent in front of the product) and conver-
sion (how many customers buy the product). There are many more questions such as
how the layout affects the movement patterns and in the end how this affects what the
customers buys.

Until now very little research has been done in this area. Larson et al. [60] analysed a
large set of shoppers paths to understand actual travel patterns within a supermarket.
The analysis was performed using multivariate clustering algorithms. They observed
that the time spent in the store plays an important role, leading to different cluster
configurations for short, medium, and long trips. The resulting three sets of clusters
identify a total of 14 canonical path types that are typical of grocery store travel. These
results dispel a few common myths about shopper travel behavior that common intuition
perpetuates, including behavior related to aisles and end-cap displays.

The industry is highly likely to benefit from further research since studies [84] have
documented the high incidence of consumers’ in-store purchase decision making and
the corresponding importance of point of purchase (PoP) materials in these purchase
decisions. It is estimated that in-store decisions represent as much as 70% of supermarket
purchase decisions and 74% of the decisions in mass merchandiser stores.

4.5 Sports Scene Analysis

Advancements in many different areas of technology are also influencing professional
sports. For example, some of the major tennis tournaments provide three-dimensional
reconstructions of every single point played, tracking the players and the balls. It is
furthermore known that, e.g. football coaches routinely analyse match video archives
to learn about an opponents behaviours and strategies. Software is already available
that automatically provides basic statistical information about the match and the per-
formance of the players. Typical information provided is distance covered by players,
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top/average speed of players, number of passes performed by players, number of shots on
goal, free kick ball speed, heat maps of players, player average position, offside margin
and so on.

Attempts have been made to develop more sophisticated analytical tools. Taki and
Hasegawa [89, 88] defined the dominant regions where a player has priority over others,
and analyzed the areas of distribution of dominant regions. At each instant of a game,
each playerTW:’s dominant region is defined as the region the player can access before
any other players. Of course, this requires a knowledge about a playerTW:s’s movement
capabilities in order to compare their minimum time to access points on the field. Taki
and Hasegawa used a very simple model of movement which assumed that a playerTW:s’s
acceleration is constant. That was later extended by Fujimura and Sugihara [38] and by
Kang et al. [54] to include an advanced modelling of human movement.

Very recent development include Memmert and Perl [69] and Grunz et al. [43] propos-
ing to use neural networks to analyze complex game scenarios and interactions, such
as group and team tactics. Gudmundsson and Wolle [46] applied trajectory clustering
techniques developed by Buchin et al. [18] to the football application to study frequent
movements of an individual player and groups of players. This is still an area very much
in its infancy and much research is needed to make useful tools widely available.

Figure 4: The figure shows screenshots from [46]. On the left the passable regions are
visualized with red (to players in the same team as the ball holder) and blue (to
players in the opposite team). The picture on the right illustrates the move-
ment of a player during a football game, and a cluster of frequent movements
is highlighted in red.

4.6 Movement in Abstract Spaces

In contrast to tracking and analysing the movement of animals and people on the surface
of the earth, it is also possible to obtain and analyse spatiotemporal data in abstract
spaces also in higher dimensions. Every scatter plot that constantly updates the changes
in the x and y values, produces individual trajectories open for movement analysis. Two
stock exchange series plotted against each other could build such a dynamic scatter-plot.
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For example, basic ideological conflicts can be used to construct abstract ideologi-
cal spaces. Performing factor analysis on referendum data, researchers hypothesised a
structure of mentality consisting of dimensions such as ‘political left vs. political right’
or ‘liberal vs. conservative’. Whole districts or even individuals such as members of
parliament could now be localised and re-localised in such ideological space depending
on their voting behaviour and its change over time, respectively. The analysis of the dis-
tricts moving in this abstract movement space can reveal interesting patterns of political
change [63].

4.7 Ubiquitous computing and assisted living

Recent technological advancements in mobile computing and wireless communication
are resulting in a new generation of integrated spatial systems, where miniaturized com-
puting devices are embedded in everyday objects and environments. Such embedded
systems provide data capture and processing services in a wide range of applications,
from traffic management to policing and emergency response, from assisted living to
health care, from environmental monitoring to smart farming.

For geographic applications, geosensor networks (wireless networks of miniaturized
computing platforms sensing geographic variables [76]) are a key technology for im-
planting spatial computing in geographical environments. Not only is the geographic
information emerging such embedded systems very dense and complex, but also the dis-
tinction between data capture and data processing is increasingly blurred. Instead of
processing spatial information in powerful omniscient databases or GISystems, new de-
centralized information processing approaches are required, where individual computing
units cooperatively address tasks without a single node having access to the entire system
state [66]. In such systems the spatial computing can happen somewhere, and spatial
intelligence could be said to become ambient (Ambient Spatial Intelligence, AmSI, [31]).

Mobility is a key aspect of many embedded spatial systems. Imagine an assisted living
system in health care, where mobile sensors implanted in the shoes of an elder person
track the gait pattern and alert a control center in case of a tumble. Or in transportation
management, imagine an intelligent transportation system (ITS), where vehicles track
the locations of their immediate neighbors and autonomously adjust their speeds in order
to avoid congestion. In this wider context, Laube et al. [62] presented an approach for
the detection of the movement pattern flock. They present algorithms where mobile
objects, each of which only possessing partial knowledge of the global system state,
collaborate locally and detect the movement pattern in a decentralized way.

5 Privacy

From the spatiotemporal footprint of a person’s movement behavior one can potentially
infer where that person lives, where the person works, places that person regularly visits,
when that person visits those places, and where that person meets other people. Since
spatial information systems have the capacity for rapid integration of spatiotemporal
information and personal information, privacy issues are becoming an important aspect
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of geographic information science in general [27], and has outmost relevance in movement
analysis.

Fine grained individual movement data is especially privacy sensitive information.
Even though as a user of a smart mobile ICT device, I may want to benefit from spatially
smart, location-aware services or applications somehow making use of my locational
information, I still may want to safeguard my personal privacy. The crux with movement
data is, that conventional anonymization does not work. Detailed trajectories typically
contain personal points of interest (home, work) and personal movement patterns (daily
commuting patterns) that can act as quasi identifier and allow for re-identification of
anonymized data [15].

There are several strategies for safeguarding location privacy. The different strategies
for protecting a mobile individual’s location privacy can be categorized into regulatory,
policy, anonymity and obfuscation strategies. The following list summarizes an extensive
overview of privacy protection strategies to be found in Duckham and Kulik, 2005 [34].

• Regulatory approaches to privacy develop rules to govern fair use of personal infor-
mation. Such regulation will ensure transparency (declaration of who is collecting
information), consent and use limitation (individuals consent to information collec-
tion for a given limited use), access (to stored information), integrity and security
(that collectors must ensure), and accountability (collectors are accountable for
misuse) [93]. However strict regulation may be, it does not prevent invasion of
privacy [34].

• Privacy policies are trust-based mechanisms prohibiting misuse of location infor-
mation [52]. Whereas regulatory approaches aim at global guarantees, privacy
policies shall be flexible to be adapted to individual users or even individual trans-
actions. A privacy rule could, for instance, describe, after what time information
about a transaction must be discarded. Just as regulatory approaches, also privacy
policies cannot enforce privacy.

• Anonymity approaches aim at separating the identity of an individual from its
location information. For instance, k-anonymity hides each sensitive release in
at least k equally matching individuals [15]. Such additional, similar but fake
trajectories are typically randomly generated [58]. Anonymity approaches rely on a
trusted anonymity broker and don’t work for applications requiring authentication.

• In the context of this chapter, obfuscation is probably the most promising ap-
proach for safeguarding location privacy. Obfuscation is the process of deliberately
degrading the quality of personal location informationTW: [33]. For many location-
based services it will, for example, be sufficient to reveal only the mobile phone
cell ID. The actual whereabouts of the user can be hidden. Obfuscation can be
based on any combination of inaccuracy, imprecision, and vagueness – these are
all concepts spatial information science is very familiar with. For example, for a
proximity query (‘where is the closest starbucks...’), an individual can obfuscate
its location by sending the service provider a list of locations, only one of which is
the individual’s location [32].
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To conclude this short discussion about privacy issues in movement information: Pro-
tecting privacy when dealing with movement information is a non-trivial problem [41].
Spatially informed professionals dealing with movement information must be aware of
the thin line between opportunities and risks [94]. Movement analysis is not only a
technical or algorithmic problem, but also an ethical challenge [77].

6 Conclusion and Outlook

In the mid-1990s, after spatial and geographic information systems had been successfully
established as tools handling spatial information, critique arose about the static nature
of such systems and important voices claimed that “it’s about time” [78] and challenged
the GIScience community to “move beyond the snapshot” [22]. Now, one and a half
decades later, it can be noted that indeed the static legacy of cartography has been
overcome and geographic information systems and respective analysis concepts have in
many respects integrated dynamic aspects. The most progress can be found with respect
to the analysis of movement information, capturing with the movement of point objects
the arguably simplest form of dynamism.

In the last decade, the analysis of movement traces has built up ample momentum as
a subfield of geographic information science with high socio-economic relevance. Various
science fields contributed to a constantly growing collection of basic methods for handling
and analyzing movement data, including inputs from geography, computational geome-
try, information visualization, database research, as well as data mining and knowledge
discovery. The movement analysis toolbox includes concepts for modeling, indexing, and
segmenting trajectories, as well as basic analysis tools addressing movement similarity
and a range of basic movement patterns. Also in the last decade, movement analysis
experienced its own quantitative revolution. Just as other science fields, also geography
has moved from a data-poor and computation-poor to a data-rich and computation-rich
environment [71]. However, movement analysis was from the beginning to be a data-
intensive task and the capacity of the movement analysis toolbox grew with its data
sources.

A large portion of the existing analytical tools and techniques developed so far are
rather technology-driven, deterministic, and often require some threshold or strict pa-
rameter, resulting in a set of discrete and crisp patterns. With initial analytical tools at
hand, shedding light on dynamic geographic phenomena in various application fields, we
start to apprehend their complexity, and experience the limits of the analytical toolkit
developed so far. We have also learned that the simplicity of movement data – just
points in a row – bears the danger of a simplicity fallacy. With more and more studies
investigating movement, we realize that the closer we look, the less we can really say
with certainty.

Technological advances promote the tracking of individuals in many application fields,
including ecology, transportation, security, marketing and even sports analysis. However,
most application studies focus on pragmatic approaches and produce their own solutions
to their very specific problems. Hence, it is difficult to find a common strategy in the
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community that would help in sharing results, exchanging methods, as well as heading
towards what would be an established theory on movement analysis. For example,
despite several attempts establishing a categorization of movement patterns [99, 28, 8],
an ontology or even just a generally agreed on collection of basic movement patterns is
still missing.

A further challenge lies in relating movement to the underlying geography, in order to
understand where, when and ultimately why the objects move the way they do. Grazing
sheep, for example, may perform a certain movement pattern only when they are on a
certain vegetation type. Sea gulls may show certain flight patterns only when close to
a salient landscape feature such as a river or a highway. And, the movement patterns
expressed by a tracked vehicle will obviously be very dependant on the environment the
vehicle is moving in, be it in a car park, in a suburb or on a highway. Whereas most cur-
rent movement analysis techniques focus on characteristics of and interactions between
moving entities (second order effects), a true understanding of movement information
must involve the variability of the local context embedding the movement (first order
effects).

All in all, the massive volumes of movement data currently emerging our spatially-
enabled built and natural environments, offer fascinating new insights in many dynamic
processes of high socio-economic relevance. Geography and computer science have suc-
cessfully embarked on providing the toolbox required for exploiting movement infor-
mation. The now required refinement of methods can be achieved through traditional
strengths of the contributing disciplines: Expertise in data integration, uncertainty, and
scale-effects from Geography, and the handling of large data volumes and efficient algo-
rithm design from computer science.
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