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REVIEW Open Access

Computational neurorehabilitation:
modeling plasticity and learning to predict
recovery
David J. Reinkensmeyer1*, Etienne Burdet2, Maura Casadio3, John W. Krakauer4, Gert Kwakkel5,6,7,

Catherine E. Lang8, Stephan P. Swinnen9,10, Nick S. Ward11 and Nicolas Schweighofer12

Abstract

Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years,

there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a

fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will

be facilitated by developing computational models of the salient neural processes, including plasticity and learning

systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss

Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to

understand and improve movement recovery of individuals with neurologic impairment. We first explain how the

emergence of robotics and wearable sensors for rehabilitation is providing data that make development and

testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such

models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the

current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss

the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the

upper extremity after stroke, and show how even simple models have produced novel ideas for future

investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the

emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by

the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

Keywords: Neurorehabilitation, Computational modeling, Motor control, Plasticity, Motor learning, Stroke recovery

Background

Nature of the problem and definition of computational

neurorehabilitation

Mobility-related disability arising from neurologic injury

is a worldwide problem of pressing concern. For ex-

ample, 16.9 million people suffer a first stroke each

year, resulting in about 33 million survivors of stroke

who are currently alive, making stroke one of the main

causes of acquired adult disability [1]. Up to 74 % of stroke

survivors worldwide require some assistance from care-

givers for their basic activities of daily living (ADL) [2].

Disabling disorders such as stroke can be classified within

the World Health Organization’s International Classifica-

tion of Functioning, Disability, and Health (ICF) frame-

work, which highlights the multi-tiered effect of stroke on

the individual in terms of pathology (disease or diagnosis),

impairment (symptoms and signs), activity limitations

(disability), and participation restriction (handicap) (see

Fig. 1 in refs [3, 4]). The present paper argues that

mechanism-based, computational modeling of neuroreh-

abilitation (Fig. 1) will be a valuable tool for improving re-

habilitation strategies and furthering the recovery of

individuals with neurologic injury at all of these levels.

At the onset, we define several terms that we will use

throughout the paper, which provide a conceptual

framework for computational neurorehabilitation. We

will use the term “recovery” to describe improvements
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in movement ability over time, resulting in improvements

at any of the ICF levels, regardless of how these improve-

ments occurred. Note that this definition of recovery is

similar to that used in [5, 6], but different from that pro-

posed in [4], where the term is restricted to improvements

resulting from restitution of normative biological struc-

tures and functions; we feel that “restitution” is indeed the

more natural term for this more specific concept (we also

found ourselves using the term “true recovery” in our

discussions; others use the term “repair”.) Thus, for the

purposes of this paper, we follow the nomenclature in

[5, 6], in which recovery occurs through restitution,

but also through compensation, which we define as

use of biological structures and/or function different

from those originally used before the injury to achieve a

movement goal. Easy-to-understand examples of compen-

sation are, after a stroke, using the less-affected side to

perform tasks that one normally would have done with

the more-affected side, or, reaching forward by leaning an

abnormal amount with the trunk rather than using the

usual amount of shoulder and elbow extension [7]. Note

that the different modes of recovery (restitution and com-

pensation) may occur concurrently at different levels of

analysis. For example, more normal movement behavior,

which appears as biomechanical restitution, may result

from leveraging residual neural substrate, a form of neural

compensation.

We use the terms “learning” and “plasticity” as follows

(and here, we are referring to motor system learning and

plasticity). If people with or without a neurologic injury

train at a motor task their ability to perform the task will

improve through normal skill acquisition [8]. This

process of “motor learning” is dependent on plasticity,

both in health and disease. In chronic stroke patients,

training of appropriate tasks can therefore lead to im-

proved function (Fig. 1b) [9]. However, the anatomy of the

damage sets a limit on how much impairments, such as

degraded force production capability, can be reduced in

the chronic phase. Therefore functional improvements in

this phase often appear to be due to learning compensa-

tion techniques [10], although targeted training may allow

modest reduction in specific impairments, assessed quan-

titatively (e.g. [8, 11–13]). The early post-stroke period is

interesting in that there are a number of injury-induced

changes in the potential for plasticity, including, for ex-

ample, exuberant production then activity-based pruning

of new synapses [14], that may last several months, caus-

ing spontaneous biological recovery (see below) [10]. At

A B

C D

Fig. 1 a General framework of computational neurorehabilitation models. Such models predict patient functional outcomes by driving

computational representations of plasticity and learning with sensorimotor activity achieved in rehabilitation therapy and/or throughout the

course of daily life. b Computational neurorehabilitation models presume that rehabilitation modulates both spontaneous biological recovery and

motor learning, leading to improvements in both impaired limb motor control and compensatory movement strategies. Shown here is an

estimate of the dose-response effect arising from additional therapy time, obtained by plotting effect sizes of 30 studies of upper and lower

extremity rehabilitation therapy after stroke involving 1750 total participants as a function of the number of additional training hours ΔΤime. Note

in this study there was no significant effect of the time the therapy was delivered after stroke (i.e. soon after stroke or in the chronic state). From

[9]. Used with permission. c Computational neurorehabilitation models are becoming increasingly feasible in part because of a large influx of

detailed kinematic data characterizing the content and outcomes of therapy, which is being obtained from robotic devices, such as Pneu-WREX

shown here [218] and wearable sensors. Both individuals consented to the publication of this image. d Example of a computational neurorehabilitation

model [112]. This model simplified neurorehabilitation dynamics by assuming that a reward-based learning mechanism determines the probabilities of

using the impaired or unimpaired arms after stroke, and that a separate, error-based learning mechanism accounts for improvements in motor control

through practice. The model predicts that if a patient reaches a threshold of recovery, then he or she will enter a positive cycle of using and further

retraining their impaired arm through spontaneous activity in daily life, a prediction supported by data from the EXCITE clinical trial. Used with permission
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least in animal models, motor training during this period

appears to lead to a more rapid and generalized improve-

ment in function through reduced impairment [10]. A

number of therapeutic interventions under investigation

can be thought of as attempts to prolong or even re-open

this ‘critical period’ of plasticity, for example drugs such as

fluoxetine [15, 16], non-invasive brain stimulation [14],

enriched environments [17] and aerobic exercise [18]. As

we will see below, so far, the interaction of this critical

period with rehabilitation has not yet been well explored

in computational neurorehabilitation, but it is an import-

ant target for modeling.

To make a computational analogy, recovery can be

viewed as a constrained optimization problem. The

amount and type of anatomical injury define the initial

constraints. Unique forms of plasticity present early after

injury, driven in part by experience and amenable to

therapeutic interventions, act to alter the constraints,

especially in early recovery. Motor learning is like the

optimization itself. Motor learning that finds solutions

similar to those used before the injury results in “restitu-

tion”, while motor learning that finds new solutions

(which are potentially local minima) results in “compensa-

tion”. At present, it appears that intensive motor training

during the early period of spontaneous biological recovery

may be best suited for optimization of both surviving and

new networks that results in substantial recovery of motor

performance.

The idea of mathematically modeling sensorimotor re-

covery is not new. For example, as reviewed below, there

is a rich history of research in prognostic models that

take as inputs patient clinical features, baseline measure-

ments of behavior, and/or brain imaging measurements,

then predict functional outcomes at future time points

using regression techniques (see reviews: [19, 20]). There

are also models that have focused on altered network

dynamics following injury (e.g. [21–24]), and now, the

first few models that have incorporated specific aspects

of rehabilitation into their dynamics (see below and re-

lated reviews [25, 26]). What is new about the computa-

tional neurorehabilitation approach is that it attempts to

mathematically model the mechanisms underlying the

rehabilitation process itself in order to understand the

recovery of motor behavior, again via both restitution

and compensation.

Specifically, we define computational neurorehabilitation

models as models with three key features (Fig. 1a). Here,

we describe these features in the context of sensorimotor

rehabilitation, although the features can be broadened to

describe other aspects of rehabilitation.

First, such models take as input quantitative descrip-

tions of sensorimotor activity, achieved during therapy

sessions and/or throughout the day via spontaneous use

of the limbs. These descriptions quantify dose and also

the specific features of practice. Such data can be gener-

ated by simulations of training sessions, but are also in-

creasingly available from actual training sessions using

robotic devices (Fig. 1c) and wearable sensors (Fig. 2).

The fact that computational neurorehabilitation models

are driven by sensorimotor activity reflects the fundamen-

tal premise of these models, that training can improve re-

covery after neurologic injury. While there is considerable

variability to the way this premise works out in practice,

overall it is well supported by a (noisy) dose-response ef-

fect of rehabilitation therapy after stroke that has been

documented in several systematic reviews [9, 27–30]

(Fig. 1b). Essential to generating quantitative descriptions

of the amount and quality of rehabilitation training, which

A B

Fig. 2 Example of wearable sensing for quantifying the daily sensorimotor activity that stimulates plasticity. a The Manumeter is an example of a

device that monitors arm, wrist, and finger movements during daily activities [77]. The wristband is equipped with a tri-axial accelerometer to quantify

movement of the arm, and thus could be used to produce data such as that shown in b. The wristband also contains a pair of magnetometers that

quantify movement of the wrist and fingers by sensing the magnetic field changes due to a magnetic ring worn on the finger. From: [219]; Used with

permission. b Bilateral upper limb daily activity from one individual with a stroke (ARAT score = 10) who wore a commercial accelerometer on each

wrist for a 24 h period. The y-axis shows the magnitude of bilateral activity obtained by summing at each time point the vector magnitude of

the acceleration of each upper limb, when each was moving over a threshold value. The x-axis shows the ratio of these two values, quantifying the

contribution of each limb to the activity. Each point represents data from a one second time period throughout the day. For individuals without a

stroke, these plots are symmetrical, like evergreen trees, indicating the bimanual nature of most functional activity. From [74]; Used with permission
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can then be used as inputs in computational neurorehabil-

itation models, are measurements of both motor and sen-

sory activity, which often are strongly coupled.

Second, computational neurorehabilitation models ex-

plicitly model computational mechanisms of activity-

dependent plasticity. Here, we define “activity-dependent

plasticity” as changes in the motor system that are caused

by sensorimotor activity. Motor learning, which depends

on activity-dependent plasticity, is often the basis for re-

covery through compensation (for example [31]) and has

been the primary focus of the initial models reviewed

below. Other forms of plasticity are also relevant to recov-

ery, and these may not cause motor learning, as is clear

from studies of neuronal changes early after neural injury

[31]. Computational neurorehabilitation models have in-

ternal states that have a biological or functional meaning

and are dynamical in nature (e.g. Fig. 1d). This distin-

guishes these models from the input/output type models

that have been developed for prognostic regression

(as reviewed below), or models with arbitrary internal

states that are not linked to neuro-recovery mechanisms.

Third, computational neurorehabilitation models pro-

duce as outputs quantitative variables that vary with

time and that relate to functional outcomes. Example

outputs for computational neurorehabilitation models of

arm recovery after stroke are predictions of the changes

in Fugl-Meyer Motor Score, or changes in detailed

quantitative measures of arm function, such as arm

movement kinematics or changes in statistical patterns

of the daily amount of use of the arm.

How will computational models of neurorehabilitation be

useful?

We foresee three main uses for computational models of

neurorehabilitation. First, such models will provide a

rigorous methodology for understanding mechanisms of

recovery, that is, the biological entities and processes

that implement recovery. As we survey in the next sec-

tion, much is now known about various neurobiological

processes important to effective rehabilitation. However,

what is lacking is the integration of the processes, which

operate at widely different spatial and temporal scales.

Developing computational models of rehabilitation will

force researchers to make these processes and their dy-

namic interactions more concrete. We thus believe that

computational neurorehabilitation will become essential

for providing frameworks to organize a diverse and

growing body of data. Such multi-level computational

approaches are already playing important roles in fields

such as HIV [32, 33] and cancer treatment [34].

The second use of these models will be to aid in design-

ing new clinical experiments. Currently, optimization of re-

habilitation proceeds slowly in a trial-and-error fashion

that is overly dependent on large and very expensive

clinical trials that include multiple testing points for each

participant. As in engineering design, a mechanistic,

mathematical model of the system of interest will

allow the effect of variations in rehabilitative parameters

to be simulated, allowing a means to design potentially

more effective experiments. Initial examples of this ap-

proach have already been demonstrated in the related field

of motor adaptation, in which computational models of

adaptation have been used to conceptualize behavioral en-

vironments that accelerate an individual’s ability to learn,

e.g., [35], although adaptation is a somewhat limited type

of motor learning to study for rehabilitation purposes.

Nevertheless, we expect, by analogy, that new mathemat-

ical models of behavioral interventions relevant for re-

habilitation will provide a means to conceptualize and

design studies that can potentially enhance recovery. Use

of models will also help guide collection of the types of

data that can answer important mechanistic questions.

The third use of computational neurorehabilitation

models relates to the second but extends it, and is to

optimize therapy selection for individual patients, in

terms of dosage, timing, scheduling, and content. How

much therapy should patient X receive? At what time

and according to what schedule should this therapy be

provided? What movements should he or she practice

with what sort of instructions and feedback? Currently,

treatment modality and dose are mainly determined

based on clinical opinion or historical precedent. In some

cases, data from clinical trials influence these choices, but

these data reflect averages from large groups of patients.

Computational models of stroke recovery will enhance

precision medicine and improve stratified trials by allow-

ing better selection of patients for specific evidence-based

therapies as well as optimizing the dosage of such therap-

ies. For example, based on current knowledge about the

predictive value of the shoulder-abduction-finger-exten-

sion (SAFE) model for the upper paretic limb within 72 h

post stroke, a prognostic algorithm for selecting evidence

based therapies was recently developed as a smartphone

app [36]. We expect in the future, that these computerized

prognostic algorithms for improving task-specific treat-

ments may be further optimized by additional information

from neuroimaging [37] and more sensitive information

from kinematic assays about quality of motor performance

post stroke [8]. Computational neurorehabilitation models

will further enhance these efforts by incorporating explicit

representations of plasticity and learning mechanisms, po-

tentially improving predictive capability.

The idea for this review resulted from a small collo-

quium on computational neurorehabilitation sponsored by

the Borchard Foundation in July 2013 in France. At this

meeting, researchers from complementary disciplines, in-

cluding neuroscience, movement science, rehabilitation,

neurology, robotics, and engineering, overviewed the latest

Reinkensmeyer et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:42 Page 4 of 25



data available to develop such mechanistic models, and

critically evaluated several first modeling attempts that are

available. Based on our interactions, we argue that

principle guided neurologic recovery and, as a result, ac-

curate predictions at the individual level will be facilitated

if algorithmic computational models of learning behavior,

and eventually of fine-level neural processes, are developed

and integrated into a context specific to rehabilitation. To

develop this argument, we first review here model

elements for computational neurorehabilitation, and then

review the current gold standard in rehabilitation modeling

– prognostic regression models (Table 1). We finally review

several initial computational neurorehabilitation models,

before concluding by summarizing the state of the field

and identifying needed directions for future research.

Review

Model elements for computational neurorehabilitation

This section reviews the key elements needed to construct

a computational neurorehabilitation model, which are A)

a quantitative description of the sensorimotor activity that

the patient experiences; B) a computational model of the

plasticity mediating recovery; and C) a quantitative de-

scription of the patient’s behavioral outcomes. To provide

a specific context for the discussion, we again concentrate

on strokes affecting motor control of the upper extremity,

as much of the initial work in computational neuroreh-

abilitation is being done in this area.

Inputs: sensorimotor activity

Modeling activity-dependent plasticity requires a quanti-

tative description of activity that stimulates plasticity.

Historically, sensorimotor activity during neurorehabil-

itation has been characterized in research studies and

clinical practice primarily by the amount of time spent

in assigned therapy sessions [9, 27]. It is also possible to

simulate training sessions, in order to derive theoretical

inputs for models, as has been done for most initial

models described below. However, one reason that com-

putational neurorehabilitation models have the potential

to soon become much more elaborate and powerful is

that researchers are beginning to quantify more precisely

the sensorimotor activity that a patient experiences.

There has been increased interest in quantitative, obser-

vational studies, and in new sensing technologies, in-

cluding robotics and wearable sensors.

Observational studies of rehabilitation therapy Re-

cent observational studies found that although stroke

patients spend approximately 47 min in occupational

therapy each day in early rehabilitation, only 4–11 min

of this time is focused on upper extremity rehabilitation

[38, 39]. Distinguishing between total therapy time and

active movement time is essential for accurately driving

computational neurorehabilitation models. Another fun-

damental question that was only recently answered is

“How many practice movements are typically made dur-

ing rehabilitation therapy?” For the upper extremity after

stroke, a study of 162 rehabilitation sessions in seven

sites yielded an average of 32 functionally oriented

movements [40]. Notably, this number of movements

per session is an order of magnitude less than the num-

ber of movements per session that has been shown to

induce motor plasticity in animal models [40]. There is

evidence that upper extremity interventions can be de-

signed to provide such a larger number of repetitions

without increasing therapy duration [41–43].

Quantification of sensorimotor activity during

therapy Use of robotics and sensor-based therapies, in-

cluding virtual rehabilitation [44, 45] and exergaming/

serious games [46], has grown rapidly in both rehabilita-

tion research and practice in the last 20 years [47–52] al-

though the overall percentage of clinics using these new

technologies is still relatively low [53]. The primary mo-

tivation for developing these technologies is to provide a

greater dose of therapy, but an important secondary

benefit relevant to computational neurorehabilitation

models is that these technologies can continuously

measure the sensorimotor activity of the patient during

therapy. For example, a robotic device that assists in

therapy of the upper extremity (Fig. 1c) can measure the

forces and motions that a patient experiences during

Table 1 Organization of this review

Introduction

Nature of the problem and definition of computational
neurorehabilitation

How will computational models of neurorehabilitation be useful?

Review

I. Model elements for computational neurorehabilitation

A. Inputs: Sensorimotor Activity

B. Innards: Modeling activity-dependent plasticity

C. Outputs: Functional outcomes and kinematics

II. The Current Modeling Benchmark: Prognostic Regression Models

A. Predicting outcome post stroke with baseline behavioral measures

B. Predicting outcome post-stroke with brain imaging measures

C. Predicting treatment effects

III. Computational neurorehabilitation models

A. Reaching the threshold for recovery in bilateral hand use

B. Recovering from weakness via reinforcement learning

C. Robot assistance, retention, and learning predicts recovery

D. Understanding interactions between function and use

E. Modeling the effect of assistance-as-needed

F. Patient-trainer dynamics as an optimization

Conclusions
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training, providing insight into both the motor com-

mands and intrinsic biological feedback that result from

those commands. Such a device can also record any ex-

ternal, augmented sensory feedback – visual, audio, and

haptic – that the patient experiences during training,

since this feedback is provided by the device itself (as-

suming the therapist is not also providing feedback).

Quantifying feedback content as well as movement itself

is important because feedback powerfully modulates

motor learning [54] and rehabilitation [55].

Examples of the type of data available from robotic and

sensor-based therapy devices include the number of move-

ments made and the trajectories achieved while making

these movements. Other key variables relate to kinetics,

such as the forces applied by the robot to the patient

[56, 57] or by the patient to the robot [58], or amount of

positive and negative work done on the patient during

therapy with the device [59, 60]. Isolated sensors can also

quantify the physical interaction forces and motions that

therapists apply during hands-on therapy [61]. Such bio-

mechanical measurements can be combined with mea-

sures of Electromyography (EMG) to generate estimates

of muscle activity during training, and, increasingly, brain

imaging techniques, including Electroencephalography

(EEG) [62], Near-Infrared Spectroscopy (NIRS) [63], and

functional Magnetic Resonance Imaging (fMRI) [64], to

provide insight into brain activity during training.

Quantification of sensorimotor activity during daily

activities In rehabilitation research there has been an

increasing recognition that the sensorimotor activity ex-

perienced during therapy is only one part of the total

sensorimotor activity that drives recovery, or, put an-

other way, that daily use of the arm likely also plays a

major role in aiding recovery [65]. Again, new technolo-

gies, in this case wearable sensors, are now making it

possible to quantify this daily activity beyond how it was

done in the past [66, 67], i.e. through patient self-report

scales such as the Motor Activity Log [68]. The primary

approach being used so far for the upper extremity is

wrist accelerometry, in which a three-axis accelerometer

is embedded in a wristband [69–72].

Wrist accelerometry is typically used to detect the

amount of time spent moving the arm using a threshold-

ing approach [73]. If sensors are worn on both arms, the

amount of bimanual activity can be quantified, and the

activity of the stroke-impaired arm can be compared to

that of the less affected arm [74]. Indeed most human

motor activity seems to be bimanual in nature [74, 75],

which has implications for how computational neuroreh-

abilitation models should be structured. New wearable

sensing approaches are making it possible to non-

obtrusively quantify finger and hand activity as well as

gross arm movement during daily life [76, 77].

Innards: modeling activity-dependent plasticity

Given a quantitative description of sensorimotor activity

during stroke recovery, a computational neurorehabilita-

tion model uses this description to drive a mathematical

model of activity-dependent plasticity mechanisms. Here,

we briefly overview two types of activity-dependent

plasticity that will play a key role in computational

neurorehabilitation models – one related to spontan-

eous biological recovery, and one related to motor

learning. For reviews see [78–80]. Note that for ease of

presentation we speak of plasticity and learning rules as if

they were independent form the model structure, but for

most models they will not be. The model will need to

consider how the necessary anatomical and functional

structures support learning and plasticity, regardless

of the abstraction level of the model.

Spontaneous biological recovery and activity-

dependent plasticity Many initial performance changes

after stroke are attributed to “spontaneous biological re-

covery”, a term that implies that this recovery is auto-

matic, although spontaneous biological recovery is

almost certainly modulated by and requires behavior for

maximal expression [10, 14]. Animal models indicate

that spontaneous biological recovery is aided by a sig-

nificantly altered tissue microenvironment triggered by

the injury, in which, for example, a different profile of

genes is expressed compared to during normal motor

learning [31]. Spontaneous biological recovery also in-

volves both reduction of the ischemic penumbra and

brain reorganization in areas both near the lesion and

farther away [81]. Spontaneous biological recovery is

maximally expressed in the first several weeks post-

stroke, and tapers off over months [10, 14, 20, 82]. Brain

reorganization processes underlying this spontaneous re-

covery are thought to be driven by homeostatic mecha-

nisms, Hebbian-like processes driven by long-term

potentiation (LTP) [83, 84], as well as spine, dendritic

and axonal forms of structural plasticity.

Soon after stroke, abnormal cortical patterns of excita-

tion and inhibition occur both near [84–87]) and far

from the lesion [88]. Homeostatic plasticity, which is

ubiquitous in the brain, acts to maintain desired firing

rates and patterns [81]. After a lesion, because of the loss

of interneuronal connections, the activities of neurons

neighboring the lesions, or neurons previously connected

to neurons within the lesion, are affected. Homeostatic

plasticity may be crucial for network recovery, as mea-

sured by re-establishment of lesion-affected inputs [89]. In

addition, sensorimotor activity might modulate this

homeostatic plasticity, which is of importance for compu-

tational neurorehabilitation models, as it is one example

of how sensorimotor activity appears to modulate spon-

taneous recovery [6, 31, 89, 90].
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LTP, LTD and neural structural plasticity such as

dendritic and axonal sprouting, are also modulated by

sensorimotor activity, and also change as a function of

time. Following stroke, some features of brain function

revert to those seen at an early stage of development,

with the subsequent process of “recovery recapitulating

ontogeny” [91], but there is also a distinct, age-related pat-

tern of gene expression, a “recovery transcriptome” [92].

Genetic changes in the perilesional area allow for a win-

dow of increased plasticity that makes it easier for the

perilesional neurons to modify existing connections and

form new ones in response to sensorimotor activity [81].

Increased LTP may also potentially lead to maladaptive

plasticity and poor cortical reorganization if existing

inputs are further strengthened at the expense of the

reemergence of weak afferent synapses [89]. In summary,

underlying mechanisms assumed to contribute to the

non-linear time course of recovery of movement in the

first 3 months after stroke presumably reflect the

interaction between a period of heightened plasticity

mechanisms, occurring in a limited time window, and

sensorimotor activity [81, 93–95]. A practical implication

is that, when new patterns of movement that are a conse-

quence of specific combinations of muscle weakness (e.g.

increased trunk flexion and abduction of the shoulder

during reaching) are attempted repeatedly during this

period of heightened plasticity, they may become the new

‘norm’ – hence patients get stuck in local minima. Further,

use of the less-impaired arm may subvert the heightened

plasticity of the stroke-affected hemisphere, preventing it

from improving the paretic arm function [14].

There are as yet few computational models of spon-

taneous biological recovery, much less of the interaction

between spontaneous biological recovery and sensori-

motor activity. Computational models of the effects of

stroke to date have primarily focused on the network

effects of deleting cells or of altered connectivity. For

example, one early model used a difference-of-Gaussians

connectivity pattern to explain rapid changes in the size

of cellular receptive fields after stroke lesions [96, 97].

Other models have studied interhemispheric effects of

lesions [23, 24], and used connectome data to model

brain regions as graphical network nodes, evaluating the

effects of node deletion on network dynamics [98–100].

One of the first models to study the effects of network

changes on movement kinematics evaluated the effect of

lesion size on post-stroke reach variability using cortical

cells that were tuned to preferred reach directions, but

did not simulate plastic processes after lesion [101]. A

recent model studied the interaction between homeo-

static plasticity and Hebbian-plasticity after stroke in the

somatosensory cortex, and suggests that after a lesion, a

delay preceding rehabilitation would allow a return of

homeostatically-determined desired firing in cells

neighboring the lesions, and thus may allow a faster net-

work recovery in the rehabilitation training compared to

no delay [89]. It will be increasingly important to compare

models that incorporate spontaneous biological recovery

mechanisms to ones that do not, to determine how mod-

eling these phenomena improves explanatory power. New

analytical approaches to examine structural and functional

connectivity within well-defined macroscopic brain net-

works, as briefly reviewed in Section II C below, will in-

creasingly play a role, and will integrate plasticity rules

with the necessary anatomical and functional structures.

Motor learning Although some aspects of neural

reorganization involved in spontaneous recovery arise

because of the unique biological state caused by injury,

other aspects of neural reorganization that contribute to

recovery relate to normal motor learning mechanisms

[78, 79, 102]. It has been argued, in fact, that much of

the recovery seen during the chronic phase of stroke is

due to compensation, as defined in the introduction,

which is enabled by motor learning [31]. In this section,

we briefly survey several models and features of motor

learning relevant to computational neurorehabilitation

models.

Forms of learning There is a long-history of research in

artificial intelligence linking different types of feedback

to three forms of learning: unsupervised (or Hebbian)

learning, supervised learning, and reinforcement learn-

ing, or, more simply paraphrased, learning features and

representations, learning from errors, and learning from

rewards [103]. To learn a motor task, the learner needs

feedback, exteroceptive, interoceptive, or both; as a re-

sult, in addition to unsupervised learning, supervised or

reinforcement forms of learning are implicated in re-

habilitation. Indeed, feedback, including the content and

frequency of feedback, is known to modulate learning

and rehabilitation efficacy [54, 55]. Different forms of

learning have been associated with different biological

substrates, although there is not a one-to-one mapping

and the picture is still unfolding [103]. For example, a

form of unsupervised learning is LTP in pyramidal neu-

rons [104]. Supervised learning-like plasticity has been

found to occur in the cerebellum [105, 106]. Some forms

of reinforcement learning depend to a large extent on

the dopaminergic system [107, 108], with the basal gan-

glia [109] and in particular the nucleus accumbens [110]

also playing roles. Note that supervised learning is linked

to the concept of Knowledge of Performance (KP)

and reinforcement learning to the concept of Knowledge

of Results (KR) in the motor learning and rehabilitation

literature [54], although KP and KR likely also both act as

reward signals for reinforcement learning, thus blurring

this distinction.
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Unsupervised learning is related to the concept of use-

dependent learning, which refers to the phenomenon

that the motor system can modify its performance

through pure repetition of movements, without external

feedback as to the success or failure of the movement

[103, 111]. Several initial models of network dynamics

after stroke incorporate unsupervised learning (see review

[25]). Unsupervised learning, together with homeo-

static plasticity, likely plays a role in map and neural

reorganization post-stroke, and presumably in de-

creasing movement variability and thereby improving

functional performance [89, 112].

Supervised learning and arm adaptation A large num-

ber of studies of motor learning in the last 20 years have

focused on elucidating aspects of supervised learning by

observing the adaptation of arm movements in visuo-

motor rotations or force fields produced by robotic inter-

faces. It is still unclear how meaningful such studies of

motor adaptation are for stroke rehabilitation, but they

have inspired at least two innovative rehabilitation para-

digms – error augmentation [113] and split-belt treadmill

adaptation [114]. Such studies have also generated some

of the first and now fairly sophisticated mathematical

models of motor learning, and thus serve as an example

for how the development of computational models in

stroke movement rehabilitation might proceed. Further,

adaptation studies are relevant because individuals with a

neurologic injury can adapt to predictable perturbations

(e.g. [115, 116]), and likely continue to use motor adapta-

tion to recalibrate limb systems in daily life (e.g. when they

put on new shoes of a different weight, enter a swimming

pool, or experience muscle fatigue [117]).

Adaptation studies have shown that humans interact

with novel environments by minimizing error (e) relative

to the planned movement, and effort (u) [118, 119].

This can be modeled as the minimization of the cost

function.

V ¼ αe2 þ βu2;α; β > 0: ð1Þ

A key recent result is that a simple neural algorithm,

which is a “sunken-v”, muscle-specific activation update

law that relates the error experienced in muscle coordi-

nates to the change in in muscle activation on the next

movement trial, implements this minimization, while

simultaneously shaping arm impedance to the task at

hand [118–120]. Another factor involved in movement

generation is that subjects tend to minimize time to

complete an action, which stands in tradeoff with the

required effort [121].

Time-scales Learning occurs at multiple time scales as

short as 10s of seconds [122, 123] and as long as several

years [54]. Multiple time-scales are also evident in the

learning-performance distinction [102, 124], which will

impact how models of recovery are structured. This sort

of multiple time-constant dynamic also characterizes a

broad range of motor learning literature encompassing a

broader variety of tasks. Motor adaptation studies also

shed light on multiple time scales, as motor adaptation

occurs via simultaneous update of a fast process, which

contributes to fast initial learning, and a slow process,

which correlates with long-term retention [122]; these

processes appear to be organized in parallel [125]. Linear

models with two time-constants implemented using a

state space representation can account for a range of data

on motor adaptation such as anterograde interference,

spontaneous recovery, and savings under some conditions.

Addition of non-linearities in the model allow for multiple

adaptation and savings after washout [125, 126].

Whereas behavioral observations suggest that at least

two learning processes are involved in adaptation, it is

unclear how many distinct memories the brain actually

updates. In addition, it is unclear whether these putative

multiple motor memories reside within a single neural

system that contains a distribution of possible timescales,

or in qualitatively distinguishable neural systems. A recent

study addressed these issues using a model-based fMRI

approach [127]. The behavioral data of subjects adapting

to two opposing visuo-motor perturbations were first used

to derive a large number of possible memory “states”, each

with different dynamics, which were then correlated with

neural activities. Regional specificity to timescales were

identified. In particular, the activity in inferior parietal re-

gion and in the anterior-medial cerebellum was associated

with memories for intermediate and long timescales, re-

spectively. A sparse singular value decomposition analysis

of variability in specificities to timescales over the brain

identified four components, two fast, one middle, and one

slow, each associated with different brain networks. Then,

a multivariate decoding analysis showed that activity pat-

terns in the anterior-medial cerebellum progressively rep-

resented the two rotations. These results thus support the

existence of brain regions associated with multiple time-

scales in adaptation and a role of the cerebellum in storing

multiple internal models.

Note that these multiple-time constant models assume

error-based learning mechanisms. A recent summary of

behavioral evidence concluded that while there are at

least two components of motor adaptation in response

to perturbations, they cannot be fully characterized by

first order processes driven by error. For example, the

slow process is implicit and learns form errors, while the

fast process is explicit and is sensitive to success and

failure, among other key differences [128]. The evidence

for reward-based and use-dependent mechanisms in

motor adaptation suggest they operate at multiple time
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constants as well, and are likely to be of more relevance

to restitution rather than compensation [129–131].

Such state-space models can account for short-term

motor adaptation as well as multiple task learning and

the contextual interference effect in post-stroke individ-

uals [132, 133]. At least one initial computational neuror-

ehabilitation model successfully used state-space models

inspired by supervised learning data [56]. In addition, ro-

botically amplifying errors can help stroke patients elimin-

ate steady state directional reaching errors [116]. Further,

training with amplified errors may increase arm move-

ment recovery after chronic stroke [113]. The beneficial

effects of sensory augmentation may be due to the larger

error available to the brain for perception and for learning.

A recent study however suggests that augmenting errors

can decrease motivation in a way that persists beyond the

experience of the augmented errors [134], and motivation

plays a key role in neurorehabilitation [112].

Reinforcement learning However, as mentioned above,

the relevance of mechanisms of supervised learning of

force fields and rotations to rehabilitation is limited, in

part because rehabilitation, like motor skill learning, ap-

pears to be characterized by gradual improvement with-

out a clear directional error signal, as when one tries to

perform a fast movement or loses balance [130]. This

type of learning appears to be better characterized by

reinforcement learning. Reinforcement learning theory

[135] provides a framework for learning a “control pol-

icy” that maps states of the world to the actions that the

agent should take in those states to maximize expected

future rewards (or equivalently minimize future cost

such as effort). Crucial to reward-based learning is the

concept of exploration or search, which is necessary be-

cause there is no teacher. Instead, the learner must learn

by trial and error. Compared to supervised learning,

much less is known about how humans make use of

reinforcement learning in learning motor behaviors; the

issue has been explored to a larger extent in decision

making. However, as we describe below, this search

metaphor has been used successfully to simulate stroke

rehabilitation, and replicate several key behavioral recov-

ery observations [112, 136].

Note that both supervised and reinforcement learning

likely operate simultaneously as both error and reward

feedback are often available [137]. For instance for fast

reaching to targets by unimpaired subjects, it has been

shown that different time constants of learning, and

forgetting, may be associated with supervised and

reinforcement learning [130]. In rehabilitation therapy,

receiving error feedback from a therapist can be rewarding

and reinforces behavior. In the absence of external

feedback, the learner still has access to intrinsic feedback

and this can strongly promote self-learning. Thus, what is

presumed to be unsupervised learning can be instead

reinforcement learning driven by self-generated feedback.

Also, it is the self-generated feedback that the patient

needs to rely on when returning to his or her home

environment. Accordingly, whenever external feedback

is provided, it is important not to become too dependent

on this source of augmented information by gradually

weaning the learner from external feedback during practice,

i.e. to learn to rely on self-generated feedback [137, 138].

Humans do not always appear to minimize error or

maximize future rewards, however. In some instances,

humans tend to perform a motor task by using the same

strategy as they had used in previous trials, even if they

had previously experienced a strategy using much less

effort [139–142]. This suggests that rather than attempt-

ing global minimization of effort, the sensorimotor system

might rather repeat a strategy that it knows will achieve

the goal, a finding with implications for modeling use of

compensatory movements by stroke patients.

Smoothness, generalization, and synergies Several

additional key aspects of motor learning that computational

neurorehabilitation models will ultimately need to account

for are the importance of sub-movements, generalization,

and suppression of undesirable synergies. It is well known

that the movements of individuals with stroke exhibit

decreased smoothness. Variations in smoothness can be

modeled as arising from patterns of stereotypical sub-

movements, which may be neural “building blocks” that

rehabilitation training must reassemble [143].

Generalization refers to the concept that training on

one task can improve performance on other tasks. Pat-

terns of generalization are complex, in that generalization

has been found to be limited in some conditions [143],

but rather broad in others [54]. For example, after training

to reach in one direction with a planar robotic perturb-

ation, there is little transfer to other directions [144], but

relatively broad generalization across certain arm postures

[145]. The concept that motor generalization is rather lim-

ited has helped drive a strong focus on task-specific train-

ing after stroke [146]. However, a key qualifier of this

concept is that the organization of practice may determine

how much generalization occurs. If one trains one specific

task or task variant, there may be little transfer. However

if many task variants are practiced, transfer will likely be

larger. This is called the variability of practice hypothesis

[147], and has clear relevance for computational neuror-

ehabilitation models.

Finally, motor learning not only involves building new

action patterns but also suppressing or modulating pre-

existing patterns or synergies. This is clear in bimanual

skill learning in which the learner gradually overcomes

the effect of pre-existing preferred coordination modes

(such as in-phase and anti-phase patterns) that are part
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of the intrinsic dynamics of the system in order to ac-

quire new coordination modes (such as less intrinsic,

relative phase patterns) [75]. Like any motor learner,

individuals with a stroke may be more constrained by

preferred coordination modes and/or by basic synergies

that need to be overcome to develop skill. Similarly,

previously acquired coordination modes can hamper the

acquisition of new coordination modes, a phenomenon

called negative transfer [148]. Further, neural damage itself

may fundamentally constrain the solutions possible for

motor learning.

Outputs: functional outcomes and kinematics

Currently, in rehabilitation, behavior is usually described

with relatively coarse scales, which often sum scores of

performance on many tasks, and are typically taken at

widely spaced time points. Ideally, computational neu-

rorehabilitation models will bridge the causal link be-

tween network plasticity and behavioral changes, which

will require higher resolution measurements of behavior

at many repeated time points.

Note that data sets that evaluate outcomes differ from

the data sets discussed in Section I A in that they quan-

tify how much and how well a patient can move, rather

than the total amount and features of rehabilitation

training activity. There can be overlap between the two

data sets, however, in that measurements made during

training can be used to assess movement outcomes, and

measurements made of movement during daily life can

be used to quantify both training inputs (inasmuch as

daily movement serves a training function), as well as

serve as a way to quantify outcomes. For instance, kine-

matic measurements from a robotic rehabilitation device

obtained during the course of robotic therapy have been

shown to predict standard functional outcomes, without

the need for dedicated assessment procedures [149].

Higher resolution outcomes data are becoming avail-

able through detailed kinematic studies of upper extrem-

ity movement in stroke recovery. In one study that

serves as an example, patients with active proximal and

distal limb movement within the first 2 weeks after

stroke participating in the VECTORS trial were studied

with kinematics and electromyography, identifying defi-

cits in movement accuracy, reduced muscle efficiency,

delayed muscle onsets, and a reduced ability to modulate

muscle activity [150, 151]. Within the first 3 months

after stroke, muscle onset times and percentage of

muscle capabilities were similar to a neurologically-

intact control group, but deficits in the ability to modu-

late muscle activity remained [151], including an inabil-

ity to efficiently open and close the fingers on a target

object [152, 153]. No computational neurorehabilitation

models have yet to our knowledge attempted to model

these outcomes.

Other longitudinal movement data from multiple labs

around the world are accumulating [7, 154, 155]. For ex-

ample, a recent kinematic study with intensive repeated

measurements in the first months post stroke used prin-

cipal components analysis to show that individuals with

stroke learn to dissociate shoulder and elbow move-

ments mainly in the early phase post-stroke, but do not

achieve fully dissociated movements even at 26 weeks

[7]. Likewise, recovery in smoothness in reaching and

hand aperture was mainly predicted by progress of time

alone and almost plateaued within the first 8 weeks post

stroke [156]. Again, no models that incorporate plasticity

mechanisms have yet attempted to model these findings.

Ideally, motion capture data sets would include the ef-

fect of different interventions. For example, there is an

ongoing debate on the issue of whether recovery of func-

tional movement is best achieved through restitution

(such as reaching with normal kinematics) or compensa-

tion (such as using the less affected extremity or leaning

forward with the trunk) [4, 157, 158]. At the present

time, there are only small amounts of movement data

collected pre- and post-intervention to address this

issue. In a pilot trial of intensive, progressive, task-

specific upper extremity training for people with stroke

[41], kinematic and kinetic movement data were exam-

ined pre- and post-intervention to examine how move-

ment changed [159]. The results suggest that recovery of

function via restitution versus compensation is not an

all-or-none phenomenon, but varies within and across

individuals. All patients demonstrated improvements in

function on clinical scales. In contrast, some movement

variables in some subjects indicated restitution of nor-

mal movement patterns, while other variables in the

same or different subjects indicated the adoption of

compensatory movement patterns [159].

Just as wearable sensors will drive computational neu-

rorehabilitation models with data from self-training of

the arm during home exercise or daily life, they will pro-

vide the descriptors of movement recovery that the

models seeks to predict. Such sensors will provide data

at a much finer temporal resolution than previous clin-

ical data, which typically are obtained only at baseline,

post-intervention, and at one or two follow-ups. This

fact, along with the fact that the sensors provide kine-

matic data, will facilitate simulation of neural networks

controlling movement recovery. Such technology-based

measurements are also being found to map well to clinical

outcome scales [149, 160–162]. Thus, these measures

have validity in terms of established clinical measures,

while enhancing the interpretation of these measures, fa-

cilitating more fine-grain modeling, and developing new

measures. Further, sensor-based measures may catch im-

provements or differences in behavior when clinical as-

sessment suffers from lack of resolution or floor/ceiling
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effects, e.g. [163]. Again, we are at a propitious time for

computational neurorehabilitation because of the rapid

rise of new wearable sensing technologies, the data from

which can be used to quantify functional outcomes im-

portant to patients in clinicians.

The current modeling benchmark: prognostic regression

models

There is a rich body of work on statistical modeling of

stroke recovery using regression models. A primary mo-

tivation for this work has been to develop prognostic

models that support clinical decision making with

regards to early stroke management, rehabilitation goals,

and discharge planning [20]. Such models take a “black-

box” approach, seeking to identify the mapping between

inputs, such as behavioral status and brain structure and

function soon after stroke, and patient outcomes, such

as long-term functional recovery. Such models can be

driven solely by behavioral data combined with clinical

descriptors of patients, by neurophysiological data (e.g.

EMG, (f )MRI and Transcranial Magnetic Stimulation),

or by both. These models usually do not have a priori

hypotheses regarding the basis of this mapping in

specific plasticity mechanisms, but they form a key

benchmark against which the prognostic power of

computational neurorehabilitation for clinical decision-

making must be tested. That is, a key question is: “Will

adding mechanistic details provide additional predictive

power useful for clinical practice?” Accordingly, this sec-

tion provides a brief overview of prognostic regression

models.

Predicting outcome post stroke with baseline behavioral

measures

Prospective cohort studies suggest that 33 to 66 % of

stroke patients with a paretic upper limb do not show

any recovery in upper limb function 6 months after

stroke [164, 165]. In contrast, depending on the outcome

measures used, 5 to 20 % will achieve full recovery of ac-

tivities at 6 months. Multivariate regression models that

are aimed to predict these outcomes are based on identi-

fying variables (i.e. “markers” or “predictors”), usually

measured at baseline, that are linearly or logistically as-

sociated with patient outcome at a later time post stroke.

Baseline behavior markers that have been found to be

useful in such models are voluntary movement ability

measured at key joints, initial gross severity of stroke,

initial disability, initial severity of motor deficits (e.g.

Fugl-Meyer motor scores), and initial kinematics of

reaching movements [7].

Two independently conducted prospective cohort

studies showed that 98 % of individuals who preserve

some voluntary finger extension and some shoulder ab-

duction when assessed within the first 72 h post stroke

regain some function at 6 months [20, 166, 167]. How-

ever, only 25 % of patients without voluntary control at

72 h regained some function at 6 months. The small

proportion of false positives (≈2 %) and relatively large

proportion of false negatives (≈25 %) in the SAFE model

(Shoulder Abduction Finger Extension) [167] suggests

that this clinical model may be too pessimistic in identi-

fying patients who are likely not to recover meaningful

function. The preservation or early return of some finger

extension most likely reflects the necessity of some fi-

bers of the corticospinal tract system in the affected

hemisphere to remain intact in order to activate muscles

of the forearm and hand [166, 168].

Numerous studies have also shown that the initial

overall severity of stroke measured within 72 h after

stroke onset, for example by using the NIH Stroke Scale

[169] and initial disability, for example measured with

the Barthel Index [170], are highly associated with the

final outcome at 6 months measured with the NIH

Stroke Scale, Barthel Index, or Functional Independence

Measure. Retesting the Barthel Index at regular intervals

significantly improved the model accuracy. These find-

ings indicate that the timing of clinical assessment post

stroke is an important factor that defines the accuracy of

predicting final outcome [20].

The upper extremity Fugl-Meyer score, an assessment

of arm movement ability in which various test move-

ments are scored on a three point ordinal scale and then

the component scores are summed to form a single

number, also predicts motor recovery. In 2008, it was

shown that approximately 70–80 % of stroke patients

follow a “proportional recovery rule”, recovering about

70 % of their maximal potential recovery at 3 months

based on the initial Fugl-Meyer motor scale [171–173]

(Fig. 3). This can be expressed as:

ΔFM≈0:7 � 66 ‐ FMinitialð Þ þ 0:4 ð2Þ

where ΔFM is the predicted change in upper extremity

Fugl-Meyer score at 6 months and FMinitial is the score

measured within 72 h. This rules suggests either that 1)

patients receive a dose of therapy proportional to their

impairment, 2) some basal amount of rehabilitation is

required for spontaneous recovery, or 3) current re-

habilitation does not strongly modulate impairment re-

covery [10], hypotheses that could be explored with

computational neurorehabilitation models. In addition,

at lower (i.e., more severe) values of FMinitial, this rela-

tionship is not as accurate, with approximately 20–30 %

of patients showing a much smaller ΔFM than that pre-

dicted by the model [171–173]. Outliers not fitting the

line of proportional fixed recovery suffered from more

severe hemiparesis and multimodal impairments such as

sensory deficits and neglect [133].
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Note this equation is a first order equation in FM.

Thus, proportional recovery appears to describe a rule

of spontaneous biological recovery that follows first

order dynamics [10]. In this framework, any early func-

tional improvement that ensues is mainly happening via

reductions in neurological impairment (i.e., restitution).

Regression analyses of change scores in early started in-

tensive repeated measurements post-stroke have shown

that this time-window of spontaneous neurological recov-

ery appears to be restricted to the first 3 months post

stroke [174]. Beyond this time, improvements in function

appear to be mainly driven by compensation strategies in

which patients learn to use their intact end-effectors to

optimize motor performance [7, 79, 156, 175]. See also re-

views about definitions, terminology [119] and phenomen-

ology [6] of stroke recovery.

A recent development in prognostic modeling is the

use of multiple input variables in non-linear regression

models such as neural networks. Specifically, a set of

kinematic measures assessed with a robotic device, then

mapped through a nonlinear mapping algorithm, pre-

dicted clinical outcomes after stroke with higher precision

than baseline clinical measures alone [162]. This 30 min

assessment asked patients to reach in the horizontal plane

to visual targets, to draw circles, and to move against ro-

botic resistance. Metrics included deviation from a

straight line, aim, average speed, peak speed, movement

duration, smoothness of movement, and features of the

sub-movements of movement trajectories, including

number, duration, overlap, peak, interval, and skewness

of sub-movements. Model performance plateaued when

using about eight of these features in the predictive

model; that is, additional features did not improve predic-

tion, presumably because of high correlations between

some of these features. The nonlinearity of the model was

essential to its improved predictive power, which suggests

that successful computational neurorehabilitation models

will incorporate nonlinearities as well. Note that this

model, like “classical” regression models, is purely statis-

tical, and does not explicitly model brain reorganization

or learning following stroke.

Predicting outcome post-stroke with brain imaging

measures

Another way to look at proportional recovery is that ana-

tomical damage sets a limit on the extent of possible re-

covery by restitution and therapy takes advantage of

plasticity mechanisms (whether enhanced during the early

Fig. 3 Example of the predictive power of a prognostic regression model, the proportional recovery model [171] (see Eq. 2). The model

accurately predicts the change in upper extremity Fugl-Meyer score from 2 days to 3 months post stroke for 70–80 % of the patients, who all

received rehabilitation. The subgroup of patients who did not fit the model experienced less recovery than predicted. To our knowledge, there

are no computational rehabilitation models that can predict which patients will fit this prognostic regression model, or explain the variance in

those who do not. Modified from [173]; Used with permission
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period of spontaneous biological recovery or normal in

the chronic phase) to help patients achieve the maximum

recovery possible. Predictive models thus need to include

neuro-anatomical variables [176]. However, given that

level of initial severity is the best predictor of final outcome,

we need to ask whether brain imaging data can improve

model performance. In other words, we are interested in

the factors that determine recovery over and above those

that cause impairment, as these are different things [172].

Residual structural and functional architecture after

stroke can also be used to estimate clinical outcome.

Diffusion tensor imaging (DTI) is able to assess integrity

of white matter tracts and when measured within

3 weeks of subcortical stroke, corticospinal tract (CST)

integrity correlates with both initial and 6 month upper

limb impairment [177]. In a separate study, damage to

the CST at the posterior limb of the internal capsule

12 h post-stroke correlated well with motor impairment

at 30 and 90 days [178]. Stinear and colleagues have pro-

posed an algorithm for sequentially combining simple

clinical, TMS, and DTI measures to predict upper limb

function [168]. The PREP (Predicting REcovery Poten-

tial) algorithm was tested in a sample of 40 sub-acute

stroke patients and performed well in predicting motor

function based on Action Research Arm Test scores at

12 weeks post-stroke. The performance of DTI in this

setting should be improved by making the tracts specific

to particular functions e.g. upper limb [179] and develop-

ing ways for the assessment of tract integrity to be done in

a standardised [180] and automatic [181] manner.

Corticospinal tract integrity correlates with initial

upper limb severity, which explains why it often corre-

lates with final outcome. However, it remains unclear

whether it can explain outcomes over and above initial

impairment. The role of intact cortical regions in support-

ing motor recovery is unknown, but has been explored in

language recovery. Predicting language outcome and re-

covery after stroke (PLORAS) uses the whole structural

brain scan from which voxel-wise estimates of the likeli-

hood of damaged tissue are derived [182]. This ‘lesion-

map’ for each patient is added to (i) time since stroke and

(ii) a detailed assessment of various language capabilities.

Using a machine learning approach, a new subject's lesion

image is compared with those from all the other patients

already in the database to find one with a similar lesion.

The language scores for all the similar patients are plotted

over time, enabling the time course of recovery for

the new patient to be estimated [183]. The potential

for such an approach extends to many domains including

motor and cognitive outcomes. Using this type of neuro-

imaging complex biomarker discovery [184] it should be

possible to provide accurate prognostic models allowing

accurate goal setting in neurorehabilitation and stratifica-

tion in clinical trials [185]. Note that for goal setting in

neurorehabilitation, for any patients for whom a given

model predicts little potential benefit of treatment, future

research will hopefully reveal new, modifiable factors that

can be targeted for such patients.

Multivariate machine learning approaches have also

been applied to functional MRI data to predict outcome.

For example, fMRI data acquired within 2 weeks of

stroke in patients with aphasia was used to predict out-

come in language [186]. Accuracy in predicting good

and bad outcome at 6 months was 76 % and improved

to 86 % when age and baseline language impairment

were added to the classification model. In the motor

domain, fMRI data acquired in the first few days after

stroke has been used to try to predict a subsequent

change in motor performance [172]. Using a multivariate

analysis, a specific pattern of activated voxels was identi-

fied as highly predictive of clinical change over the subse-

quent 3 months, a finding that was independent of initial

stroke severity and lesion volume. Anatomical hypotheses

could not be tested using this multivariate approach – the

study simply indicated that predictive signal was present

in a pattern of activation.

Predicting treatment effects

Predicting outcome will be useful for clinical and re-

search stratification, but what a clinician would like to

know is what are the chances of a patient responding to

a specific intervention. Stinear and colleagues [187] set

out to determine whether characterising the state of the

motor system would help in predicting an individual

patient's capacity for further functional improvement at

least 6 months post-stroke in a subsequent motor prac-

tice programme. A combination of TMS, structural and

functional MRI was used to suggest a method for deter-

mining who would respond to training. This approach

has also been used to predict likely response to robotic

training, with both structural [188] and functional im-

aging [189] data making some contribution.

When it comes to assessing the effects of treatments

thought to enhance the potential for experience

dependent plasticity, less work has been done. Currently,

there is a problematic explanatory gap between molecu-

lar (from animal studies) and behavioral (from human

studies) accounts of the mechanisms of recovery after

stroke. Lack of progression of knowledge from animal

models to benefit for human stroke patients has led

to the search for ways to study these mechanisms in

human subjects. There are exciting advances in how

human neuroimaging data can be analyzed that sug-

gest a way forward. Specifically, it is now possible to

examine changes in organization of the human brain

after stroke at multiple levels of brain architecture,

ranging from large-scale networks to alterations in

synaptic physiology.
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A number of analytical approaches are available to

examine connectivity within well-defined macroscopic

brain networks. For example, graph theory can be used

to determine ‘efficiency’ of information transfer around

small world networks such as the brain [190]. This

allows inferences to be made about functional connectivity

at the level of whole brain, hemisphere or specified net-

work level and can be applied to fMRI, EEG, and MEG

data. Dynamic Causal Modeling (DCM) is a method

of analyzing data from a dynamic system such as the

brain. Bayesian inversion of a specified anatomical

model given the empirical data allows the determination

of model parameters, which reflect effective connectivity

between brain regions (i.e. the task-dependent influ-

ence of one brain region on another) [191]. DCM of

induced responses acquired with MEG [192] is particularly

appealing as it allows partitioning of the effective coupling

between regions at the same spectral frequency (linear

coupling) and across frequencies (non-linear coupling).

Non-linear coupling in particular is important in functional

integration [193].

Another recently developed approach to studying

brain dynamics after stroke is to use patient-specific

structural connectivity data obtained from MRI to set-

up an individualized Virtual Brain model of the patient.

By optimizing model parameters, such as long-range

coupling or local inhibition, in order to match resting

state BOLD signals, insight can be gained into how those

parameters vary with different types of stroke [194].

At the mesoscopic scale, the spectral characteristics of

brain oscillations measured with MEG (or EEG) in the

gamma and beta frequency are dependent on the bal-

ance of activity between populations of excitatory (gluta-

matergic) pyramidal cells and inhibitory (GABAergic)

interneurons [195] and are candidate biomarkers of the

potential for both local- and network-plasticity [196].

More recently, it has become possible to define plausible

biophysical DCMs to examine mesoscopic interactions

between populations of excitatory and inhibitory cells in

specific cortical regions using data from MEG [197].

This approach has been validated using local field po-

tentials in animal preparations where independent

pharmacological/microdialysis assays have served to cor-

roborate modelling results [198]. A recent example of

how DCM of canonical microcircuits can provide mech-

anistic inferences is the finding that psilocybin, a 5HT-2A

agonist, reduced oscillatory power in posterior association

cortex by increasing excitability of deep-layer pyramidal

neurons [199].

This range of neuroimaging tools and computational

approaches will provide the appropriate intermediate

level of description with which to bridge the gap be-

tween what we know about recovery after stroke from

animal models compared to what we know from studies

of behavior in humans. A more detailed knowledge of

how these processes are related to impairment and re-

covery following stroke will provide a mechanistic

framework for understanding how to treat patients more

effectively. It will open the way for functional brain im-

aging to become a clinically useful tool in rehabilitation,

particularly for our ability to predict outcomes and re-

sponse to novel plasticity enhancing therapies.

In summary, there is a rich history and promising fu-

ture to using behavioural status and brain structure and

function soon after stroke, to predict long-term motor

recovery. Prognostic regression models can inform com-

putational neurorehabilitation models and are a key

benchmark against which the predictive power of com-

putational neurorehabilitation will need to be tested.

Computational neurorehabilitation models

As described above, we use the term “computational neu-

rorehabilitation” to refer to the emergence of theory-driven,

mechanistic dynamical models that naturally encode time

in differential equations and model recovery of motor be-

havior using internal states that have a physiologic meaning.

These models differ from the prognostic regression models

described in the previous section primarily because they in-

corporate mechanistic dynamical models of plasticity and

learning mechanisms underlying recovery. In this section,

we critically review a number of recent computational neu-

rorehabilitation models (Table 2).

Reaching the threshold for recovery in bilateral hand use

A key aspect of stroke motor recovery is that individuals

with a stroke can elect not to use their impaired arm,

since they usually have a relatively unaffected arm to

perform most needed tasks (i.e. they can compensate).

This “learned non-use” may logically be expected to con-

tribute to loss of motor control of the hemiparetic arm

(just as an athlete or musician who stops practicing be-

comes rusty), although to our knowledge there is no re-

search that has yet documented this loss. Han et al.

developed one of the first computational neurorehabil-

itation models to study the interactions between adap-

tive decision making related to learned non-use and

motor relearning after a simulated motor cortex lesion

[112] (Fig. 1c). The inputs to the model are targets for

bilateral reaching practice and the outputs are the choice

of arm to use to reach to the given target, and the kine-

matic accuracy of the reaching movement. The model

incorporates a reward-based learning mechanism for

arm selection, and an error-based learning mechanism

for refining the neural population code in primary motor

cortex that specifies reach direction.

This model predicts a loss of motor cortex representa-

tion without rehabilitation, and a reversal of cortical repre-

sentational loss with rehabilitation (cf. [93]). Furthermore,
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the model predicts that if spontaneous recovery, motor

training, or both, bring function above a certain threshold,

then training can be stopped, as the repeated spontaneous

arm use provides a form of motor learning that further

bootstraps function and spontaneous use (Fig. 4a), that is,

a “virtual cycle” is entered. Below this threshold, motor

training is in vain: the model exhibits learned non-use, and

compensatory movements performed with the less im-

paired hand are reinforced; that is, a “viscious cycle” is en-

tered. Evidence for this threshold prediction at the group

level was subsequently found in data from the EXCITE

clinical trial, a large study of constraint-induced movement

therapy after stroke [65].

One clinical impact of the model is that it suggests a

novel therapeutic paradigm, the “Train-Wait-Train”

paradigm, that not only would test the threshold hypoth-

esis, but also which could potentially be a more cost-

effective way to deliver rehabilitation therapy. For ex-

ample, in computer simulations, a virtual patient was

first given a set of 200 trials of therapy, simulated by

forced use of the affected arm. Then the patient experi-

enced repeated cycles of 1000 trials in a free arm choice

condition (wait), followed by 100 treatment trials (train).

The initial training trials were not sufficient to reach

threshold, and spontaneous use stayed low. After further

training sessions, however, the simulated patient entered

the “virtuous circle.” Experiments are currently testing

this Train-Wait-Train paradigm.

The model also provides insights into the time constants

of stroke motor recovery. The main recovery time constant

was on the order of thousands of trials. However, the time

constant controlling the change in the decision to use one

hand or the other was much smaller, and as a result, the

model developed learned non-use soon after stroke. Be-

cause how fast learned non-use actually develops after

stroke is unknown, hand choice and kinematic data col-

lected soon after stroke would lead to better parameter es-

timation and hence better predictions from these models.

This model, however, has a number of limitations that

need to be addressed to better understand and predict

individual recovery as a function of use and motor train-

ing. For example, the model is simply bi-stable: either

the patient is “above threshold” and fully recovers, or

below and does not. In addition, the model ignores in-

teractions between the two cortices. An extension of this

model, which includes inter-hemispheric inhibition, has

been proposed to account for the beneficial effects of bi-

manual training compared to uni-manual training [200].

Further, the model is only concerned with recovery of

the control of movement direction, with no attention

paid to arm muscle activity, other kinematic features, or

functional upper extremity behaviors.

Recovering from weakness via reinforcement learning

Motor recovery after stroke is characterized by a seemingly

disparate set of behavioral and brain imaging observations,

many reviewed above, but could these observations arise

from a few fundamental features of human sensorimotor

plasticity? Reinkensmeyer et al. approached this question

by focusing on the modeling of the recovery of distal upper

limb strength, the rationale being that strength strongly

predicts upper extremity functional activity [136, 201]. The

inputs to the model are attempts to flex the wrist, and the

output is the flexion force achieved. For the motor system

Table 2 Computational neurorehabilitation models discussed in

this review

Model A: Han et al. 2008 [112]

Structure: A bilateral limb-use model using a population vector
framework and reinforcement and error-based learning.

Example Prediction: If spontaneous recovery, motor training, or both,
bring function above a certain threshold, then training can be
stopped, as the repeated spontaneous arm use provides a form of
motor learning that further bootstraps function and spontaneous use
(i.e. the “virtuous cycle”)

Model B: Reinkensmeyer et al. 2012 [136]

Structure: A wrist strength recovery model using a simplified
corticospinal neural network and reinforcement learning via
stochastic search

Example Prediction: Reinforcement learning can explain a broad
range of features of stroke recovery, including exponential recovery,
residual capacity, and shift of brain activation to secondary motor
areas.

Model C: Casadio and Sanguineti, 2012 [56]

Structure: An arm impairment reduction model using a linear,
discrete-time, shift invariant dynamical system driven by data from
robotic therapy

Example Prediction: A parameter describing retention predicts
Fugl-Meyer score 3 months following robotic therapy.

Model D: Hidaka et al. 2012 [206]

Structure: First order dynamic model that incorporates a modifiable
parameter that controls the effect of arm function on use.

Example Prediction: Therapy increased the parameter that controls
the effect of arm function on use. An increase in this parameter,
which can be thought of as the confidence to use the arm for a
given level of function, led to an increase in spontaneous use after
therapy compared to before therapy.

Model E: Reinkensmeyer 2003 [207]

Structure: Adaptive Markov model with Hebbian plasticity that maps
relationship between normal and abnormal sensory and motor states,
allowing for physical assistance from a rehabilitation trainer

Example Prediction: Assistance-as-needed can enhance recovery
beyond what is possible with unassisted movement practice.

Model F: Jarrassé et al. 2012 [210]

Structure: Uses a cost function with error and effort terms, generated
by both the therapist (or robot) and human trainee, to characterize a
broad range of interactive behaviors of two-agent systems.

Example prediction: Sensorimotor rehabilitation may be modeled in
terms of the cost functions that the trainee and the trainer seek to
implement, as well as the algorithms they use to implement those
cost functions.
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to recover wrist flexion strength, the model assumes that

the motor system must learn appropriate activation of re-

sidual corticospinal cells (i.e. those preserved after the

stroke – thus, within the terminology adopted in this paper

this is again a study of neural compensation not restitu-

tion) via repeated movement attempts followed by reward

feedback. A simplified corticospinal network model was

developed based on several key observations from primate

neurophysiological experiments – that corticospinal cell

activity sums to create a net excitatory flexor or extensor

drive to a joint, that different corticospinal cells have differ-

ent “gains” for exciting motoneuronal pools, and that the

relationship between a corticospinal cell’s activity and its

individual contribution to muscle force is linear up to a

peak firing rate, then saturates for higher activity levels. Fi-

nally, the model assumed that the key underlying mechan-

ism of plasticity driving strength recovery after stroke was

a reinforcement learning mechanism, in which the sensori-

motor system modifies corticospinal cell activations based

on repetitive movement experiences, using stochastic ran-

dom search, such that limb force output is maximized.

This model predicts a broad range of the features of

stroke recovery. It predicts the dose-response curve of

rehabilitation, and putative modifiers of this curve, such

as that the same dose of exercise has a smaller effect

when given to a more severely impaired patient, and that

the same dose of exercise given early has a larger differ-

ential effect than when given later. This latter finding

suggests that increased sub-acute plasticity may arise in

part due to normative, compensatory network learning

dynamics rather than solely as a function of the stroke-

altered tissue microenvironment.

Further, and unlike the Han et al. model reviewed

above, the model predicts exponential-like strength re-

covery curves that never quite reach an asymptote, but

instead exhibit a residual capacity for further recovery

with further movement practice, as has been observed

experimentally [202]. At the level of structural brain im-

aging observations, the model predicts that patients with a

larger residual corticospinal network will recover more, a

known stroke phenomenon [203]. It also predicts a key

functional imaging observation, which is that movement-

A

C D

B

Fig. 4 Examples of computational neurorehabilitation approaches and results. a A key output of the Han et al. model [112] is the predicted

spontaneous use of the impaired hand, shown here as a percent of all movement trials in a bimanual choice task. Each curve represents the

evolution of spontaneous use given the number of rehabilitation practice trials, shown as a number on the far right of each curve. Spontaneous

use increases only when enough rehabilitation practice trials are performed to reach a threshold. From [112]; used with permission. b A key

output of the Casadio et al. model [56], which used data from a robotic therapy trial, is that the retention parameter in the model, measured

through a trial-to-trial analysis, predicts the change in Fugl-Meyer score at 3 months for these chronic stroke participants. c The Reinkensmeyer et

al. model [136] assumes that wrist force is produced by the summed effect of corticospinal cells targeting motor neuronal pools. Each cell

contributes an incremental force proportional to its firing rate, up to a saturation level. Cell firing rate changes by a random amount from trial to

trial; activation patterns that produce more force are remembered for future use, thus implementing a reinforcement learning paradigm. d In the

Reinkensmeyer et al. model, the probability that a single neuron will contribute to an increase in force on a new trial depends on whether the

neuron is strongly or weakly connected to the motor neuronal pool. Strongly connected cells have a greater probability of producing a larger

increase. In addition, when cells become saturated, they can only decrease force production. Thus, an increasing number of saturated cells

increasingly blocks further optimization, leaving a residual capacity for further increases in force
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related activation in secondary motor areas increases fol-

lowing a stroke that damages output from the primary

motor area [204].

Mathematically, two key mechanisms drive the ob-

served network dynamics. First, the saturation in the in-

dividual relationships between corticospinal cell firing

rates and their contribution to muscle force slows later

learning, thus leaving room for residual capacity (Fig. 4d).

This is because force results from the summed contribu-

tions of many cells. Once the activations of a subset of

these cells have evolved in the correct direction to

maximize force output, and become saturated, then those

neurons can no longer contribute to further increases in

force. As saturated neurons randomly vary their output

from trial to trial, they exhibit an increased probability of

decreasing the force produced on subsequent trials, since

they can now only vary their output in the direction coun-

terproductive to further force increase. Second, the activa-

tions of more strongly connected cells tend to be modified

first, as changes in their activations are more likely to in-

crease force output (Fig. 4c).

A key clinical implication of the model is that, if a sin-

gle learning mechanism – reinforcement learning via

stochastic search – can explain such a broad range of

features of stroke recovery, then perhaps this mechanism

should be targeted in rehabilitation training to facilitate

the search process. Adding variability and chances for

exploration to training regimens and providing aug-

mented feedback on the teaching signal are two possible

ways to achieve this; a large literature on reinforcement

learning in computer science may also be brought to

bear on rehabilitation protocol optimization (see above).

The model predicts another unexpected way that an

improved search might be achieved, an “Inhibit-Train-

Release” paradigm, which is to temporarily inhibit

cells that are already optimized (perhaps using a localized

inhibition scheme, such as infused muscimol or focused

transcranial magnetic stimulation, for example), train the

remaining cells, and then release the inhibited cells.

Stochastic search tends to optimize cells with stronger

effects on muscles, and once optimized these cells block

further optimization as explained above. The model pre-

dicts that temporarily inhibiting optimized cells will allow

non-optimized cell activations to become optimized.

As discussed above, this model successfully accounts

for a large number of existing neural and behavioral

data. However, it has several limitations. It has cartoon-

like complexity, modeling only a single flexor and exten-

sor muscle, and simplifying corticospinal activation to

static input-output relationships. In addition, it does not

model spontaneous recovery or restitution, as we have de-

fined them here. Further, while severe weakness precludes

control, mild to moderate weakness is less well correlated

with motor control. For example, the ipsilateral limb after

stroke shows abnormal motor control but strength is nor-

mal [205], so motor control requires more than strength.

Robot assistance, retention, and learning predicts recovery

Models such as the Han et al. model or the Reinkens-

meyer model above are “qualitative”, i.e., they make gen-

eral qualitative predictions of recovery. Parameters in

these models are “hand-tuned”. As such, they are only

loosely based on actual data and cannot be used to pre-

dict recovery of individual patients. As reviewed above,

during rehabilitative training mediated by a robot it is

possible to observe and record the patient’s performance

as well as the level of assistance that the patient received.

Can the trial-to-trial evolution in movement success dur-

ing rehabilitation be modeled, and, if so, what are the key

learning parameters needed to describe this evolution?

Casadio et al. [56] developed the first computational

model driven by data from actual robotic training sessions,

which describes the trial-by-trial evolution of the recovery

process induced by robotic training. This model provides

insights into the role of assistive force in the recovery

process, and the extent to which learned changes in vol-

untary control decay over time and transfer to subsequent

training sessions.

The model characterizes the recovery process related

to robot-assisted training for improving arm extension

in chronic stroke survivors as a linear, discrete-time,

shift invariant dynamical system. The model posits that

motor performance is a function of a voluntary control

component, an assistive force component, provided ei-

ther by a robot or a therapist, and a performance noise

term. Thus, the level of physical assistance provided dur-

ing rehabilitative training is taken as one of the system’s

inputs. The voluntary control component is the internal

state of the model and its temporal evolution is described

as the combination of three additive terms: a ‘memory’ or

‘retention term’, accounting for how much voluntary con-

trol depends on previous experience; an ‘assistance’ com-

ponent expressed as the magnitude of the assistive force;

and a learning component that accounts for how much

voluntary control on the actual trial is affected by the pre-

vious value of the driving signal. The input signals that

drive recovery are movement error or a performance

measure. A process noise term accounts for the portion of

the recovery not due to these three terms.

The most striking result from this model is that the re-

tention parameter predicts the percent change of the

Fugl-Meyer score at the 3-month point following the

end of the robotic treatment (Fig. 4b). This result, which

needs to be confirmed with a larger cohort, is potentially

important for the individualization of training. After one

or few initial training sessions with the robot, the model

can be fitted to the data. Then, by examining the reten-

tion parameter, one could potentially determine who will
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benefit from additional robotic motor training. Note

however that this model is based on a set up in which

the arm is constrained to move in two dimensions with

shoulder and elbow movements. Thus, here again, for

example, the issue of restitution versus compensation is

difficult to address and the conclusions are limited to

simplified movements at only two joints.

Understanding interactions between function and use

In the same vein of using computational models for pre-

dicting individual recovery, Schweighofer and colleagues

developed a first-order dynamical model of stroke recov-

ery with longitudinal data from participants receiving

constraint-induced movement therapy in the EXCITE

clinical trial [206]. The goal of the model was to better

understand the interactions between arm function and

use in human post-stroke following therapy. The model

shows the existence of time-varying interactions between

self-reported amount of daily arm use and recovery of

function via a dynamical model of stroke recovery in the

2 years following therapy. The time constants in this

model were on the order of several weeks. Of most im-

portance, by comparing the model parameters before

and after constraint-induced movement therapy inter-

vention in participants receiving the intervention 1 year

after randomization, therapy increased the parameter

that controls the effect of arm function on use. An in-

crease in this parameter, which can be thought of as the

confidence to use the arm for a given level of function,

led to an increase in self-reported spontaneous use after

therapy compared to before therapy. Thus, here, the pa-

rameters of the model can be viewed as “states” that

have physiological meaning, which may expedite the

testing of new experimental hypotheses.

However, as in the previous model of Casadio et al.,

this is a highly simplified model of recovery. It contains

only a few parameters and two time constants, one for

functional recovery and the other for hand use. The reason

for this simplicity is the very sparse data set on which the

model was built. Increasing the complexity of the model,

and thus the number of parameters was not possible be-

cause this would have led to overfitting, i.e., the model

would fit the data very well but would not generalize.

Modeling the effect of assistance-as-needed

Rehabilitation therapy often involves interactions between

patient and a trainer, be it a rehabilitation therapist, a ro-

botic device, or a computer game. Modeling the patient-

trainer interaction could potentially provide insight into

movement recovery.

Reinkensmeyer used an adaptive Markov model to

examine the role of external mechanical assistance from

a robotic device or therapist in promoting movement re-

covery [207]. Following research in gait training after

spinal cord injury, the model assumes that motor con-

trol is characterized by repeated transitions between sen-

sory and motor states; for example, sensing of full hip

extension at the end of stance triggers leg flexion. It fur-

ther grossly characterizes these states as abnormal and

normal sensory states (e.g. appropriate or inappropriate

hip extension), and abnormal and normal motor states

(effective or ineffective leg flexion). The model uses a

Hebbian-inspired model of plasticity in which the transi-

tions between specific sensory and specific motor states

become more reliable with repetitive activation of that

transition. The action of a skilled external trainer (robot

or human) who is assisting in movement is modeled as a

mediated increase in the probability of transferring to a

state of normal motor output (e.g. the trainer helps gen-

erate hip extension sensory inputs to enable effective leg

flexion). Assistance-as-needed is simulated by mediating

this transfer only when the patient is in an abnormal

motor state, while assistance-always is simulated by me-

diating this increase on every movement repetition.

The model predicts that assistance-as-needed can en-

hance recovery beyond what is possible with unassisted

practice, that assistance-always is not as effective as

assistance-as-needed, that the trainer’s skill in assisting

toward normal motor output matters in reinforcing nor-

mal state transitions, and that assistance is not useful

when sensory input is less directly coupled to motor

output. While these predictions may sound somewhat

intuitive, this is perhaps because they mirror opinions

that are often expressed in the current clinical milieu.

The model in this case served to verify that these opin-

ions could be mathematically supported relying on a

simple but plausible plasticity rule.

Patient-trainer dynamics as an optimization

Another approach toward modeling patient-trainer dy-

namics is based on what was first developed as a model of

human movement adaptation. As briefly described above,

the motor system uses a sunken-v muscle adaption rule to

alter force, impedance, and trajectory, explaining a wide

variety of experimental findings of reaching in dynamic

environments [119, 208]. This update rule can be viewed

as the motor system implementing a greedy minimization

of a cost function of error and effort [118]. If the patient’s

motor system is minimizing a cost function from move-

ment to movement, then, what cost function might the

trainer minimize to assist in learning? A gradient descent

of a similar cost function of error and effort was shown to

provide an efficient assistive controller for rehabilitation

[209]. Jarrassé et al. expanded and formalized this ap-

proach, providing a framework for the description and im-

plementation of a broad range of interactive behaviors of

two agents (such as a patient and a robotic therapist) per-

forming a joint motor task, including rehabilitation [210].
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For example, one may assume that a robotic trainer just

moves a patients’ limb while this patient is passive. To

model this situation, the trainer would take all of the effort

off of the patient by minimizing its cost function:

Vt ¼ αe2 þ βu2;α; β > 0; ð3Þ

where e and u correspond to the patient’s error and

effort state as observed by the trainer. However, individ-

uals with stroke improve their motor function more when

actively attempting to move, rather than relying on the

robot to move their arm [211]. To avoid the patient be-

coming passive, the trainer can modify its cost function to

Vt ¼ αe2 þ βtut
2
; α; βt > 0 ð4Þ

i.e. minimize its own effort ut
2. If one assumes that the

patient behaves according to the sunken-v adaptation

rule, if the trainer is slightly more lazy (i.e. βt > β), it will

help the patient fulfill the task (as the trainer also has to

minimize e2) only if the patient is not able to do so

by itself, and disappear if the patient can do it. Thus,

this method and the cost function of Eq. (4) can be

used to design assist-as-needed control of rehabilita-

tion robots. In terms of computational neurorehabil-

itation, this work suggests that sensorimotor

rehabilitation may be able to be modeled in terms of

the cost functions that the trainee and the trainer

seek to implement, as well as the algorithms they use

to implement those cost functions.

Conclusions

We contend that the models reviewed in the previous

section are evidence that a fundamental understanding

of neurologic recovery will be facilitated by modeling

motor learning and plasticity itself in a context specific

to rehabilitation. Even the initial, simplified models

presented are generating novel ideas concerning the

mechanisms of recovery in rehabilitation, and thus

are suggesting important directions for future experi-

mental research.

Novel ideas from initial models and their limitations

For example, the Han et al. model discussed above sug-

gests the existence of a threshold of movement ability

that allows patients to enter a “virtuous” cycle of activity-

dependent plasticity; this premise is now being tested in a

clinical trial. The Reinkensmeyer et al. model suggests

that a large number of existing behavioral and neural

data can be accounted for if the motor system uses a

reinforcement-learning paradigm – stochastic search – to

optimize neural activations; this suggests increasing re-

search into techniques to enhance reinforcement learning

in order to enhance rehabilitation therapy, a proposition

that is only beginning to be explored. The Casadio et al.

model showed that a short-term measure of retention in

robotic training can accurately predict how much long-

term recovery is possible with such training during

chronic stroke, suggesting a novel assay for patient selec-

tion for robotic therapy. Other interesting ideas generated

by the initial models reviewed above are that a key way

that rehabilitation therapy may function is by modulating

a parameter that controls the effect of arm function on

use, and that trainer-trainee interactions can be character-

ized using parsimonious cost functions.

Even given their utility in generating such novel ideas

concerning rehabilitation, these initial models clearly

have shortcomings. They greatly simplify human move-

ment and the rehabilitation process. They ignore the fact

that every day activity relies on bimanual motor func-

tion. They selectively model only one or two learning

and plasticity mechanisms. They focus on motor learn-

ing rather than plasticity mechanisms associated with

restitution, as yet neglecting the rich literature on spon-

taneous biological recovery, which may ultimately offer

greater potential for recovery. They have not yet been

used to replicate, let alone extend, the findings achieved

with prognostic regression models. None have yet used a

cross-validation procedure in order to see how much a

model based on the data from a pool of patients can ex-

plain the behavior of patients outside of that pool. In

addition, sensorimotor control is just one of many do-

mains addressed by neurorehabilitation.

The forthcoming data revolution

Another key argument that this review has attempted to

make is that the time is propitious for continued develop-

ment of computational neurorehabilitation models. As we

surveyed above, the mathematical tools for developing

such models are already at least partly available because of

the past several decades of work in the field of computa-

tional neuroscience and machine learning. Further, as we

also reviewed above, large-scale longitudinal data for each

patient and for a large number of patients are now possible

to obtain with robotic devices and wearable sensors. This

will allow the development of more elaborate, physics-

based models that predict recovery at a fine temporal and

spatial resolution. Note that conventional motor learning

experiments have generally failed to even come close to

the number of training trials that gives rise to the high level

expertise in sports and work-related skills. With instru-

mented rehabilitation and wearable sensors, this situation

is now set to change, at least in the context of motor learn-

ing during rehabilitation. A key challenge for the future is

how to utilize these longitudinal data that are collected on

different samples, with different methods of motion cap-

ture, and different quantifications of movement into a co-

herent package such that they can inform models of

movement control over the course of recovery after stroke.
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The Casadio et al. model described above initiates the

data-driven approach, as it is the first to use trial-to-trial

data from actual robotic training to predict changes in

Fugl-Meyer scores, suggesting that retention-related pa-

rameters correlate with impairment recovery. Following

this approach, we predict that soon we will see the

emergence of large scale mechanistic models of motor

recovery that are driven by the actual movement content

of rehabilitation therapy as well as records of daily activity.

Ideally, one would use the same data set from hundreds

or even thousands of well-characterized patients, so that

computational model output is realistic and appropriate.

In addition, the models will increasingly be informed

by automatic analysis of MRI scans routinely obtained

after stroke, since, as we reviewed above, brain anatomical

information is needed because identical behavior can arise

through largely different neural processes. A range of

novel neuroimaging tools and computational methods, in-

cluding analysis of grey and white matter structures and

structural and functional connectivity [212], will provide

an intermediate level of description with which to bridge

the gap between what we know about recovery after

stroke from animal models compared to what we know

from studies of behavior in humans.

Complexification and utility

Clearly, initial computational neurorehabilitation models

are vast simplifications of a very complex process. While

simplification and abstraction are often virtues in model-

ing, with richer data sets, it will be possible to increase

the complexity of computational neurorehabilitation

models with less risk of overfitting. Models containing a

multiple joint system, such as the whole arm or both

arms, will be important for understanding compensa-

tion. Upper extremity motor control during real-world,

free-living activity involves the movement of all the seg-

ments in order to position and orient the limb and to

interact with objects [213, 214]. If a computational model

utilizes only a few of the segments, then the model output

will provide only a limited view of the actual solution, es-

sentially ignoring the degrees of freedom problem under-

scored by Bernstein. Models that can help understand or

predict control processes during naturalistic actions will

be of high value for the field of neurorehabilitation.

Further, it is currently difficult to experimentally study

the interacting effects between different forms of learn-

ing, such as supervised, unsupervised, and reinforcement

learning, including the role of the timing of rehabilita-

tion on these processes [81, 215]. There appear to be

methods also to induce beneficial plasticity beyond task

repetition, such as the possible enhancing of effects

of non-invasive brain stimulation on motor learning

[216, 217]. Computational neurorehabilitation models

can incorporate multiple levels of plasticity and learning,

as well as plasticity-enhancing effects of techniques such

as electrical stimulation, and even psychological effects

important to rehabilitation, helping understand these in-

teractions in computer simulations to guide future experi-

mental work. This is important, as one theoretically could

vet hypotheses in an efficient and cost-effective manner,

rather than relying solely on randomized, controlled trials,

which are costly and time consuming.

A key question, of course, is whether the incorporation

of plasticity and learning mechanisms, along with in-

ternal physiological states, into models will improve

upon the predictive capability now possible with prog-

nostic regression models. We contend they have a good

chance to, because they are more likely to isolate the key

predictive variables of interest, since these variables

likely relate to physiologic function, and computational

neurorehabilitation models seek to make just such vari-

ables explicit. Such variables likely vary from patient-to-

patient as well, suggesting that their isolation will improve

individualized predictions.

If so, computational models of neurorehabilitation

should ultimately improve rehabilitation for individuals

with neurologic injuries. We expect that computational

models of recovery, based on early clinical data, kinematic

performance, and routine scans, will provide the basis for

future clinical software that suggests timing, dosage, and

content of therapy. Such an approach will transform neu-

rorehabilitation by guiding clinicians, patients, and health

providers in the optimization of treatments.
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