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Abstract

We analyze two algorithms for approximating the

general optimal transport (OT) distance between

two discrete distributions of size n, up to accu-

racy ε. For the first algorithm, which is based

on the celebrated Sinkhorn’s algorithm, we prove

the complexity bound Õ
(
n2

ε2

)
arithmetic operati-

ons1. For the second one, which is based on our

novel Adaptive Primal-Dual Accelerated Gradient

Descent (APDAGD) algorithm, we prove the

complexity bound Õ
(
min

{
n9/4

ε , n
2

ε2

})
arithme-

tic operations. Both bounds have better depen-

dence on ε than the state-of-the-art result given

by Õ
(
n2

ε3

)
. Our second algorithm not only has

better dependence on ε in the complexity bound,

but also is not specific to entropic regularization

and can solve the OT problem with different regu-

larizers.2

1. Introduction

Optimal transport (OT) distances between probability me-

asures or histograms, including the earth mover’s distance

(Werman et al., 1985; Rubner et al., 2000) and Monge-

Kantorovich or Wasserstein distance (Villani, 2008), play

an increasing role in different machine learning tasks, such

as unsupervised learning (Arjovsky et al., 2017; Bigot et al.,

2017), semi-supervised learning (Solomon et al., 2014),
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1Õ hides polylogarithmic factors (lnn)c, c > 0.
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clustering (Ho et al., 2017), text classification (Kusner et al.,

2015), as well as in image retrieval, clustering and clas-

sification (Rubner et al., 2000; Cuturi, 2013; Sandler &

Lindenbaum, 2011), statistics (Ebert et al., 2017; Panare-

tos & Zemel, 2016), and other applications (Kolouri et al.,

2017).

Our focus in this paper is on the computational aspects of

OT distances for the case of two discrete probability me-

asures with support of equal3 size n. The state-of-the-art

approach (Cuturi, 2013) for this setting is to apply Sink-

horn’s algorithm to the entropy-regularized OT optimization

problem. As it was recently shown in (Altschuler et al.,

2017), this approach allows to find an ε-approximation for

an OT distance in Õ
(
n2

ε3

)
arithmetic operations. In terms

of the dependence on n, this result improves on the com-

plexity Õ(n3) achieved by the network simplex method or

interior point methods (Pele & Werman, 2009), applied di-

rectly to the OT optimization problem, which is a linear

program (Kantorovich, 1942). Nevertheless, the cubic de-

pendence on ε prevents approximating OT distances with

good accuracy.

On the other hand, in image color transfer (Pitié et al., 2007)

or domain adaptation (Courty et al., 2017) not only the

OT distance, but also the optimal transportation plan is of

interest. Recent works (Essid & Solomon, 2017; Blondel

et al., 2017) observe that entropic regularization of the OT

problem leads to a dense transportation plan, which is in

contrast to the sparse transportation plan obtained by solving

the unregularized OT problem. Motivated by this observa-

tion, they study general regularization by a strongly convex

function, e.g. squared euclidean norm, and show that this

leads to a sparse transportation plan. In this situation, Sink-

horn’s algorithm becomes inapplicable since it is specific to

entropic regularization.

Our goal in this paper is, first, to obtain better than state-

of-the-art complexity bounds for approximating the OT dis-

tance and, second, propose a flexible algorithm for solving

the OT problem with different types of regularization.

3This is done for simplicity and all the results easily generalize
to the case of measures with different support size.
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Approximating the OT distance amounts to solving the OT

problem (Kantorovich, 1942):

min
X∈U(r,c)

〈C,X〉,

U(r, c) := {X ∈ R
n×n
+ : X1 = r, XT

1 = c}, (1)

where X is transportation plan, C ∈ R
n×n
+ is a given

ground cost matrix, r, c ∈ R
n are given vectors from the

probability simplex ∆n, 1 is the vector of all ones. The

regularized OT problem is

min
X∈U(r,c)

〈C,X〉+ γR(X), (2)

where γ > 0 is the regularization parameter and R(X)
is a strongly convex regularizer, e.g. negative entropy or

squared Euclidean norm.

Our goal is to find X̂ ∈ U(r, c) such that

〈C, X̂〉 ≤ min
X∈U(r,c)

〈C,X〉+ ε. (3)

In this case, 〈C, X̂〉 is an ε-approximation for the OT dis-

tance and X̂ is an approximation for the transportation plan.

Related work. We focus on the general case with C being

a non-negative dense matrix. In this case, (1) is a linear

programming problem with best theoretical complexity

Õ(n5/2) (Lee & Sidford, 2014) and best practical complex-

ity Õ(n3) (Pele & Werman, 2009), which is problematic

when n is larger than 103.

A natural alternative is to approximate (1) by (2) with a

small γ. Starting with the work (Cuturi, 2013), the widely

used practical implementation of this idea is to use entropy

regularization, i.e. solve (2), where R(X) is negative en-

tropy of a matrix X . The special structure of this problem

allows to use the balancing algorithm (Bregman, 1967) also

known as Sinkhorn’s algorithm (Sinkhorn, 1974) and RAS

(Kalantari & Khachiyan, 1993). The best known complex-

ity bound in the literature for this approach is Õ
(
n2

ε3

)
to

obtain (3) (Altschuler et al., 2017), Theorem 1. They also

show that the regularization parameter should be chosen pro-

portional to ε, which necessitates working with the matrix

exp(−C/ε) and leads to problems with numerical stability

of the algorithm. Several ways to overcome this instability

issue were proposed in (Schmitzer, 2016), but with limited

theoretical analysis. While the entropy-regularized OT pro-

blem allows to use other matrix-scaling algorithms such as

(Allen-Zhu et al., 2017; Cohen et al., 2017) with theoretical

guarantees, the authors do not provide any experimental re-

sults, so the practical implementability of these algorithms

is questionable. In (Genevay et al., 2016), stochastic gra-

dient descent is applied to solve the entropy-regularized OT

problem, but the complexity for approximating OT distance

Table 1. Comparison of algorithms for (2).

ALGORITHM RATES LS ENTR.

(BECK & TEBOULLE, 2014) ×
√ √

(CHAMBOLLE & POCK, 2011) × × ×
(MALITSKY & POCK, 2016) ×

√
×

(TRAN-DINH & CEVHER, 2014)
√

×
√

(YURTSEVER ET AL., 2015)
√

×4 √

(PATRASCU ET AL., 2015)
√

×
√

(GASNIKOV ET AL., 2016)
√

×
√

(CHERNOV ET AL., 2016)
√

×
√

(ANIKIN ET AL., 2017)
√

×
√

(DVURECHENSKY ET AL., 2016) ×
√

×
(BOGOLUBSKY ET AL., 2016) ×

√
×

(LI ET AL., 2016)
√

×
√

(LAN ET AL., 2011) × ×
√

(OUYANG ET AL., 2015) ×
√

×
(XU, 2016)

√
× ×

THIS PAPER (ALG. 3)
√ √ √

in the sense of (3) is not studied. In any case, Sinkhorn’s

and other mentioned algorithms are very specific to entropic

regularization in (2).

A flexible alternative can be to use some general purpose

optimization method to solve (2), which is a particular case

of a minimization problem with linear constraints. When n
is large, the natural choice is the class of first-order methods,

e.g. Conjugate Gradients (CG), quasi-Newton methods like

L-BFGS or Nesterov’s accelerated gradient descent (AGD).

Due to the presence of linear constraints, the most common

approach involves the construction of the Lagrange dual

problem, which is an unconstrained problem. Based on the

latter fact, L-BFGS was used in (Cuturi & Peyré, 2016; Blon-

del et al., 2017) for the dual problem. Since our focus is on

complexity analysis, it is crucial to estimate the rate of con-

vergence for the norm of the dual problem objective gradient

as this norm is exactly the equality constraints feasibility in

the primal problem. This can be complicated if CG or L-

BFGS is used for the dual problem, so we choose AGD-type

methods with primal-dual updates. The tricky part of this ap-

proach is to prove accelerated (Nesterov, 2004) convergence

rates separately for the primal objective residual and linear

constraints feasibility. On the other hand, first-order met-

hods use the Lipschitz constant of the objective’s gradient

to define the stepsize. The theoretical value for this constant

is usually an overestimation and leads to small stepsize and

slow convergence in practice. Thus, an algorithm should use

a line-search strategy to adapt to the local value of this con-

stant and converge faster. Finally, entropy regularization in

(2) is an important particular case and an algorithm should

be able to deal with this non-Lipschitz-smooth regularizer.

We analyzed a bunch of algorithms in the literature (see Ta-

ble 1) and none of them combine all three described features,

namely, a) accelerated convergence rates separately for the

primal objective and constraints feasibility, b) line-search,

c) entropy friendliness.
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Our contributions can be summarized as follows.

• Improved analysis of the Sinkhorn’s algorithm and

complexity Õ
(
n2

ε2

)
arithmetic operations for approxi-

mating the OT distance in the sense of (3).

• An Adaptive Primal-Dual Accelerated Gradient Des-

cent (APDAGD) algorithm, which incorporates a line-

search strategy and has accelerated convergence rates

separately for the primal objective and constraints 5

feasibility in (2) with a general strongly convex regula-

rizer.

• Improved complexity Õ
(
min

{
n9/4

ε , n
2

ε2

})
arithmetic

operations for approximating the OT distance in the

sense of (3), based on our APDAGD method.

• Numerical illustration of the practical performance of

these algorithms for approximating the OT distance.

Notation. For a general finite-dimensional real vector space

E, we denote by E∗ its dual, given by linear pairing 〈g, x〉,
x ∈ E, g ∈ E∗; by ‖ · ‖E the norm in E and by ‖ ·
‖E,∗ the norm in E∗, which is dual to ‖ · ‖E . For a linear

operator A : E → H , we define its norm as ‖A‖E→H =
maxx∈E,u∈H∗{〈u,Ax〉 : ‖x‖E = 1, ‖u‖H,∗ = 1}. We

say that a function f : E → R is γ-strongly convex on

a set Q ⊆ E w.r.t. a norm in E iff, for any x, y ∈ Q,

f(y) ≥ f(x)+〈∇f(x), y−x〉+ γ
2 ‖x−y‖2E , where ∇f(x)

is any subgradient of f(x) at x.

For a matrix A and a vector a, we denote eA, ea, lnA, ln a
their entrywise exponents and natural logarithms respecti-

vely. For a vector a ∈ R
n, we denote by ‖a‖1 the sum of

absolute values of its elements, and by ‖a‖2 its Euclidean

norm, and by ‖a‖∞ the maximum absolute value of its ele-

ments. Given a matrix A ∈ R
n×n, we denote by vec(A)

the vector in R
n2

, which is obtained from A by writing

its columns one below another. For a matrix A ∈ R
n×n,

we denote ‖A‖1 = ‖vec(A)‖1 and ‖A‖∞ = ‖vec(A)‖∞.

Further, we define the entropy of a matrix X ∈ R
n×n
+ by

H(X) := −
n∑

i,j=1

Xij lnXij . (4)

For two matrices A,B, we denote their Frobenius inner

product by 〈A,B〉. We denote by ∆n := {a ∈ R
n
+ : aT1 =

1} the probability simplex in R
n. For p, q ∈ ∆n, we define

the Kullback–Leibler divergence between p and q to be

KL(p‖q) :=
n∑

i=1

pi ln
pi

qi
.

4Their algorithm uses Lipschitz constant in the stopping crite-
rion and, hence, is not completely adaptive.

5See (Dvurechensky et al., 2017) for a more general adaptive
primal-dual method, which can solve problems with both linear
equality and inequality constraints.

Algorithm 1 Sinkhorn’s Algorithm

Input: Accuracy ε′.
1: Set k = 0, u0 = v0 = 0
2: repeat

3: if k mod 2 = 0 then

4: uk+1 = uk + ln r − ln(B(uk, vk)1)
5: vk+1 = vk
6: else

7: vk+1 = vk + ln c− ln(B(uk, vk)
T
1)

8: uk+1 = uk
9: end if

10: k = k + 1
11: until ‖B(uk, vk)1− r‖1 + ‖B(uk, vk)

T
1− c‖1 ≤ ε′

Output: B(uk, vk).

2. Sinkhorn’s Algorithm

In this section, our goal is to refine the complexity analysis

of the Sinkhorn’s algorithm, then, based on this analysis,

improve the existing complexity bound O
(
n2‖C‖3

∞
logn

ε3

)

for approximating the OT distance in the sense of (3) and

obtain new complexity O
(
n2‖C‖2

∞
logn

ε2

)
.

2.1. Improved Complexity of the Sinkhorn’s Algorithm

We consider the Sinkhorn–Knopp algorithm listed as Algo-

rithm 1, which solves (Cuturi, 2013), Lemma 2, the minimi-

zation problem

min
u,v∈Rn

{
ψ(u, v) := 1

TB(u, v)1− 〈u, r〉 − 〈v, c〉
}
, (5)

where K := e−C/γ and B(u, v) := diag
(
eu
)
K diag

(
ev
)
,

diag(a) being the diagonal matrix with the vector a on the

diagonal. Problem (5) is equivalent to the dual to (2) with a

particular choice R(X) = −H(X), see the derivation.

To improve the complexity of the Sinkhorn’s algorithm, first,

we obtain some bounds for the iterates uk, vk and an optimal

solution (u∗, v∗) for (5). Then, using these bounds, for each

iteration of the algorithm, we upper bound the objective

value ψ(uk, vk) by ‖B(uk, vk)1− r‖1 + ‖B(uk, vk)
T
1−

c‖1. Finally, the latter bound is used, to prove the main

theorem of this subsection with new complexity result for

the Sinkhorn’s algorithm.

The following lemma provides the bounds for uk, vk, u∗

and v∗.

Lemma 1. Let k ≥ 0 and uk, vk be generated by Algo-

rithm 1 and (u∗, v∗) be a solution of (5). Then

maxiu
i
k −miniu

i
k ≤ R, maxjv

j
k −minjv

j
k ≤ R, (6)

maxi(u
∗)i−mini(u

∗)i ≤ R, maxj(v
∗)j−minj(v

∗)j ≤ R,

where



Complexity of Optimal Transport Distances

R := − ln
(
νmini,j{ri, cj}

)
, (7)

ν := mini,jK
ij = e−‖C‖∞/γ . (8)

Proof. First, we prove the bound for uk. Obviously, the

stated inequality holds for k = 0. Let k − 1 be even.

Then the variable u is updated on the iteration k − 1 and

B(uk, vk)1 = r by the algorithm construction. Hence, for

each i ∈ [1, n], we have

eu
i
kν〈1, evk〉 ≤

∑

j

eu
i
kKijev

j
k = [B(uk, vk)1]i = ri ≤ 1

and maxiu
i
k ≤ − ln (ν〈1, evk〉) . (9)

On the other hand, since Kij ≤ 1, for each i ∈ [1, n],

eu
i
k〈1, evk〉 ≥

∑

j

eu
i
kKijev

j
k = [B(uk, vk)1]i = ri

and miniu
i
k ≥ mini ln

(
ri

〈1, evk〉

)
= ln

(
mini r

i

〈1, evk〉

)
.

The latter inequality and (9) give

maxiu
i
k − miniu

i
k ≤ − ln

(
ν minir

i
)
≤ R.

Since the next iteration k, which is odd, updates the variable

v and leaves the variable u unchanged, the obtained bound

for uk holds for any k ≥ 0. The bound in (6) for vk is

proved in the same way. Finally, since (u∗, v∗) is an optimal

solution of (5), the gradient of the objective in (5) vanishes

at this point. Hence, B(u∗, v∗)1 = r and B(u∗, v∗)T1 = c.
Using these equalities and repeating the same arguments as

in the proof of bounds for uk and vk, we prove the bounds

for u∗ and v∗.

The following lemma, for each iteration of Algorithm 1,

relates the objective ψ(uk, vk) in (5) and ‖B(uk, vk)1 −
r‖1 + ‖B(uk, vk)

T
1 − c‖1. To simplify derivations, we

define

ψ̃(u, v) := ψ(u, v)− ψ(u∗, v∗)

= 〈1, B(u, v)1〉−〈1, B(u∗, v∗)1〉+〈u∗−u, r〉+〈v∗−v, c〉.
Lemma 2. Let k ≥ 1 and uk, vk be generated by Algo-

rithm 1. Then, denoting Bk := B(uk, vk), we have

ψ̃(uk, vk) ≤ R
(
‖Bk1− r‖1 + ‖BTk 1− c‖1

)
.

Proof. Let us fix k ≥ 1 and consider the convex function of

(û, v̂)

〈1, B(û, v̂)1〉 − 〈û, B(uk, vk)1〉 − 〈v̂, B(uk, vk)
T
1〉.

Since its gradient vanishes at (û, v̂) = (uk, vk), the point

(uk, vk) is its minimizer. Hence,

ψ̃(uk, vk) =
[
〈1, Bk1〉 − 〈uk, Bk1〉 − 〈vk, BTk 1〉

]

−
[
〈1, B(u∗, v∗)1〉 − 〈u∗, Bk1〉 − 〈v∗, BTk 1〉

]

+ 〈uk − u∗, Bk1− r〉+ 〈vk − v∗, BTk 1− c〉
≤ 〈uk − u∗, Bk1− r〉+ 〈vk − v∗, BTk 1− c〉. (10)

Next, we bound the r.h.s. of this inequality. Since, on each

iteration of the Sinkhorn’s algorithm, either Bk1 = r, or

BTk 1 = c, we have that 〈1, Bk1〉 = 1 and 〈1, Bk1−r〉 = 0.

Taking a =
maxi u

i
k+mini u

i
k

2 , by Hölder’s inequality and

Lemma 1, we obtain

〈uk, Bk1− r〉 = 〈uk − a1, Bk1− r〉
≤ ‖uk − a1‖∞ ‖Bk1− r‖1

=
maxi u

i
k −mini u

i
k

2
‖Bk1− r‖1 ≤ R

2
‖Bk1− r‖1 .

Using the same arguments, we bound 〈−u∗, Bk1 − r〉,
〈vk, BTk 1 − c〉 and 〈−v∗, BTk 1 − c〉 in (10) and finish the

proof of the lemma.

Now we are ready to improve the iteration complexity

bound for the Sinkhorn’s algorithm.

Theorem 1. Algorithm 1 outputs a matrix B(uk, vk) sa-

tisfying ‖B(uk, vk)1− r‖1 + ‖B(uk, vk)
T
1− c‖1 ≤ ε′ in

the number of iterations k satisfying

k ≤ 2 +
4R

ε′
.

Proof. Assume that k ≥ 1 is even. As before, we denote

Bk = B(uk, vk). Since 〈1, Bk1〉 = 〈1, Bk+11〉 = 1 and

vk+1 = vk, we have

ψ(uk, vk)− ψ(uk+1, vk+1)

= 〈1, Bk1〉−〈1, Bk+11〉+〈uk+1−uk, r〉+〈vk+1−vk, c〉
= 〈r, uk+1−uk〉 = 〈r, ln r− ln(Bk1)〉 = KL(r‖Bk1)

By Pinsker’s inequality and Lemma 2, since BTk 1 = c, we

obtain

ψ̃(uk, vk)− ψ̃(uk+1, vk+1) = KL (r‖Bk1)

≥ 1

2
‖Bk1− r‖21 ≥ max

{
ψ̃(uk, vk)

2

2R2
,
(ε′)2

2

}
, (11)

where we also used that, as soon as the stopping criterion

is not yet fulfilled and BTk 1 = c, ‖Bk1− r‖21 ≥ (ε′)2.

The same inequality can be proved for the case of odd k.

Therefore (Nesterov, 2004), §2.1.5, for any k ≥ 1,

ψ̃(uk+1, vk+1)

2R2
≤ ψ̃(uk, vk)

2R2
−
(
ψ̃(uk, vk)

2R2

)2

≤ 1

k + ℓ
,

(12)

where ℓ = 2R2

ψ̃(u1,v1)
. Thus k ≤ 1+ 2R2

ψ̃(uk,vk)
− 2R2

ψ̃(u1,v1)
. On

the other hand,

ψ̃(uk+m, vk+m) ≤ ψ̃(uk, vk)−
(ε′)2m

2
, k,m ≥ 0.

(13)
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Algorithm 2 Approximate OT by Sinkhorn

Input: Accuracy ε.
1: Set γ = ε

4 lnn , ε′ = ε
8‖C‖∞

.

2: Find r̃, c̃ ∈ ∆n s.t. ‖r̃ − r‖1 ≤ ε′/4, ‖c̃− c‖1 ≤ ε′/4
and mini r̃

i ≥ ε′/(8n), minj c̃
j ≥ ε′/(8n).

E.g., (r̃, c̃) =
(
1− ε′

8

)(
(r, c) + ε′

n(8−ε′) (1,1)
)

.

3: Calculate B by Algorithm 1 with marginals r̃, c̃ and

accuracy ε′/2.

4: Find X̂ as the projection ofB on U(r, c) by Algorithm 2

in (Altschuler et al., 2017).

Output: X̂ .

To combine the two estimates (12) and (13), we consi-

der a switching strategy, parametrized by number s ∈
(0, ψ̃(u1, v1)]. First, using (12), we estimate the number

of iterations to reduce ψ̃(u, v) from ψ̃(u1, v1) to s. Then,

using (13), we estimate the number of iterations to reduce

ψ̃(u, v) from s to zero, keeping in mind that ψ̃(u, v) ≥ 0
by its definition. Minimizing the sum of these two estimates

in s ∈ (0, ψ̃(u1, v1)], we conclude that the total number of

iterations k satisfies

k ≤ min
0<s≤ψ̃(u1,v1)

(
2 +

2R2

s
− 2R2

ψ̃(u1, v1)
+

2s

(ε′)2

)

=




2 + 4R

ε′ − 2R2

ψ̃(u1,v1)
, ψ̃(u1, v1) ≥ Rε′,

2 + 2ψ̃(u1,v1)
(ε′)2 , ψ̃(u1, v1) < Rε′.

In both cases, we have k ≤ 2 + 4R
ε′ .

The main innovation of our proof is the first component in

the max in r.h.s. of (11), which follows from Lemma 2. On

the contrary, (Altschuler et al., 2017) (see also (Chakrabarty

& Khanna, 2018)) prove only the bound with the second

component and, thus, obtain worse estimate for the number

of Sinkhorn’s iterations.

2.2. Complexity of OT Distance by Sinkhorn

Now we apply the result of the previous subsection to derive

a complexity estimate for finding X̂ ∈ U(r, c) satisfying

(3). The procedure for approximating the OT distance by

the Sinkhorn’s algorithm is listed as Algorithm 2.

Theorem 2. Algorithm 2 outputs X̂ ∈ U(r, c) satisfying

(3) in

O

(
n2‖C‖2∞ lnn

ε2

)
arithmetic operations.

Before we prove the theorem, we compare our result with

the best known in the literature, which is given by (Altschu-

ler et al., 2017), Theorem 1: O
(
n2‖C‖3

∞
lnn

ε3

)
. As we see,

our result has better dependence on ε and ‖C‖∞.

Proof of Theorem 2. Following the same steps as in the

proof of Theorem 1 in (Altschuler et al., 2017), we obtain

〈C, X̂〉 ≤ 〈C,X∗〉+ 2γ lnn

+ 4(‖B1− r‖1 + ‖BT1− c‖1)‖C‖∞, (14)

where X̂ is the output of Algorithm 2, X∗ is a solution to

the OT problem (3), and B is the matrix obtained in step 3

of this Algorithm 2. At the same time, we have

‖B1− r‖1 + ‖BT1− c‖1
≤ ‖B1− r̃‖1+‖r̃−r‖1+‖BT1− c̃‖1+‖c̃−c‖1 ≤ ε′

Setting γ = ε
4 lnn and ε′ = ε

8‖C‖∞

, we obtain from the

above inequality and (14) that X̂ satisfies inequality (3).

It remains to estimate the complexity of Algorithm 2. By

Theorem 1, when ε′ is sufficiently small, the number of

iterations of the Sinkhorn’s algorithm in step 3 of Algorithm

2 is O
(
R
ε′

)
, where, according to (7) and (8),

R = − ln

(
νmin

i,j
{r̃i, c̃j}

)

= − ln

(
e−‖C‖∞/γ min

i,j
{r̃i, c̃j}

)
≤ ‖C‖∞

γ
−ln

(
ε′

8n

)
.

Since γ = ε
4 lnn and ε′ = ε

8‖C‖∞

, we obtain that R =

O
(

‖C‖∞ lnn
ε

)
. Inserting this into the estimate k = O

(
R
ε′

)
,

we obtain that the total number of Sinkhorn’s algorithm

iterations is bounded by O
(

‖C‖2

∞
lnn

ε2

)
. Obviously, r̃ and

c̃ in step 2 of Algorithm 2 can be found in O(n) time. Since

each iteration of the Sinkhorn’s algorithm requires O(n2)
arithmetic operations, the total complexity of Algorithm 2

is O
(
n2‖C‖2

∞
lnn

ε2

)
.

Note that, as a byproduct, we obtained a theoretical justi-

fication of a commonly used in practice heuristic trick of

changing zero values of measures r, c to some small positive

values.

3. Accelerated Gradient Descent

In this section, our goal is to propose a flexible algorithm

for solving the regularized OT problem (2) with a general

strongly convex regularizer and, based on this algorithm,

obtain a complexity bound Õ
(
min

{
n9/4

ε , n
2

ε2

})
for ap-

proximating the OT distance in the sense of (3). To achieve

this goal, we consider a general optimization problem, of
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which (2) is a particular case, and provide an Adaptive

Primal-Dual Accelerated Gradient Descent (APDAGD) met-

hod for this problem together with its convergence rate. Fi-

nally, we apply this algorithm to the entropy-regularized OT

problem and obtain the desired complexity.

3.1. General Problem and Algorithm

In this subsection, we consider the optimization problem

min
x∈Q⊆E

{f(x) : Ax = b} , (15)

where E is a finite-dimensional real vector space, Q is a

simple closed convex set, A is a given linear operator from

E to some finite-dimensional real vector space H , b ∈ H
is given, f(x) is a γ-strongly convex function on Q with

respect to some chosen norm ‖ · ‖E on E.

The Lagrange dual problem for (15), written as a minimiza-

tion problem, is

min
λ∈H∗

{
ϕ(λ) := 〈λ, b〉+max

x∈Q

(
−f(x)− 〈ATλ, x〉

)}
.

(16)

Note that ∇ϕ(λ) = b − Ax(λ) is Lipschitz-continuous

(Nesterov, 2005)

‖∇ϕ(λ1)−∇ϕ(λ1)‖H ≤ L‖λ1 − λ2‖H,∗,

where x(λ) := argminx∈Q
(
−f(x)− 〈ATλ, x〉

)
and L ≤

‖A‖2

E→H

γ . This estimate can be pessimistic and our algo-

rithm does not use it and adapts automatically to the local

value of the Lipschitz constant.

We assume that the dual problem (16) has a solution and

there exists some R > 0 such that ‖λ∗‖2 ≤ R < +∞,

where λ∗ is the solution to (16) with minimum value of

‖λ∗‖2. Note that the algorithm does not need any estimate

of R and the value R is used only in the convergence analy-

sis.

This algorithm can be considered as a primal-dual extension

of accelerated mirror descent (Tseng, 2008; Lan et al., 2011).

The difference to the literature consists in incorporating line-

search and an online stopping criterion based only on the

duality gap and constraints infeasibility. We provide a more

detailed discussion in the supplementary material.

Theorem 3. Assume that the objective in the primal pro-

blem (15) is γ-strongly convex and that the dual solution λ∗

satisfies ‖λ∗‖2 ≤ R. Then, for k ≥ 1, the points x̂k, ηk in

Algorithm 3 satisfy

f(x̂k)− f∗ ≤ f(x̂k) + ϕ(ηk) ≤
16‖A‖2E→HR

2

γk2
, (17)

‖Ax̂k − b‖2 ≤ 16‖A‖2E→HR

γk2
, (18)

‖x̂k − x∗‖E ≤ 8

k

‖A‖E→HR

γ
, (19)

Algorithm 3 Adaptive Primal-Dual Accelerated Gradient

Descent (APDAGD)

Input: Accuracy εf , εeq > 0, initial estimate L0 s.t. 0 <
L0 < 2L.

1: Set i0 = k = 0, M−1 = L0, β0 = α0 = 0, η0 = ζ0 =
λ0 = 0.

2: repeat {Main iterate}
3: repeat {Line search}
4: Set Mk = 2ik−1Mk, find αk+1 s.t. βk+1 := βk +

αk+1 =Mkα
2
k+1. Set τk = αk+1/βk+1.

5: λk+1 = τkζk + (1− τk)ηk.

6: ζk+1 = ζk − αk+1∇ϕ(λk+1).
7: ηk+1 = τkζk+1 + (1− τk)ηk.

8: until

ϕ(ηk+1) ≤ϕ(λk+1) + 〈∇ϕ(λk+1), ηk+1 − λk+1〉

+
Mk

2
‖ηk+1 − λk+1‖22.

9: x̂k+1 = τkx(λk+1) + (1− τk)x̂k.

10: Set ik+1 = 0, k = k + 1.

11: until f(x̂k+1) + ϕ(ηk+1) ≤ εf , ‖Ax̂k+1 − b‖2 ≤ εeq .

Output: x̂k+1, ηk+1.

where x∗ and f∗ are respectively an optimal solution and

the optimal value in (15). Moreover, the stopping criterion

in step 11 is correctly defined.

A stronger statement of the theorem and its proof can be

found in the supplementary material. Gradient methods

for non-convex problems with line-search can be found in

(Bogolubsky et al., 2016; Dvurechensky, 2017).

Note that APDAGD is indeed flexible. For the case of

entropy regularization, we set f(X) = 〈C,X〉 − γH(X)
and immediately get an algorithm to solve (2) since −H(X)
is strongly convex w.r.t. ‖ · ‖1. For the case of Euclidean

norm regularization, we set f(X) = 〈C,X〉+ γ‖X‖22 and

obtain strong convexity w.r.t. the Euclidean norm. Other

strongly convex regularizes are also suitable.

3.2. Complexity of OT Distance by APDAGD

Now we apply the result of the previous subsection to derive

a complexity estimate for finding X̂ ∈ U(r, c) satisfying

(3). We use entropic regularization of problem (1) and

consider the regularized problem (2) with the regularizer

R(X) = −H(X), where H(X) is given in (4). We define

E = R
n2

, ‖ · ‖E = ‖ · ‖1, and variable x = vec(X) ∈ R
n2

to be the vector obtained from a matrix X by writing each

column of X below the previous column. Also we set

f(x) = 〈C,X〉 − γH(X), Q = R
n2

+ , bT = (rT , cT ) and

A : Rn
2 → R

2n defined by the identity (A vec(X))T =
((X1)T , (XT

1)T ). With this setting, we solve problem (15)
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Algorithm 4 Approximate OT by APDAGD

Input: Accuracy ε.
1: Set γ = ε

3 lnn .
2: for k = 1, 2, ... do

3: Make step of APDAGD and calculate X̂k and ηk.

4: Find X̂ as the projection of X̂k on U(r, c) by Algo-

rithm 2 in (Altschuler et al., 2017).

5: if 〈C, X̂ − X̂k〉 ≤ ε
6 and f(x̂k) + ϕ(ηk) ≤ ε

6 then

6: Return X̂ .

7: else

8: k = k + 1 and continue.

9: end if

10: end for

by our APDAGD. Let X̂k be defined by identity vec(X̂k) =

x̂k, where x̂k is generated by APDAGD. We also define X̂ ∈
U(r, c) to be the projection of X̂k onto U(r, c) constructed

by Algorithm 2 in (Altschuler et al., 2017). The pseudocode

of our procedure for approximating the OT distance is listed

as Algorithm 4.

Theorem 4. Algorithm 4 outputs X̂ ∈ U(r, c) satisfying

(3) in

O

(
min

{
n9/4

√
R‖C‖∞ lnn

ε
,
n2R‖C‖∞ lnn

ε2

})

(20)

arithmetic operations.

Before we prove the theorem, we compare our result with

the best known in the literature, which is given by (Alt-

schuler et al., 2017), Theorem 1: O
(
n2‖C‖3

∞
lnn

ε3

)
. As we

see, our result in (20) has much better dependence on ε and

‖C‖∞, which comes for a reasonable price of n1/4. We also

underline that the complexity (20) obtained with the accele-

rated gradient descent Algorithm 4 has better dependence

on ε and ‖C‖∞ than our improved bound for the Sinkhorn’s

algorithm given in Theorem 2: O
(
n2‖C‖2

∞
lnn

ε2

)
.

Importantly, similarly to the Sinkhorn’s algorithm, our AP-

DAGD algorithm can be parallelized, and efficiently im-

plemented when the Sinkhorn kernel matrix exp(−C/γ)
is easy to apply (Solomon et al., 2015), e.g. the measures

are supported on regular grids and C is given by squared

Euclidean distance. See the supplementary material for the

details.

Proof of Theorem 4. Let X∗ be the solution of the OT pro-

blem (1) and X∗
γ be the solution of the regularized problem

(2). Then, we have

〈C, X̂〉 =〈C,X∗〉+ 〈C,X∗
γ −X∗〉

+ 〈C, X̂k −X∗
γ 〉+ 〈C, X̂ − X̂k〉. (21)

Now we estimate the second and third term in the r.h.s.

Since, for any X ∈ U(r, c), −H(X) ∈ [−2 lnn, 0], we

have

〈C,X∗
γ −X∗〉 = min

X∈U(r,c)
{〈C,X〉 − γH(X)}

− min
X∈U(r,c)

〈C,X〉 ≤ 0. (22)

Further, since APDAGD solves problem (15) with f(x) =
〈C,X〉 − γH(X) and X∗

γ is the solution, we have

〈C, X̂k −X∗
γ 〉 = (〈C, X̂k〉 − γH(X̂k))

− (〈C,X∗
γ 〉 − γH(X∗

γ )) + γ(H(X̂k)−H(X∗
γ ))

(17)

≤ f(x̂k) + ϕ(ηk) + 2γ lnn, (23)

where we used again that −H(X) ∈ [−2 lnn, 0] for X ∈
U(r, c). Combining (21), (22) and (23), we obtain

〈C, X̂〉 ≤〈C,X∗〉+ 〈C, X̂ − X̂k〉
+ f(x̂k) + ϕ(ηk) + 2γ lnn. (24)

We immediately see that, when the stopping criterion in

step 5 of Algorithm 4 is fulfilled, the output X̂ ∈ U(r, c)
satisfies (3).

It remains to obtain the complexity bound. First, we esti-

mate the number of iterations in Algorithm 4 to guarantee

〈C, X̂ − X̂k〉 ≤ ε
6 and, after that, estimate the number of

iterations to guarantee f(x̂k) + ϕ(ηk) ≤ ε
6 . By Hölder’s

inequality, we have 〈C, X̂ − X̂k〉 ≤ ‖C‖∞‖X̂ − X̂k‖1. By

Lemma 7 in (Altschuler et al., 2017),

‖X̂ − X̂k‖1 ≤ 2
(
‖X̂k1− r‖1 + ‖X̂T

k 1− c‖1
)
. (25)

Next, we obtain two estimates for the r.h.s of this inequality.

First, by the definition of the operator A and vector b,

‖X̂k1− r‖1 + ‖X̂T
k 1− c‖1 ≤

√
2n‖Avec(X̂k)− b‖2

(18)

≤ 16R‖A‖2E→H

√
2n

γk2
≤ 32R

√
2n

γk2
. (26)

Here we used the choice of the norm ‖ · ‖1 in E = R
n2

and the norm ‖ · ‖2 in H = R
2n. Indeed, in this setting

‖A‖E→H = ‖A‖1→2 and this norm is equal to the maxi-

mum Euclidean norm of a column of A. By definition, each

column of A contains only two non-zero elements, which

are equal to one. Hence, ‖A‖1→2 =
√
2.

Second, since X∗
γ ∈ U(r, c), we have

‖X̂k1− r‖1 = ‖(X̂k −X∗
γ )1‖1 ≤ ‖X̂k −X∗

γ‖1
and a similar estimate for ‖X̂T

k 1 − c‖1. Combining these

estimates with (19) and an estimate for ‖A‖E→H , we obtain

‖X̂k1− r‖1+ ‖X̂T
k 1− c‖1 ≤ 2‖X̂k−X∗

γ‖1
(19)

≤ 16R
√
2

γk
.

(27)
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Combining (25), (26) and (27), we obtain

〈C, X̂ − X̂k〉 ≤ 2‖C‖∞ min

{
32R

√
2n

γk2
,
16R

√
2

γk

}
.

Setting γ = ε
3 lnn , we have that, to obtain

〈C, X̂ − X̂k〉 ≤ ε
6 , it is sufficient to choose

k = O

(
min

{
n1/4

√
R‖C‖∞ lnn

ε
,
R‖C‖∞ lnn

ε2

})
.

(28)

At the same time, since ‖A‖E→H =
√
2,

f(x̂k) + ϕ(ηk)
(17)

≤ 32R2

γk2
.

Since we set γ = ε
3 lnn , we conclude that in order to obtain

f(x̂k) + ϕ(ηk) ≤ ε
6 , it is sufficient to choose

k = O

(
R
√
lnn

ε

)
. (29)

To estimate the total number of iterations, we should take

maximum of (28) and (29). Normalizing the cost matrix

C, we can set ‖C‖∞ = 1. At the same time, as one can

see from (5), the change of the dual variables u→ u+ t1,

v → v − t1, for any t ∈ R does not change the value of the

dual objective. Thus, without loss of generality, we can set

R ≤ 1. Hence, the maximum of (28) and (29) is attained by

(28).

Since each iteration of APDAGD uses only operations with

matrices of the size n× n and vectors of the size 2n, each

iteration requires O(n2) arithmetic operations. At the same

time, according to Lemma 7 in (Altschuler et al., 2017), the

complexity of projecting X̂k on U(r, c) by their Algorithm 2

is O(n2). Thus, to obtain the total complexity of Algorithm

4 as in the Theorem statement, we just multiply (28) by

n2.

4. Experiments

In this section, we provide an empirical illustration of the

work of Algorithm 2 and Algorithm 4. We run experiments

on randomly chosen real images from the MNIST data-

set. By default, this dataset contains images of handwritten

digits of the size 28 by 28 pixels. To understand the depen-

dence on the number of pixels n, we resize MNIST images

to be images of 28 · s by 28 · s pixels, where s is an in-

teger. We change all the zero elements in the measures,

representing these images, to 10−6 and, then, normalize

them, so that they sum up to one. As we show in the proof

of Theorem 2, small perturbations of the vectors r and c

(see step 2 of Alg. 2) do not influence much the theoreti-

cal guarantees for the Sinkhorn’s algorithm approach. By

similar arguments, these changes do not influence much the

APDAGD approach. We run Algorithm 2 until the stopping

criterion ‖B1 − r‖1 + ‖BT1 − c‖1 ≤ ε
8‖C‖∞

is fulfilled.

As we can see from the proof of Theorem 4, the inequality

f(x̂k)+ϕ(ηk) ≤ ε
6 is fulfilled faster than 〈C, X̂−X̂k〉 ≤ ε

6 .

Thus, we run Algorithm 4 until the latter inequality is fulfil-

led. To understand the dependence on ε, we choose several

values of accuracy ε ∈ [0.025, 0.12] and s = 1. For each

value, we randomly choose 10 pairs of images, run Algo-

rithm 2 and Algorithm 4, and average the results. It is worth

noting that, in practice, the working time of Algorithm 2 is

approximately proportional to 1
ε . The reason could be in a

pessimistic theoretical bound R in Lemma 1. Figure 1 (left)

illustrates the working time of two algorithms for different

ε. To understand the dependence on n, we choose accuracy

ε = 0.1 and several values of s ∈ [1, 8]. For each value,

we randomly choose 5 pairs of images, run Algorithm 2

and Algorithm 4, and average the results. Figure 1 (right)

illustrates the working time of two algorithms for different

n.

Figure 1. Comparison of working time of Algorithm 2 (Sinkhorn’s

algorithm) and Algorithm 4 (APDAGD).

5. Conclusion

We analyze two algorithms for approximating the general

OT distances between two discrete distributions. Our first

algorithm is based on the entropic regularization of the OT

problem and Sinkhorn’s algorithm. We prove the complexity

bound Õ
(
n2

ε2

)
arithmetic operations. The second algorithm

is based on the entropic regularization of the OT problem

and our novel Adaptive Primal-Dual Accelerated Gradient

method. We obtain the complexity Õ
(
min

{
n9/4

ε , n
2

ε2

})

arithmetic operations for this algorithm. Both complexity

bounds are better than the state-of-the-art result given by

Õ
(
n2

ε3

)
. Our APDAGD can be of a separate interest for

solving strongly convex problems with linear constraints,

since it is not specific to the entropic regularization, incor-

porates a line-search strategy and has an accelerated rate of

convergence.



Complexity of Optimal Transport Distances

Acknowledgements

We are grateful to the anonymous reviewers for their sugges-

tions on how the paper can be improved, Benjamin Stemper

for his help with proofreading the text, Sergey Omelchenko

for the discussions of the experimental part of the paper,

Alexander Tiurin for the discussions of the theoretical part

of the paper. This work has been funded by the Russian

Academic Excellence Project ’5-100’. Results of Sections

3 and 4 have been obtained under support of the Russian

Science Foundation (project 17-11-01027).

References

Allen-Zhu, Z., Li, Y., Oliveira, R., and Wigderson, A. Much
faster algorithms for matrix scaling. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pp.
890–901, 2017. arXiv:1704.02315.

Altschuler, J., Weed, J., and Rigollet, P. Near-linear time approxfi-
mation algorithms for optimal transport via sinkhorn iteration.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 1961–1971. Curran
Associates, Inc., 2017. arXiv:1705.09634.

Anikin, A. S., Gasnikov, A. V., Dvurechensky, P. E., Tyurin, A. I.,
and Chernov, A. V. Dual approaches to the minimization of
strongly convex functionals with a simple structure under affine
constraints. Computational Mathematics and Mathematical
Physics, 57(8):1262–1276, 2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein GAN.
arXiv:1701.07875, 2017.

Beck, A. and Teboulle, M. A fast dual proximal gradient algorithm
for convex minimization and applications. Operations Research
Letters, 42(1):1 – 6, 2014.

Bigot, J., Gouet, R., Klein, T., and López, A. Geodesic PCA in
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