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In 1943 McCulloch and Pitts suggested that the brain is composed of reliable logic-gates

similar to the logic at the core of today’s computers. This framework had a limited

impact on neuroscience, since neurons exhibit far richer dynamics. Here we propose

a new experimentally corroborated paradigm in which the truth tables of the brain’s

logic-gates are time dependent, i.e., dynamic logic-gates (DLGs). The truth tables of the

DLGs depend on the history of their activity and the stimulation frequencies of their

input neurons. Our experimental results are based on a procedure where conditioned

stimulations were enforced on circuits of neurons embedded within a large-scale network

of cortical cells in-vitro. We demonstrate that the underlying biological mechanism is

the unavoidable increase of neuronal response latencies to ongoing stimulations, which

imposes a non-uniform gradual stretching of network delays. The limited experimental

results are confirmed and extended by simulations and theoretical arguments based on

identical neurons with a fixed increase of the neuronal response latency per evoked

spike. We anticipate our results to lead to better understanding of the suitability of this

computational paradigm to account for the brain’s functionalities and will require the

development of new systematic mathematical methods beyond the methods developed

for traditional Boolean algebra.
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INTRODUCTION

This year we are celebrating the 70th anniversary of the publi-
cation of the seminal work by Warren S. McCulloch, a neuro-
scientist, and Walter Pitts, a logician, entitled “A logical calculus
of the ideas immanent in nervous activity” (Mcculloch and Pitts,
1943). They attempted to understand how the brain could pro-
duce highly complex patterns by using many interconnected
building blocks of the brain, the neurons. In their model, the
brain is composed of Boolean entities functioning as threshold
units. Such simplified units constitute pure and reliable logic-
gates (e.g., AND, XOR), similar to the logic at the core of today’s
computers. The generalization of this simplified Boolean frame-
work to include unreliable elements has emerged in 1956 by the
innovative work of John von Neumann (Von Neumann, 1956).
These concepts as well as the earlier pioneering work of Claude
Shannon to simplify Boolean circuits (Shannon, 1938) are at the
cornerstone of today’s computational paradigm (Turing, 1938).

The computational framework of McCulloch and Pitts had a
tremendous impact on the development of artificial neural net-
works (Hopfield, 1982; Krogh, 2008; Qian et al., 2011; Gerstner
et al., 2012; Gilja et al., 2012) and machine learning theory
(Sutton and Barto, 1998; Hunt et al., 2012). Their concept trig-
gered the next major development in theoretical neural networks
when in 1958 Frank Rosenblatt introduced the concept of the
perceptron (Rosenblatt, 1958), the prototypical linear classifier,
which ever since has been theoretically investigated and general-
ized to more structured multi-layer and recurrent architectures

(Litwin-Kumar and Doiron, 2012; Stoianov and Zorzi, 2012).
Nevertheless, it is fair to conclude that the concept of simpli-
fied Boolean neurons had a limited impact on neuroscience,
which exhibit much richer temporal dynamics (Izhikevich, 2006;
Izhikevich and Hoppensteadt, 2009; Gal et al., 2010; Vardi et al.,
2012a). Moreover, it appears that the brain is the most ineffec-
tive environment to implement such a Boolean logical operating
system, comprised of static logic-gates (SLGs).

Seven decades after the proposed neuronal paradigm by
McCulloch and Pitts, the fundamental concept of the computa-
tional abilities of the nervous system remains unclear (Hodges,
2012). On the one hand, one might conclude that the search for
a comprehensive computational logic framework is irrelevant, as
specialization in specific behavioral and perceptual tasks requires
different “operating systems.” On the other hand, it is evident that
the “hardware” implementations of all complex brain tasks are
composed of similar basic interconnected building blocks (neu-
rons) having many features in common, which are enhanced and
possibly dominant when operating as an ensemble (Abeles, 1991).

In the present study, we extend the recently demonstrated new
experimentally corroborated paradigm in which the logical oper-
ations of the brain differ from the logic of computers (Vardi
et al., 2013b). Unlike a burned logic-gate on a designed chip that
consistently follows the same truth-table, here the functionality
of the brain’s logic-gates depend on the history of their activ-
ity, the stimulation frequencies of their input neurons, as well as
on the activity of their interconnections. Our results are based

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 52 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00052/abstract
http://community.frontiersin.org/people/u/154584
http://community.frontiersin.org/people/u/106493
mailto:ido.kanter@gmail.com
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Goldental et al. Dynamic logic-gates in neuronal activity

on an experimental procedure where conditioned stimulations
were enforced on circuits of neurons embedded within a large-
scale network of cortical cells in-vitro (Marom and Shahaf, 2002;
Morin et al., 2005; Wagenaar et al., 2006; Vardi et al., 2012b).
We demonstrate that the underlying biological mechanism is the
unavoidable increase of neuronal response latencies to ongoing
stimulations (Aston-Jones et al., 1980; De Col et al., 2008; Ballo
and Bucher, 2009; Gal et al., 2010; Soudry and Meir, 2012), which
imposes a non-uniform gradual stretching of delays associated
with the neuronal circuit (Kanter et al., 2011; Vardi et al., 2012a,

2013a,c). To further support and expand the limited experimen-
tal results, we present a straightforward theoretical model based
on the assumption of identical neurons with a constant increase
in their neuronal response latency per evoked spike. This model,
corroborated with simulations, allows us to explore the behav-
ior of more complex structured neuronal DLGs in addition to
SLG (Vogels and Abbott, 2005). We anticipate our results to be a
starting point for larger scale in-vitro experiments and structured
recurrent neuronal circuits, which will lead to a better under-
standing of the suitability of this computational paradigm to

FIGURE 1 | (Color online) Stretching of the neuronal response latency

to ongoing stimulations. (A) An extracellular stimulation of a single

neuron at a rate of 10 Hz. The relative time-gap between a stimulation

(red bar) and its corresponding recorded evoked spike (voltage minima),

the neuronal response latency, is exemplified for several stimulations

(left). The graph (right) summarizes the response latencies over 1600

stimulations. (B) A two-neuron-chain where neuron A is stimulated at a

rate of 10 Hz, and the initial delay between evoked spikes of neurons A

and B is set to τAB = 80 ms. Several recorded spikes from neurons A

and B are exemplified (left). The graph (right) summarizes the ∼2 ms

increase in τAB over ∼270 stimulations. (C) Similar to (B) but with a

five-neuron-chain, and a ∼6 ms increase in τAE which accumulates the

stretching of all four (B–E) neuronal response latencies. Reproduced upon

permission from Vardi et al. (2013b).
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account for the brain’s functionalities. In addition, this paradigm
will require the development of new systematic methods and
practical tools beyond the methods developed for traditional
Boolean algebra (Chavesa et al., 2005; Nahin, 2012).

ELASTIC RESPONSE LATENCY

SINGLE NEURON

The neuronal response latency, measured as the time-lag between
a stimulation and its corresponding evoked spike, is one of the
most significant time-dependent features at the single neuron
level, and typically it is on the order of several milliseconds (Eccles
et al., 1966; Van Pelt et al., 2004; Ballo and Bucher, 2009; Gal et al.,
2010; Vardi et al., 2012a). When stimulated repeatedly, a neu-
ron exhibits a tendency to gradually stretch its stimulus-response
delay over few milliseconds (Spira et al., 1976; Grossman et al.,
1979; Thomson and West, 1993; Tal et al., 2001; Fuhrmann et al.,
2002; Bakkum et al., 2008; Scroggs, 2008).

To exemplify this neuronal feature, stimulations at a rate
of 10 Hz (Figure 1A; Vardi et al., 2013b) were given to cul-
tured cortical neurons that were functionally isolated from their
network by pharmacological blockers of both excitatory and
inhibitory synapses (see Supplementary Material). The stimu-
lated neuron responded with a very high reliability, resulting in
a typical increase of a few milliseconds in the response latency
over a few hundreds of repeated stimulations (Figure 1A; Vardi
et al., 2013b). Results indicate that the neuronal response latency
increases by a few µs per evoked spike, which represents a finer
time scale of cortical dynamics, µs, as discussed at (Vardi et al.,
2012a). Specifically, one might notice three main trends of the
response latency increase. For the first several stimulations there
is a large increase in the neuronal response latency, in the order of
several dozen µs per evoked spike (Figure 1A; Vardi et al., 2013b).

This state is followed by a fast decay to the second state, where the
average increase in the neuronal response latency per evoked spike
is only several µs, and the stretching of the neuronal response
latency is roughly linear. The second state is the main contribu-
tor to the latency increase and lasts for a relatively long section of
the stimulation period. In the presented experiment the second
state starts after ∼100 stimulations and lasts for approximately
550 stimulations, periods which vary across different neurons.
Finally the neuron enters the third state, known as the intermit-
tency phase (Gal et al., 2010; Vardi et al., 2012a), characterized by
fluctuations around an average latency (starts after ∼650 stim-
ulation in the presented experiment). An apparent increase in
the neuronal response latency to periodic stimulations can be
observed for stimulation rates higher than ∼3 Hz. Typically, the
higher the stimulation rate, the larger the average increase of the
response latency per evoked spike (Gal et al., 2010; Vardi et al.,
2012a). This process is a fully reversible phenomenon and after a
waiting time of a few seconds without stimulations, the response
latency substantially decays and in a timescale of several minutes
the initial response latency is completely restored.

The approximately linear increase in the neuronal response
latency per evoked spike before entering the intermittent stage is
at the center of our study. Consequently, the proposed theoret-
ical methods are based on the approximation that the neuronal
response latency increases by a constant value (�) per evoked
spike (identical for all neurons and time-independent).

CIRCUIT LEVEL

To analyze the impact of dynamic neuronal response latency at
a circuit level, we artificially generated conditioned stimulations
over a circuit of neurons embedded within a large scale net-
work of cortical cells in-vitro (see Supplementary Material). Our

FIGURE 2 | (Color online) Dynamic AND gate. (A) Schematic of an

AND-gate consisting of five neurons and weak/strong stimulations

(sub/above threshold) represented by dashed/full lines. (B) The delays are

initially set to τBE = 80 ms and τAE ≈ τBE – 1.6 ms (in the presented

experiment the initial delays between consecutive neurons in the left chain

were selected to be equal, however, results are robust to arbitrary delays

summing up to τAE). Applying simultaneous stimulations at ∼10 Hz to the

input neurons, the two delays become the same and later reverse roles

where τAE ≈ τBE + 1 ms, as presented by the blue circles as a function of the

stimulation number. Unified longer stimulations were given for events where

|τAE – τBE |< 200 µs and are presented by zero time-lag open blue circles

(Methods in Supplementary Material). The probability of an evoked spike of

neuron E over a sliding window of 10 stimulations is presented by the purple

line. Different segments of the voltage recordings of neuron E are

exemplified below, the arrows point from different scenarios to their

matching recordings. Reproduced upon permission from Vardi et al. (2013b).
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first experimental design consisted of a chain of two neurons
(Figure 1B; Vardi et al., 2013b). Neuron A is stimulated at a rate of
10 Hz and the initial time-gap between consecutive evoked spikes
of neurons A and B is set to τAB = 80 ms [neuron B is stimu-
lated 80-LB(0) ms after an evoked spike of neuron A, where LB(0)
stands for the initial response latency of neuron B] (Figure 1B;

Vardi et al., 2013b). After ∼ 270 stimulations the response latency
of neuron B increases by ∼2 ms, thus resulting in an increase of
the delay, τAB ≈ 82 ms.

The increase in the delays of the neuronal chain has an accu-
mulative effect, as a result of the increase in the neuronal response
latencies of the neurons comprising the chain (Figure 1C; Vardi
et al., 2013b). More neurons in a chain lead to a faster and greater
increase of the entire delay of the chain. In order to compare
results of two-neuron and five-neuron chains, a chain of five neu-
rons (A,B,C,D,E) was examined. τAE was set to 80 ms, resulting
in an initial time-gap of 80 ms between evoked spikes of neurons
A and E, where τAE = τAB + τBC + τCD + τDE. In the presented
experiment the initial delays between consecutive neurons were
selected to be equal, however, results are robust to arbitrary delays
summing up to τAE. After ∼270 stimulations of neuron A, where
each stimulation results in an evoked spike of neuron E, the
stretching of τAE is about 6 ms (Figure 1C; Vardi et al., 2013b).

It is evident that the total delay stretching of a five-neuron
chain is superior to that of a two-neuron chain, as the stretch-
ing of each individual neuron is accumulative. The experimentally
corroborated paradigm presented below is based on this key
feature of the unavoidable accumulated stretching, enabling the
implementation of different types of DLGs in the brain.

EXPERIMENTALLY EXAMINED DLGs

Neuronal logic-gates consist of a multilayer feedforward neural
network, with a single output neuron. In this study we differenti-
ate between two main classes of logic-gates, SLGs and DLGs. For
illustration, a typical static neuronal AND-gate would consist of
two input neurons and an output neuron which fires if and only
if both input neurons are stimulated simultaneously. However, a
dynamic AND-gate would change its functionality over time.

DYNAMIC AND-GATE

The first experimentally examined feedforwad neuronal circuit
is a dynamic AND-gate consisting of five neurons and 6 con-
ditional stimulations, which split to weak/strong stimulations
represented by dashed/full lines (Figure 2A; Vardi et al., 2013b).
A strong stimulation (above threshold) is characterized by a high
amplitude and/or long duration, resulting in a reliable response.
In contrary, a weak stimulation (sub threshold) is characterized
by a lower amplitude and/or shorter duration, resulting in an
evoked spike only in case of spatial or temporal summation,
where the time-lag between two consecutive weak stimulations
is short enough, as discussed in Vardi et al. (2013b).

The delay of the three-neuron chain, τAE, is defined as the time
gap between stimulation to the input neuron and its correspond-
ing stimulation to the output neuron (and similarly for other
neuronal chains composing the DLG). Consequently, the time
gap between two stimulations of the output neuron is |τAE– τBE|.
Initially, τAE is shorter in comparison to the one-neuron chain,

τBE. This ratio reverses as repeated simultaneous stimulations are
given to the input neurons, A and B, and the neuronal response
latencies increase (Figure 2B; Vardi et al., 2013b). For each input
stimulation Figure 2B (upper panel, Vardi et al., 2013b) presents
the time-lag between the two weak stimulations of neuron E,
|τAE– τBE|, as well as whether a spike was evoked from neu-
ron E. For a time-lag |τAE– τBE| larger than ∼0.5 ms (varies
among different neurons and stimulation parameters) the output
neuron (E) does not respond, independent of the input stim-
ulation, indicating a “NULL” operating mode of the logic-gate.
In the intermediate region, |τAE– τBE| smaller than ∼0.5 ms, the
input/output interrelations typically follow that of an AND-gate.
Hence, this neuronal gate exhibits NULL-AND-NULL dynamic
logic transitions (Table 1, 1st row).

At the bottom of Figure 2B (Vardi et al., 2013b) different
segments of the voltage recordings of neuron E are displayed,
the colored (green, orange) lines are the stimulations arriving
from the input chains (τAE, τBE, respectively). Initially, τAE is
shorter than τBE (left recording) thus the “green” stimulation
arrives at the output neuron before the “orange” one. This order
is reversed later (right recording). The second and third record-
ings demonstrate the AND region; in the second recording two
weak stimulations arriving at neuron E result in an evoked spike.
In the case of response failure of one of the neurons compris-
ing the left input chain (third recording), neuron E receives only
one weak stimulation from neuron B and therefore does not fire,

Table 1 | Experimentally examined DLGs and their dynamic

operations.

Logic-gate Truth table Dynamic logic operation

in1 in2 output

AND 0 0 0 NULL → AND → NULL

0 1 0

1 0 0

1 1 1

OR 0 0 0 IF[in1] + IF[in2] → OR → IF[in2] + IF[in1]

0 1 1

1 0 1

1 1 1

NOT 0 1 1 → NOT → 1

1 0

XOR 0 0 0 OR → XOR → OR

0 1 1

1 0 1

1 1 0

The first column lists the logic-gates. The second column details the truth table,

the input/output relations. The third column presents the confirmed dynamic

transitions among different logic operating modes, as a gate was repeatedly

stimulated. The symbols “0/1” stand for a non-evoked/evoked spike, “NULL”

indicates a non-evoked output spike independent of the inputs and IF(ini ) indi-

cates an output identical to the ith input. The order of IF(in1) and IF(in2) in the

second row indicates the timing of their effects on the output unit. Reproduced

upon permission by Vardi et al. (2013b).

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 52 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Goldental et al. Dynamic logic-gates in neuronal activity

in agreement with the logic operation of an AND-gate (Table 1,
1st row).

The experimental results also indicate a slight asymmetry,
where the first NULL-AND transition occurs at a shorter time-lag
in comparison to the second AND-NULL transition (Figure 2B;
Vardi et al., 2013b). This asymmetry might be attributed to the
stretching of the response latency of neuron E in between the two
transitions.

DYNAMIC OR-GATE

The experimental setup of the dynamic OR-gate is similar to
the AND-gate (Figure 2A; Vardi et al., 2013b), however all the
stimulations are now strong (Figure 3A; Vardi et al., 2013b) and
are individually capable of reliably generating an evoked spike.

The output neuron, F, generates two evoked spikes when the
time-lag between the two incoming stimulations is large enough
(compared to the refractory period), typically greater than 4 ms
(Figure 3B; Vardi et al., 2013b). To enhance the dynamic range
of time-lags between two stimulations to neuron F, the gate
now consists of six neurons in total and a four-neuron input
chain (Figure 3A; Vardi et al., 2013b). Consequently, the rel-
ative stretching of the two input neuronal chains, |τAF – τBF|

exceeds ∼5 ms (Figures 3C,D; Vardi et al., 2013b).
The dynamic logic operating modes are exemplified for an

entry from a region of typically two evoked spikes (when both
input neurons are stimulated) into an OR mode, characterized
by a single output spike in response to stimulation in in1 OR

in2 (Figure 3C; Vardi et al., 2013b), and for an exit from an OR

FIGURE 3 | (Color online) Dynamic OR gate. (A) Schematic of an

OR-gate consisting of a four-neuron input chain (green) and a one-neuron

input chain (orange), where all stimulations are strong. (B) Independent

experiments for a fixed time-lag τAF – τBF. The probability for neuron F

to respond by two-spikes was averaged over several tens of input

stimulations. (C) Input stimulations at a rate of 10 Hz resulting in dynamic

changes of τBF – τAF from 8 to 3 ms (blue dots). A dynamic transition

from the region of typically two output spikes to an OR operating mode

(similar to the entry in B) occurs after ∼30 input stimulations. Missed

evoked spikes resulting in only one stimulation to neuron F are marked

as “−1.” (D) Similar to the entry in (B), τAF − −τBF increases from ∼2.5

to 7 ms (blue dots) and a dynamic exit from the OR region to the region

of typically two evoked spikes occurs after ∼60 input stimulations.

Different segments of the voltage recording of neuron F are exemplified

below, the arrows point from different scenarios to their matching

recordings. Reproduced upon permission from Vardi et al. (2013b).
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FIGURE 4 | (Color online) Dynamic NOT and XOR gates. (A) Schematic

of a NOT-gate consisting of five neurons, with one inhibition (red). A

NOT-gate has one input (Table 1, 3rd row), where in2 stands for an

outer stimulation which is given for every computation. (B) Independent

experiments for a fixed time-lag τBE – τAD and τBE = 80 ms. The input

neurons are simultaneously stimulated at 1 Hz. (C) Input stimulations at a

rate of 10 Hz resulting in dynamic changes in τBE – τAD, averaged over a

sliding window of 20 stimulations, as shown by time segments c1, c2,

and c3 in (B). (D) Schematic of a XOR-gate containing two inhibitory

stimulations (red). (E) Input neurons are simultaneously stimulated at

1 Hz. Independent experiments where τBF – τAC is varied, a fixed time-lag

τAE – τBD = 3 ms was selected to inhibit the stimulation from neuron A,

τAE ≈ 100, τBF ≈ 50, and τAG ≈ τBG = 150 ms were performed (circles

connected with dashed guideline). The conditional probabilities of an

evoked spike of the output neuron G are presented by the three colored

dashed lines. Reproduced upon permission from Vardi et al. (2013b).

mode (Figure 3D; Vardi et al., 2013b). In the entry to the OR
operating mode, the stimulation from neuron A (green) arrives
prior to the stimulation from neuron B (orange), whereas in the
exit, the “orange” stimulation arrives prior to the “green” one,
and accordingly the order of the logic operations is presented in
Table 1, 2nd row. Note that OR represents one logic operation
with one possible evoked spike, whereas the response of the DLG
at the beginning/end is composed of 2 consecutive temporally
independent logic operations. This can also be seen in the voltage
recordings of neuron F, Figures 3C,D (Vardi et al., 2013b).

DYNAMIC NOT-GATE

The implementation of the dynamic NOT-gate is similar to
the previous ones (Figures 2A, 3A; Vardi et al., 2013b), how-
ever it contains an inhibitory stimulation from neuron D to E

(Figure 4A; Vardi et al., 2013b). It inhibits, for a limited time
interval, the response of neuron E to an excitatory stimulation
arriving from neuron B. Note that a typical NOT-gate consists
of a single input (Table 1, 3rd row), thus in our case the “con-
ventional” input is in1. The inhibitory mechanism cannot be
achieved by shaping the stimulation’s amplitude or its sign. The
use of a different cocktail of synaptic blockers, mainly suppress-
ing the excitatory synapses (Supplementary Material), enables the
implementation of inhibitory stimulations, as discussed in Vardi
et al. (2013b). Since the effect of an inhibitory stimulation is mea-
surable only in the presence of an excitatory stimulation, we apply
an outer stimulation (indicated as in2 in Figure 4A; Vardi et al.,
2013b) in the spirit of electronic circuits. This outer excitatory
stimulation is applied each time a computation is requested,
simultaneous with the stimulation of in1.
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For low stimulation rates, the stretching of neuronal response
latencies is negligible; hence the logic operation of the gate
was independently measured for each relative delay between
excitation and inhibition of the output neuron E, τBE– τAD

(Figure 4B; Vardi et al., 2013b) under low stimulation rate. When
the inhibitory stimulation is given 5 ms or less prior to an exci-
tatory stimulation—the inhibition is almost absolute. This effect
deteriorates for larger time gaps, until it vanishes around 10 ms
(Figure 4B; Vardi et al., 2013b). For high stimulation rates, a
dynamic behavior of the logic operation is demonstrated, where
a relatively sharp transition is observed from a reliable relay
of an arriving stimulation to an absolute blocker, a NOT-gate
(Figure 4C; Vardi et al., 2013b). In a reversed order, it is evi-
dent that an excitation sufficiently prior to inhibition is effective.
However, it was experimentally difficult to locate this transi-
tion, since the spike detection is disrupted by the artifact of the
inhibitory stimulation. Nevertheless, for an inhibition chain con-
sisting of a larger number of neurons, consecutive 1-NOT-1 logic
operating modes are anticipated in a single experiment (Table 1,
3rd row).

DYNAMIC XOR-GATE

The logic operation of a XOR-gate is identical to an OR-gate,
except for the entry (1, 1), two input stimulations, which do not
generate an evoked spike (Table 1, 4th row). Its implementation
is similar to the OR-gate setup with additional two inhibitory
stimulations (Supplementary Material), from the first input to a
neuron belonging to the chain of the second input and vice versa
(red connections in Figure 4D; Vardi et al., 2013b). For low stim-
ulation rates, the neuronal response latencies remain unaffected
and the logical operation of the XOR-gate was tested indepen-
dently for each relative delay between excitation and inhibition,
τBF – τAC (Figure 4E; Vardi et al., 2013b). The delays τAE and τBD

were selected such that the inhibition to neuron E is effective and
consequently a transition from XOR to OR operating modes is
exemplified (Figure 4E; Vardi et al., 2013b). The confirmation of
this dynamic logic operating transitions, however, requires much
longer neuronal chains and is examined in section Theoretical
Analysis using an analytical approach.

THEORETICAL ANALYSIS

Complex DLGs based on time-dependent neuronal response
latencies usually require larger scale networks consisting of a
greater amount of neurons. Their experimental implementations
are associated with some difficulties, especially when delays, tim-
ing of stimulations and evoked spikes must be monitored on
sub-millisecond timescales. Hence, the computational horizon of
the new logic-gates requires a simplified theoretical framework
which is based on the following two assumptions.

First, for each neuron comprising the gate, we assume a con-
stant increase in the neuronal response latency per evoked spike,
�, independent of its current latency and identical for all neurons.
This assumption approximately fits the second state of the latency
increase (stimulation responses 100–650 in Figure 1A; Vardi et al.,
2013b). Under this assumption the latency of a neuron can be
written as:

l
(

q
)

= l0 + q△ (1)

where l0 stands for the neuron’s initial response latency, q is the
number of evoked spikes and � is a constant which in our exper-
iments is typically in the range of 2–7 µs. Similarly, the time delay
of a chain is defined as the time-lag between the stimulation of
the first neuron and the stimulation of the neuron at the end of
the chain. Consequently the time delay for a chain consisting of n
neurons is given by

τ
(

q
)

= τ0 + nq△ (2)

where τ0 stands for the initial time delay of the chain. Similar to
the experimental results, the increase in the delay of a chain is
linear with the number of neurons in the chain, n.

The second assumption is that a strong excitatory stimulation
generates an evoked spike with a probability of 1 (1:1 response),
thus the number of evoked spikes of a neuron is equal to the
number of its stimulations.

DYNAMIC AND-GATE

The AND-gate is examined below under this theoretical frame-
work and results are compared to the experimental findings
(section Experimentally Examined DLGs, Figure 2A; Vardi et al.,
2013b).

The delays of the green and orange chains (Figure 2A;
Vardi et al., 2013b) as a function of the stimulation num-
ber are presented in Figure 5A using equation (2) with � =

FIGURE 5 | (Color online) Theoretical analysis of the dynamic

AND-gate. (A) A graph of τAE (the lower border of the green line) and τBE

(the lower border of the orange line) of the AND gate in Figure 2B as a

function of the number of input stimulations. The width of the lines is

0.5 ms and the difference between the initial delays of the green and the

orange chains is 1.3 ms. The black line indicates the firing probability of the

output neuron. (B) The absolute difference between τAE and τBE as a

function of the number of input stimulations (blue). The black line indicates

the firing probability of the output neuron, similar to Figure 2B.
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5 ms. The broadening of each line by 0.5 ms represents the
maximal time delay between two stimulations of neuron E,
|τAE– τBE|, which generates an evoked spike. Hence, the
intersection between these two lines represents the region
where neuron E fires. In agreement with the experimen-
tal results, the initial delay of the green chain (neurons A,
C, and D) is shorter than the delay of the orange chain
(neuron B).

The similarities between the dynamical transition predicted by
the theoretical model (Figure 5B) and the experimental results
(Figure 2B; Vardi et al., 2013b) are evident. Obviously, there are
some minor differences; however the qualitative behavior is the
same. This validation of the theoretical model supports its appli-
cability for complex DLGs which are at the moment beyond
experimental realization.

GENERALIZED AND-GATE

Using the theoretical model presented above, several DLGs are
examined. These DLGs implement complex transitions illus-
trating additional properties of their dynamics. To simplify the
presentation we mainly concentrate on generalized AND-gates.

The first examined generalized AND-gate consists of three
excitatory input chains consisting of 1/2/5 neurons (Figure 6A).
A dashed arrow stands for a weak stimulation such that at least
two weak stimulations at a time-lag less than 0.4 ms are required
to generate an evoked spike in the output neuron. The initial time
delays from the stimulations of the three input neurons to the
stimulation of the output neuron are selected to be 30/27/25 ms
for the chains consisting of 1/2/5 neurons, respectively. Note that
in the limiting case of simultaneous stimulation to the three input
neurons, this complex DLG is equivalent to the DLG consisting
of only two input signals but with a more structured internal
wiring, as exemplified in Figure 6B. Using equation (2) with � =

0.004 µs (4 ms) we show the time delays of the three input chains
as a function of the number of given stimulations in Figure 6C.
An intersection of two lines implies that the difference of the
matching delays is less than 0.4 ms, thus resulting in a spike of
the output neuron (black line in Figure 6C). In the intersection
regions the gate acts as an AND gate for the two appropriate
inputs (e.g., in the intersection of the “blue” and “orange” lines
the output neuron fires if and only if in1 AND in2 are stimulated).

Increasing the input stimulation rate typically results in an
enhanced stretching of the neuronal latency per spike (Vardi
et al., 2012a). Results for � = 0.006 ms (6 ms) are presented in
Figure 6D, where it is noticeable that the gate dynamics still
consists of three entries to AND-regions. Moreover, the firing
regions of Figures 6C,D are the same under the rescaling of the
stimulation axis by 0.004/0.006. Hence, we conclude that the
dynamic transitions are robust to different stimulation frequen-
cies. Nevertheless, it is clear that different initial delays to the three
chains can reduce the three AND-reentries to two, one, or even
remove the entire AND operation (e.g., the initial purple chain’s
delay is greater than the initial blue chain’s delay which is greater
than the initial orange chain’s delay). Another important factor is
the relative number of neurons comprising the neuronal chains.
For illustration, in the case that the purple chain is reduced from
five neurons (Figure 6A) to three, the three AND-regions merge
into one region (Figure 6E).

FIGURE 6 | (Color online) Generalized AND-gates exhibiting complex

dynamic logic-gate transitions for simultaneous stimulations of all

input neurons. (A) Schematic of a generalized AND-gate consisting of

three excitatory input chains. (B) Schematic of an AND-gate with two

inputs which is equivalent to (A) for the case of simultaneous stimulations

of the input neurons. (C) Time delays of the input chains as a function of

stimulations, calculated using equation (2) for � = 0.004 ms. The black line

indicates the firing probability of the output neuron. (D) Same as (C) but the

calculation is done for � = 0.006 ms. Schematic of the equivalent

time-dependent logic-gate is presented at the bottom, where a NULL (“N”)

operation stands for a non-evoked output spike independent of the input

stimulations and “&” stands for an AND operation. (E) The same

configuration and initial delays as in (D), where the rightmost input chain

(purple) is comprised now of three neurons (instead of five). The three AND

states merge into one region (bounded by two vertical dashed lines). The

black line indicates the firing probability of the output neuron.
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FIGURE 7 | (Color online) Advanced logic-gates. (A) An AND-gate

consisting of four inputs. The time delays of the input chains are presented

as a function of the number of stimulations, calculated using equation (2)

for � = 0.006 ms. The black line indicates the firing probability of the

output neuron. (B) An AND-gate of the same architecture as in

Figure 6A, but the three weak stimulations have different strengths.

The time delays of the input chains are presented as a function of

the number of stimulations, calculated using equation (2) for

� = 0.004 ms. The black line indicates the firing probability of the

output neuron.

FIGURE 8 | (Color online) Dynamic XOR gate. A dynamic XOR-gate with

2/5 neuronal excitatory input chains (green/purple), and two inhibitory

stimulations (red) with identical initial delays of 32 ms. The inhibition is

effective in a time window of [1, 7] ms prior to the excitatory stimulation

and is represented by the light-red region. The first input is always

blocked (as the green line is always inside the light-red region). The black

line indicates the firing probability of the output neuron. A temporal XOR

operating mode is observed at the stimulation range of [250, 750],

where simultaneous stimulations (of in1 and in2) result in no evoked

spikes of the output neuron.

In a more general scenario of k input chains to the output
neuron where all input neurons are simultaneously stimulated,
the maximal number of AND regions scales quadratically with
k, since the number of intersections of k non-parallel lines is

0.5k(k – 1). To exemplify a scenario where the number of tran-
sitions exceeds k, a gate with k = 4 with 1/2/4/6 neuronal chains
is examined (Figure 7A). Using equation (2) with � = 0.006 ms,
where the maximal time-lag between two weak stimulations
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FIGURE 9 | (Color online) Multiple operation modes. A gate

consisting of two inputs, an outer stimulation and two inhibition

chains (black and purple), exemplifying transitions among 5 different

operation modes. The increase of the delays results in a transition

between the logic operation modes illustrated by the flow chart at

the bottom.

FIGURE 10 | (Color online) Non periodic input stimulations. An AND-gate

with the following input pattern: in1 is stimulated at a fixed rate, while the

stimulation of in2 is relatively moderated in the stimulation period (250, 475)

to probability 0.1 in comparison to in1. The horizontal axis stands for the

number of stimulation given to in1. The black line indicates the firing

probability of the output neuron per stimulation to in2.

resulting in an evoked spike is 0.4 ms, one can spot six (0.5∗4∗3 =

6) transitions to an AND operating mode (Figure 7A).
To illustrate how the strength of the connections between neu-

rons affects the gate’s transitions, we examine an AND-gate of
the same architecture as in Figure 6A, but the three input stim-
ulations to the output neuron are weak and have the relative
strengths of 0.3/0.75/0.5 for the orange/blue/purple connections,
respectively (Figure 7B). To generate a spike at the output neuron,
the sum of the stimulation strengths must exceed a threshold of 1.

Note that the second transition to an AND-gate (Figure 6A) dis-
appears (Figure 7B), since the sum of the strengths of the orange
connection and purple connection is 0.8 and does not exceed the
threshold (Markram and Tsodyks, 1996).

DYNAMIC XOR-GATE

The temporal activation of the XOR-gate was experimentally
exemplified by a series of independent setups, where one of the
inhibitory delays was gradually updated (Figure 4E). To illustrate
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the transitions of the dynamic XOR operation modes, three neu-
rons are added to the excitatory purple input chain (Figure 8)
in comparison to the experimental setup (Figure 4D). Initially
we set the same delay for both inhibitions which are effective in
a time window of [1, 7] ms prior to the excitatory stimulation
(i.e., if an inhibitory stimulation occurs at time T then the neu-
ron will not respond to any stimulation in the time interval [T
+ 1, T + 7] ms). The region where the excitatory stimulation is
inhibited is depicted by the light-red region bounded by dashed
red lines (Figure 8). Consequently, in1 is always inhibited by in2,
while in2 is only temporarily inhibited by in1, and a temporal
XOR operation is observed.

TRANSITION AMONG MULTIPLE MODES

In the following example we present a gate consisting of two
inputs and an outer stimulation given for every computation (as
in section Dynamic NOT-Gate, NOT-Gate), resulting in four dif-
ferent logic operating modes (Figure 9). The gate contains two
inhibition chains (black and purple), with initial time delays of
30 and 42 ms, respectively. Both inhibitions are effective in a time
window of [1, 7] ms prior to an excitatory stimulation (as in sec-
tion Dynamic XOR-Gate). The initial blue and orange delays are
40 and 10 ms, respectively. For every computation of the logic-
gate, the outer stimulation and the stimulations of the input
neurons are given simultaneously. In the initial stage, the output
neuron fires as a result of the outer stimulation independent of
both inputs. The inhibition is ineffective, since the delays of the
black and purple chains are too short (in comparison to the blue
and orange delays). The black and purple delays increase with the
neuronal response latencies, and the gate enters its second oper-
ating mode. The entire delay of the black chain grows relatively
faster than the delay from the outer stimulation (blue) due to the
number of neurons comprising each chain. Hence, when stim-
ulated repeatedly, the delay of the black chain increases enough
to inhibit the output spike which is caused by the outer stimu-
lation, whereas the delay of the purple chain is still too short to
affect the output. Consequently, the output spike caused by the
excitatory outer stimulation is inhibited by in1 = 1, resulting in a
NOT(in1) functionality. In the third operation mode, the delays
of the black and purple chains are both long enough to cause
inhibition, therefore an output evoked spike will occur only in
the case where both inputs are 0. In the fourth operation mode,
the inhibition caused by the purple chain is still effective, whereas
the inhibition caused by the black chain vanishes as a result of
its enhanced stretching, resulting in a NOT(in2) functionality. In
the final operation mode, the delays of both inhibition chains are
too large to inhibit the output spike caused by the outer stimula-
tion, thus the logic-gate returns to its initial functionality where
an output spike is generated independent of both inputs.

VARYING INPUTS

So far, the limited case where simultaneous stimulations were
given to all inputs of the gates was discussed. This scenario
revealed many properties of the DLGs, however it is clear
that more structured types of temporal input stimulations are
expected to enrich the dynamic transitions. To exemplify this sce-
nario we consider an AND-gate with two input chains consisting

of three and six neurons (Figure 10). Applying a fixed stimulation
rate to the two input neurons results solely in one AND-region
(first AND region in Figure 10). A temporal reduction in the
probability for a stimulation of the purple input chain results in
a moderated latency increase, thus the delay of the blue chain
becomes larger than the delay of the purple chain, and a second
AND region emerges. When a fixed stimulation rate is applied
again to the two input neurons, the delay of the purple chain over-
shoots the delay of the blue one, resulting in a reentry to a third
AND region (Figure 10).

MULTIPLE COMPONENT NETWORKS AND SIGNAL

PROCESSING

We differentiate between two main computational capabilities of
the DLGs. The first approach aims at reaching a specific operating
mode of the dynamic gates using intentional repeated stimula-
tions, which enables the desirable computations on occasional
inputs. In the second approach, we are not interested in perform-
ing computations using specific logic operations but rather in
using the dynamic properties of the gates. The purpose is to dis-
cover information regarding the input sequences. This approach
is exemplified by a collaboration of a large number of dynamic
components which together can implement a basic edge detector
(Figure 11).

The input of an edge detector is a vector of size n and its
task is to identify radical structural changes or discontinuities.
For instance, if the vector’s values represent a degree of bright-
ness as a function of (one dimensional) position, the mission
of an edge detector is to identify two consecutive points with
significant changes in their brightness. The proposed edge detec-
tor, consisting of n input neurons, is sketched in Figure 11. Each
two consecutive neurons serve as inputs to a dynamic AND-gate.
Initially all delays are equal, thus simultaneous stimulations to
all input neurons result in the firing of all output neurons. We
assume that the number of stimulations of each input neuron is
proportional to the brightness of the corresponding position in
the input vector. To avoid extreme scenarios we assume that the
inter-spike-intervals of each neuron do not vary much in time.
Since the stretching of each delay is proportional to the number
of input stimulations, a significant difference between two input
chains of a dynamic AND-gate will be developed in case of a sig-
nificant change between the brightness of two consecutive inputs.
As a result their shared dynamic AND-gate will reach a NULL

FIGURE 11 | (Color online) Edge detector. An edge detector is built from

a combination of dynamic AND-gates. The stimulation rate of each input

neuron is proportional to the brightness of the corresponding position in the

input vector.

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 52 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Goldental et al. Dynamic logic-gates in neuronal activity

FIGURE 12 | (Color online) Short delays. (A) The dynamic AND-gate and a

portion of the graph presented in Figure 6, showing 2 transitions to AND

regions. This gate consists of three input chains of 1/2/5 neurons each, and

contains relatively long delays, up to 34 ms. (B) A similar AND-gate with long

chains consisting of 26/27/30 neurons, resulting in short delays of 5–6 ms

between consecutive neurons. For � = 0.006 ms the delays of the input

chains are presented in the right graph as a function of stimulation number,

where the black line indicates the firing probability of the output neuron.

state. The examination of edges will be then achieved by a simul-
taneous stimulation to all input neurons. The sensitivity of the
detection is determined by the duration of the stimulating period
of the input neurons, where longer periods result in higher sen-
sitivity. Since the stretching of the neuronal response latency is
reversible, this edge detector can be reused after a short period
without input stimulations.

SUITABILITY OF DYNAMIC LOGIC-GATES TO BRAIN

FUNCTIONALITY

It is implausible to assume that brain functionality is as simple
as a combination of standard SLGs, especially since it requires
accurate predefined set of delays that are static and do not change
over time. In this study we introduced a paradigm which is more
suitable for brain functionality, DLGs. We will now discuss the
feasibility and reliability of the DLGs in an environment more
suitable for the functioning brain.

SHORT SYNAPTIC DELAYS

Our experimental procedure, corroborated and extended by the-
oretical evidence, was examined under conditions of synaptic
delays of a few tens of millisecond, which are typically beyond
cortical synaptic delays. This constraint can be adapted to the
time scales of synaptic delays and transient periods of the brain,

several ms (Abeles, 1991). From a theoretical point of view, the
functionality of the proposed feedforward logic-gates is a func-
tion of the relative difference between the stretching of the input
chains, regardless of the absolute number of neurons constitut-
ing each chain. Therefore, all synaptic delays can be shortened to
the order of a few milliseconds using long synfire chains (Abeles,
1991; Abeles et al., 2004; Ikegaya et al., 2004; Izhikevich, 2006;
Pastalkova et al., 2008; Long et al., 2010). For illustration, let us
concentrate on Figure 12A consisting of relatively long delays,
up to 34 ms. A similar modified dynamic gate consisting of long
synfire chains, of 26/27/30 neurons (Figure 12B), resulting in 5–
6 ms delays between consecutive neurons (including the neuronal
response latency). Note that the relative difference between the
amount of neuronal populations comprising the input synfire
chains remain the same as in Figure 12A, i.e., 2–1 = 27–26 and 5–
1 = 30–26. Therefore, both AND-gates have identical transition
timings between NULL and AND logic operations.

TIME SCALES OF OPERATION MODES

The reported periods of operating logic modes consist of a few
hundred stimulations, which exceed a few seconds under stim-
ulation frequencies that are in the order of few dozens. These
periods can be shortened by two orders of magnitude using the
following two enhanced stretching effects: Long synfire chains
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FIGURE 13 | (Color online) Population dynamics. (A) Schematic of an

AND-gate in population dynamics form. Population C receives week

stimulations (represented by dashed arrows) from 0.1 of the neurons of each

of the populations A and B. (B) For simultaneous stimulations of all neurons

in populations A and B, the firing probability of the output population, C, is

presented as a function of the time-lag between τAC and τBC, γ . In the range

where γ is less than 1 ms an increased firing probability of population C is

detected and the functionality of an AND-gate is maintained. (C) A dynamic

AND-gate as in Figure 2 in population dynamics form. (D) The input

populations, A and B, are simultaneously stimulated, resulting in the

decrease of the time-lag between stimulations of the output population

|τAE − τBE | (blue line) which increases again after ∼25 stimulations. For short

time-lags the output population fires at high probability (as shown in B) thus

resulting in an AND mode functionality. For large time lags the probability is

low and the gate is effectively NULL. Therefore, a dynamic NULL-AND-NULL

transition is observed.

increase the stretching linearly with the number of their relays
and in addition, the neuronal response latencies increase signif-
icantly faster (by one order of magnitude) in the initial spiking
activity (first state,Figure 1A; Vardi et al., 2013b). Both of these
biological ingredients are expected to significantly shorten mode’s
durations.

POPULATION DYNAMICS

The reliability of the DLGs is in question, since a finite proba-
bility of a neuronal response failure is expected. A mechanism
to enhance signal-to-noise ratio can be achieved using pop-
ulation dynamics (Abeles, 1991; Buzsáki, 2010; Kanter et al.,
2011; Kopelowitz et al., 2012). In a set of simulation studies
composed of Hodgkin-Huxley neurons (Hodgkin and Huxley,
1952) at the population dynamics level we demonstrated that the
time-dependent features of the new logic-gates remain valid. It is

also expected that their functionality will become less sensitive to
background fluctuations as the population representing each neu-
ron increases (Vardi et al., 2012b). This feature is especially crucial
to the realization of shorter synaptic delays, where the activity
spontaneously terminates as a result of synaptic fatigue (Kawasaki
et al., 2000; Ji et al., 2010) or neuronal refractory periods.

To examine the firing probability of a population stimu-
lated by a sum of weak stimulations, we use the setup shown
in Figure 13A. Populations A, B, and C are comprised of 40
Hodgkin-Huxley neurons with parameters similar to those in
Kanter et al. (2011), where the synaptic reversal potential was set
to be Esyn = 0 and the maximal synaptic conductance for weak
synaptic strengths, gmax, was set to 0.0662 mS/cm2. Each neu-
ron in population C was connected with probability of 0.1 to
neurons in populations A and B, resulting in an average of 8
input stimulations for each neuron in population C. These diluted
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population-population stimulations, represented by the dashed
arrows, are weak stimulations. Thus, to generate a spike in an
output neuron, almost all stimulations from both populations A
and B at a sufficiently small time-lag are required, as discussed in
Vardi et al. (2013b). The delays between neurons are taken from
a Gaussian distribution with a standard deviation of 0.15 ms cen-
tered at τAC and τBC = τAC + γ , where γ is the time lag between
stimulations from populations A and B. The spiking probabil-
ity of population C is measured as a function of the time-lag g
(Figure 13B), indicating that for γ < 1 ms more than half of the
neurons comprising population C fire for a common drive to the
input populations, A and B.

To demonstrate the dynamic AND-gate we construct a similar
setup, containing a synfire chain from population B to pop-
ulation E (Figure 13C), where gmax = 1.6 mS/cm2 for strong

synaptic strengths. The initial time delays between population
are taken from a Gaussian distribution with a standard deviation
of 0.15 ms. The neuronal response latency increase per evoked
spike is taken to be � = 0.04 ms per spike (to reduce compu-
tation complexity). Simultaneous stimulations are given to all
neurons in the input populations A and B. Initially, the difference
|τAE – τBE| is ∼2 ms, therefore no output spikes are expected. As
the delays between neuronal populations increase (as a result of
the increase in the neuronal response latency of the population
neurons) |τAE – τBE| decreases, resulting in a population DLG,
NULL-AND-NULL transitions (Figure 13D).

CONCLUSION

We proposed a new computational paradigm in which the brain
consists of dynamic logic gates (DLGs) which are governed by
time-dependent logic modes. The relevance of our work to the
brain’s functionalities has to be evaluated using many aspects
including: (a) Do DLGs exist in the dynamics of a network of
interconnected neurons? (b) Is the concept of DLGs robust to
population dynamics and specifically to recurrent networks? (c)
Is DLGs a mechanism which the brain could plausibly use to any
extent and especially when it is critically rely on precise relative
timing of neural activities? (d) Can one find a realistic learning
mechanism, e.g., Hebb’s rules, to implement DLGs?

The brain is composed of large neural networks, where neu-
rons are interconnected via excitatory and inhibitory synapses
as well as sub-threshold and above-threshold synapses. In the
events of weak synapses, spatial and temporal summations of
excitations are required to generate an evoked spike. Hence, the
examined gate architectures have to be locally embedded in such
large interconnected networks. The existence of weak synapses
with high probability indicates that complex DLGs, where sev-
eral input chains exist, are also expected to be a common building
block of such networks. We verified that the phenomenon of
DLGs is robust to population dynamics and hence it is expected
to be less sensitive to unexpected fluctuations in the response
timings of a single neuron. However, there are many unavoid-
able effects of brain activity which are not assumed to carry any
significant information, e.g., synaptic noise. Is the DLGs one of
these unavoidable effects? The answer is not yet clear, however,
we showed that the increase in the neuronal response latency to
ongoing stimulations cannot be ignored, as it may double its value

and therefore affect the time dependent connectivity of a recur-
rent network. As for the implication of such DLGs to cognitive
activities, we demonstrated some preliminary tasks such as edge
detections, which obviously can be generalized to more complex
tasks. Nevertheless, our work is a call for advanced in-vivo exper-
iments and theoretical studies, which can pinpoint the existence
and the importance of the suggested DLGs in various functional-
ities of the brain. Moreover, the proposed mechanism of DLGs
opens a manifold of theoretical questions regarding advanced
paradigm for the brain activity including the search for efficient
local learning rules for the DLGs.

It is evident that the variety of possible DLGs is much larger
than the abovementioned examples. For recurrent networks, the
complexity is expected to be enhanced in comparison to feedfor-
ward networks. As opposed to feedforward networks with given
simultaneous external stimulations, in recurrent networks the
timings of the input stimulations are a function of the large scale
activity of the entire network. One of the open theoretical ques-
tions is the number of realizable logic operations among PN,
where each one of the N gates has P operating modes.

On mathematical grounds, the key question is whether recur-
rent networks consisting of DLGs might go beyond the compu-
tation paradigm of the universal Turing machine (Turing, 1938;
Maini et al., 2006; Dayan, 2009; Hodges, 2012). This challenge
requires a careful mathematical definition and in particular, a def-
inition of whether the stretching of the neuronal response latency
has to be taken as continuous or discrete in comparison to the
delays. Such networks represent a class of heterogeneous time-
delayed networks composed of excitable units, where the delays
are a function of the activity of the network itself. Practically, the
question is whether a circuit composed of such new elements can
be analyzed using the traditional systematic methods and tools
developed for Boolean circuits. In the event that the presented
dynamics is within traditional computational complexity, i.e., can
be implemented using conventional computers, an interesting
question is its advantages with respect to the implementation of
the brain’s functionalities.
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