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Abstract

Background: There is a need to improve prediction of response to chemotherapy in breast cancer in order to improve

clinical management and this may be achieved by harnessing computational metrics of tissue pathology. We investigated

the association between quantitative image metrics derived from computational analysis of digital pathology slides and

response to chemotherapy in women with breast cancer who received neoadjuvant chemotherapy.

Methods: We digitised tissue sections of both diagnostic and surgical samples of breast tumours from 768 patients

enrolled in the Neo-tAnGo randomized controlled trial. We subjected digital images to systematic analysis optimised for

detection of single cells. Machine-learning methods were used to classify cells as cancer, stromal or lymphocyte and we

computed estimates of absolute numbers, relative fractions and cell densities using these data. Pathological complete

response (pCR), a histological indicator of chemotherapy response, was the primary endpoint. Fifteen image metrics were

tested for their association with pCR using univariate and multivariate logistic regression.

Results: Median lymphocyte density proved most strongly associated with pCR on univariate analysis (OR 4.46,

95 % CI 2.34-8.50, p < 0.0001; observations = 614) and on multivariate analysis (OR 2.42, 95 % CI 1.08-5.40, p = 0.03;

observations = 406) after adjustment for clinical factors. Further exploratory analyses revealed that in approximately

one quarter of cases there was an increase in lymphocyte density in the tumour removed at surgery compared to

diagnostic biopsies. A reduction in lymphocyte density at surgery was strongly associated with pCR (OR 0.28, 95 %

CI 0.17-0.47, p < 0.0001; observations = 553).

Conclusions: A data-driven analysis of computational pathology reveals lymphocyte density as an independent

predictor of pCR. Paradoxically an increase in lymphocyte density, following exposure to chemotherapy, is

associated with a lack of pCR. Computational pathology can provide objective, quantitative and reproducible

tissue metrics and represents a viable means of outcome prediction in breast cancer.

(Continued on next page)

* Correspondence: hme22@cam.ac.uk; carlos.caldas@cruk.cam.ac.uk
†Equal contributors
4Department of Oncology, University of Cambridge, Addenbrooke’s Hospital,

Cambridge, UK
1Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka

Shing Centre, Cambridge, UK

Full list of author information is available at the end of the article

© 2016 Ali et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ali et al. Breast Cancer Research  (2016) 18:21 

DOI 10.1186/s13058-016-0682-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-016-0682-8&domain=pdf
http://orcid.org/0000-0001-7587-0906
mailto:hme22@cam.ac.uk
mailto:carlos.caldas@cruk.cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Trial registration: ClinicalTrials.gov NCT00070278; 03/10/2003

Keywords: Breast cancer, Computational pathology, Neoadjuvant, Lymphocytes, Treatment resistance,

Immunology

Background
Women with high-risk early breast cancer are increasingly

being offered chemotherapy before definitive surgery

because neoadjuvant chemotherapy can enable breast-

conserving surgery [1]. Complete eradication of tumour

cells in the surgically removed tumour bed or pathological

complete response (pCR) is associated with improved sur-

vival [2, 3]. The likelihood of pCR is profoundly affected by

the oestrogen receptor (ER) and human epidermal growth

factor receptor 2 (HER2) status of the primary tumour

[2, 4]. In spite of these differences, improved prediction

of the probability of pCR is needed because alternative

regimens of chemotherapy or enrolment in clinical trials

might be offered to patients deemed unlikely to experience

pCR at baseline.

Novel pathological and genomic predictors of pCR have

been described. Hatzis et al. used gene-expression micro-

arrays to generate a gene set encompassing modules for

response to endocrine therapy and cytotoxic chemother-

apy, which identified patients likely to undergo pCR and

to have longer survival [5]. The proportion of tumour in-

filtrating lymphocytes has also been shown to predict pCR

in several studies of neoadjuvant chemotherapy [6–12].

Automated quantitative estimates of tumour morphology

using digital images of tissue sections have been shown to

be associated with prognosis [13, 14]. Therefore, compar-

able computational analysis of histological sections might

provide a similar method for prediction of pCR.

We hypothesized that systematic quantitative analysis

of tumour morphology at diagnosis would objectively

identify tissue characteristics associated with pCR. We

undertook a digital pathology study using a newly devel-

oped image processing method for single cell detection

and material from the Neo-tAnGo randomized controlled

trial [15], both from diagnosis and at surgery, in order to

objectively identify tissue features associated with pCR

and to investigate changes in quantitative morphological

metrics between pre-treatment and post-treatment sam-

ples and their relationship to pCR.

Methods

Patients and clinical samples

Neo-tAnGo was a phase III, randomized trial with two-

by-two factorial design addressing both the role of

gemcitabine in a sequential neoadjuvant chemotherapy

regimen of epirubicin/cyclophosphamide and paclitaxel,

and the role of sequencing of these treatment components

[15]. The trial recruited women with high-risk early breast

cancer between 2005 and 2007 across 57 centres in the

UK. Women with HER2-positive disease did not receive

neo-adjuvant trastuzumab although most did receive adju-

vant trastuzumab depending on local protocols. A total of

812 patients were included in the primary endpoint ana-

lysis [15]. Pathological complete response, the primary

endpoint, was defined as the complete absence of tumour

cells in resected breast tissue and axillary lymph nodes.

Whether pCR had occurred was determined by independ-

ent analysis of histopathology reports by two investigators

(EP and HME) as previously described [16]. The trial

found no effect of the addition of gemcitabine on the pro-

portion of cases with pCR but did find that sequencing of

taxanes before anthracyclines led to an overall increase in

pCR [15]. Details of eligibility and ascertainment of clinical

characteristics are provided in the main trial report [15].

The trial was approved by the multicentre research ethics

committee and subsequently by the local research ethics

committees at all participating centres (full names and

details are provided in Additional file 1). All patients

provided written informed consent and the trial was

registered (ClinicalTrials.gov NCT00070278).

Image acquisition, processing and pathology review

Haematoxylin and eosin (H&E)-stained histological

slides from formalin-fixed paraffin embedded (FFPE)

pre-treatment core biopsies and tumours resected at

surgery were requested from all centres for central review

and digitization. Image analysis was conducted by AD at

the Institute of Astronomy in Cambridge, as part of a col-

laboration with Oncology [17]. Our image-processing

pipeline is summarized in Fig. 1. Our approach is entirely

automated and consists of identifying tissue for analysis,

segmenting cell nuclei and finally using machine-learning

to classify nuclei as cancer, stromal or lymphocyte based

on a training set. Adipocytes were included in the stromal

category because based on nuclear features alone, it was

not possible to reliably identify them. Further details are

provided in Additional file 1.

Statistical analyses

All image analyses were conducted prior to receipt of

clinical data from the trial statistician. Associations between

continuous automated image metrics and categorical clin-

ical variables were tested using Wilcoxon’s rank-sum test or

the Kruskal-Wallis test. Pearson’s correlation coefficient
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was used to investigate the relationship between continuous

variables. Logistic regression was used to test for associa-

tions with pCR providing an odds ratio (OR), 95 % confi-

dence interval (CI) and p value. Candidate image-based

predictors were initially tested against pCR in univariate

analysis, with absolute cell counts as log-transformed vari-

ables. Next, a multivariate model was fitted iteratively in a

backward stepwise manner to retain metrics significantly

associated with pCR after adjustment for others remaining

in the model. These metrics were finally included in a

multivariate analysis further adjusted for patient age,

radiological tumour size at diagnosis, lymph node status,

histological grade, ER status and HER2 status. All image

metrics were modelled as continuous variables. Whether

an image metric predicted pCR differently between taxane

sequencing groups (first vs second) was investigated by

inclusion of an interaction term in a logistic regression

model and the fit of this model compared to a model lack-

ing the term using a likelihood ratio test. Statistical ana-

lyses were conducted in Intercooled Stata version 11.2

(Stata Corp, College Station, TX, USA). This study was

conducted in compliance with the Reporting recommen-

dations for tumor marker prognostic studies (REMARK)

criteria [18] as detailed in Additional file 1.

Results
A digital pathology resource and image-processing pipeline

for quantitative cell-level metrics

We used material from 765 patients enrolled in the

Neo-tAnGo randomized controlled trial. Additional file 2

depicts the flow of patients through each analytical stage

in this study. A total of 2,436 slides were received and

digitized, of which 1,992 contained tumour or tumour

bed with the remainder containing adjacent normal
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Fig. 1 Overview of the image processing method. a Full-face H&E scanned images consist of four levels (L0–L3) across a gradation of resolutions.

The levels L3 (lowest resolution) and L0 (highest resolution) are used to process each image. b Automated identification of regions of interest

was performed by dividing image layer L3 into several small blocks (grid) and by analysing the pixel intensity distribution of each block. c Each

image block found to contain tissue was mapped onto layer L0 and image segmentation and object detection (green ellipses) was conducted to

construct an object catalogue. d Illustrative representation as a contour map of lymphocyte density derived using a k-nearest neighbour algorithm of

the 50 nearest like-class neighbours. e Distribution of lymphocyte metrics by categories of lymphocytic infiltration based on central pathology review.

SVM support vector machine
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breast tissue. All images used for analyses are available

to download together with open-source image analysis

code at http://www.ast.cam.ac.uk/~adariush/files/images/

and http://www.ast.cam.ac.uk/~adariush/files/codes/.

On average, each patient’s tumour or residual tumour

bed was represented in 1.2 pre-treatment slides (range

1–23) and 1.8 slides from the post-treatment surgical

specimen (range 1–35). Figure 1 summarizes our novel

image processing pipeline: scanned slide images were ex-

tracted as four layers differing in their size and resolution,

and using the lowest resolution image, areas that con-

tained tissue were automatically identified and white space

was excluded from further analysis. Next, using the high-

est resolution layer, single cell nuclei were detected, and

using a support-vector-machine (SVM) approach trained

using around 1,000 objects per class, cells were sub-

classified into readily distinguishable categories (cancer,

stromal or lymphocyte). Metrics relating to these three cell

types and describing absolute cell number (count), relative

cell type proportion (fraction) and density (minimum, me-

dian and maximum) based on the 50 nearest like-class

neighbors, were computed. That is, every detected cell

was assigned a density estimate based on the distance

between it and the 50 nearest cells of the same type.

Pathologist assessment of lymphocytic infiltration in

pre-treatment biopsies with paired automated data, to

which the pathologist was blinded, was available for

comparison in 377 samples. All automated metrics of

lymphocytic infiltration were significantly associated with

pathologist scores (p <0.0001 for all three comparisons;

Fig. 1), attesting to the validity of the automated image

analysis approach.

Image metrics were calculated for a total of 765 patients

of which 623 provided data on pre-treatment biopsies and

699 provided data on post-treatment surgical samples,

with paired (pre- and post-treatment) data available in 557

patients. Patient and tumor characteristics are detailed in

Table 1. Fifteen machine-learning-derived image metrics

were used for downstream correlative analysis with clinical

and pathological features. Additional files 3 and 4 depict

histograms of the distributions of image metrics for

pre-treatment biopsies and post-treatment surgical

samples. The correlation matrix of image metrics from

data generated using pre-treatment biopsies is depicted

in Additional file 5 and from surgical samples in Additional

file 6. In pre-treatment biopsies, the strongest positive

correlation was between the absolute number of lym-

phocytes and the number of cancer cells (rho = 0.84)

and, conversely, the strongest negative correlation was

between the relative fraction of cancer cells and the

fraction of lymphocytes (rho = –0.59). These contrast-

ing correlations highlight the extent to which absolute

cell counts simply reflect sample cellularity, warranting

cautious interpretation.

Image metrics reflect molecular subtype of the primary

tumor

Figure 2 depicts the distribution of image metrics by the

molecular subtype of the tumour based on ER and HER2

status. The distribution of cancer cell fraction significantly

Table 1 Patient and tumour characteristics

Number Percent

Tumour size

≤50 mm 613 80.1

>50 mm 152 19.9

Total 765 100

Node status

Negative 388 50.7

Positive 377 49.3

Total 765 100

Grade

1 22 2.9

2 245 32

3 328 42.9

Missing 170 22.2

Total 765 100

Taxane sequence

Taxane first 387 50.6

Taxane second 378 49.4

Total 765 100

pCR

No pCR 633 82.7

pCR 122 15.9

Missing 10 1.3

Total 765 100

ER, HER2 status

ER–, HER2– 152 19.9

ER–, HER2+ 64 8.4

ER+, HER2– 342 44.7

ER+, HER2+ 116 15.2

Missing 91 11.9

Total 765 100

Diagnostic biopsies

Missing 142 18.6

Analysed 623 81.4

Total 765 100

Surgical samples

Missing 66 8.6

Analysed 699 91.4

Total 765 100

pCR pathological complete response, ER oestrogen receptor, HER2 human

epidermal growth factor receptor 2
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differed between groups (p = 0.04), with the highest

median cancer cell fraction observed in ER-negative,

HER2-negative tumours. Similarly, the distribution of

stromal cell fraction was significantly different between

groups (p = 0.00001), with the highest median level ob-

served in ER-positive, HER2-negative tumours. The dis-

tribution of lymphocyte fraction was also significantly

different between groups (p = 0.002) with the highest

median level observed in ER-negative, HER2-positive

tumours. Median lymphocyte density was not corre-

lated with patient age at diagnosis (Pearson’s correl-

ation coefficient –0.01), suggesting that the association

with tumour molecular subtype was not age-related.

However, these relationships did not hold following

chemotherapy in post-treatment surgical samples for

which none of the metrics were significantly different

across molecular subtypes (Additional file 7), likely due

to the diminishing influence of tumour cells on the

composition of samples, owing both to widespread cell

death and to other effects of chemotherapy on the tissue

environment.

Chemotherapy response is most strongly associated with

median lymphocyte density

Univariate analysis of the 15 image metrics was con-

ducted using pretreatment biopsies in 614 patients, of

whom 98 (16 %) had tumors that underwent pCR. Six

of the fifteen metrics were significantly (at a nominal

p value <0.05) associated with pCR (Fig. 3 and Additional

file 8). Of these six, four were related to lymphocytes, one

to cancer cells and one to stromal cells. The association

between median lymphocyte density and pCR was by far

the strongest (OR 4.46, 95 % CI 2.34-8.50, p <0.0001) with

the next most significant being maximum lymphocyte

density (OR 3.48, 95 % CI 1.54, 7.86, p = 0.003). To deter-

mine whether sample cellularity influenced the relation-

ship between median lymphocyte density and pCR, a

model adjusted for the total number of cells in a sample

was fit. This showed that sample cellularity had little effect

on this association, which remained significant in the

model (OR 4.56, 95 % CI 2.27, 9.15, p <0.0001). A multi-

variate model comprising these 15 predictors was modi-

fied in a backward stepwise manner resulting in a final

model of 5 significant predictors, including median

lymphocyte density (Additional file 8). However, on further

adjustment of this model for clinical variables only median

lymphocyte density was significantly associated with pCR

(Additional file 9). When included in a multivariate model

with only clinical predictors, median lymphocyte density

remained significantly associated with pCR (OR 2.42, 95 %

CI 1.08, 5.40, p = 0.03; Table 2). However, approximately

one third of observations were lost between univariate

(n = 614) and multivariate analyses (n = 406). For

deciles of median lymphocyte density, differences in
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Fig. 2 Distribution of pre-treatment sample image metrics by tumour molecular subtype. Horizontal grey lines represent median values. Results of

the Kruskal-Wallis test are depicted within graphs; red text denotes p values <0.05. ER oestrogen receptor, HER2 human epidermal growth factor

receptor 2
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the proportion of cases that underwent pCR varied

between 4.9 % (3/61) for the first decile up to 35.5 %

(22/62) for the last.

Figure 4 depicts the distribution of pCR, receptor

status and cellular composition in all samples ranked

according to the median lymphocyte density for each

sample. In addition to depicting the sample-level rela-

tionship between these variables, the relationship be-

tween median lymphocyte density, pCR and molecular

subtype is also depicted in Fig. 4. To address whether

the association between median lymphocyte density and

pCR significantly differed by ER status, we compared the

fit of two logistic regression models: one with an inter-

action term between median lymphocyte density and

ER status, and one without. The likelihood ratio test

comparing these models was not significant (p = 0.72),

however, it should be noted that for comparison of effect

between subgroups these analyses are relatively

underpowered, precluding reliable conclusions. In

addition, Fig. 4 highlights that although higher median

lymphocyte density is generally associated with a larger

lymphocyte fraction (rho = 0.69), it is not simply a re-

flection of higher numbers of infiltrating lymphocytes.

There are both instances where the relative fraction of

lymphocytes is high but where the density of lympho-

cytes is low compared to other samples, and conversely

in some instances the fraction of lymphocytes is

relatively low but their median density is high (Fig. 4).

Additional file 10 depicts this relationship as a scatter

plot, further highlighting the existence of outlier cases.

This suggests that a measure of lymphocytic density

may reflect a functional aspect of the immune response

not entirely encompassed by lymphocyte fraction.

Additional file 11 depicts example images together with

contour representations of lymphocyte density and auto-

mated metrics for each image. Median lymphocyte

p = 0.05

p = 0.01
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Fig. 3 Association between image metrics and pathological complete response (pCR). Manhattan plot illustrates p values (–log10) from univariate

logistic regression analyses testing the association between 15 image metrics and pCR

Table 2 Univariate and multivariate logistic regression models of clinical factors and median lymphocyte density

Univariate Multivariate

Variable Categories Odds ratio 95 % CI P value Observations Odds ratio 95 % CI P value Observations

Age Continuous 0.99 0.97, 1.02 0.6 755 0.99 0.96-1.02 0.44 406

Tumour size ≤50 mm, >50 mm 0.89 0.54, 1.48 0.66 755 0.68 0.27-1.75 0.43 406

Node status Negative, positive 0.8 0.54, 1.18 0.25 755 0.56 0.31-1.00 0.05 406

Grade 1, 2, 3 3.98 2.38, 6.67 <0.00001 588 3.62 1.74-7.52 0.0006 406

ER status Negative, positive 0.26 0.17, 0.38 <0.00001 755 0.3 0.17-0.53 0.00004 406

HER2 status Negative, positive 1.6 1.03, 2.50 0.04 665 1.81 0.97-3.37 0.06 406

Median lymphocyte density Continuous 4.46 2.34, 8.50 <0.00001 614 2.42 1.08-5.40 0.03 406

ER oestrogen receptor; HER2 human epidermal growth factor receptor 2
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density was positively associated with both axillary

lymph node status (p = 0.002) and histological grade (p

<0.00001) but not with tumor size (p = 0.47) as depicted

in Additional file 12.

Increased post-treatment lymphocyte density is associated

with relative chemoresistance

We further investigated whether the change in median

lymphocyte density between pre- and post-treatment

samples was reflected in the probability of pCR and the

extent to which the degree of change varied between

patients. Change in median lymphocyte density across

all 557 samples for which paired data was available is

depicted as a waterfall plot in Fig. 5. In the majority of

cases (75.6 %, 421/557 cases) lymphocyte density decreased

in the surgical specimen. In addition, on assessment of the

association between change in lymphocyte density and pCR

in the 553 cases with sufficient data, there was strong asso-

ciation between reduction in lymphocyte density in the sur-

gical sample and higher likelihood of pCR (OR 0.28, 95 %

CI 0.17, 0.47, p <0.0001) with 17 % (71/418) of cases with a

decrease in density undergoing pCR, in comparison to just

6.7 % (9/135) of those where there was an increase. Change

in lymphocyte density was negatively correlated with

median lymphocyte density at diagnosis (Correlation

coefficient –0.6, p <0.0001). In a model adjusted for median

lymphocyte density at diagnosis, change in lymphocyte

density remained significantly associated with pCR (OR

0.38, 95 % CI 0.21, 0.71, p = 0.002).

The main finding of the Neo-tAnGo trial was that ad-

ministration of a taxane prior to other chemotherapy

agents led to a significant increase in pCR [15]. There-

fore, we next evaluated whether the association between

increased post-treatment lymphocyte density and reduced
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likelihood of pCR was equally distributed according to

whether a taxane was received first or second (Fig. 5). The

association between increased post-treatment lymphocyte

density and reduced likelihood of pCR was significantly

stronger where a taxane was received second compared to

where it was received first (likelihood-ratio test for inter-

action, p = 0.02). The OR in the taxane second group was

0.12 (95 % CI 0.05, 0.31, p <0.0001) compared to 0.45

(95 % CI 0.24, 0.84, p = 0.01) in the taxane first group. It

should be noted that the proportion of cases with in-

creased post-treatment lymphocyte density was equally

distributed across taxane groups (24 % and 25 %).

Discussion

We used computational pathology to generate image

metrics of both pre- and post-treatment biopsies in a

randomized controlled trial of neoadjuvant chemother-

apy in breast cancer in order to investigate associations

with chemosensitivity. Median lymphocyte density in pre-

treatment biopsies emerged as the best predictor of re-

sponse to chemotherapy, improving prediction based on

known clinical factors. In addition, change in lymphocyte

density between pre and post-treatment samples revealed

that an increase in lymphocyte density was, paradoxically,

associated with relative chemoresistance.

Computational pathology was used here to generate

objective quantitative estimates of the cellular compos-

ition of tissue samples and, importantly, of the spatial

heterogeneity of different cell types across a tissue sec-

tion. Median density of lymphocytes, a spatial estimate,

outperformed simple cellular quantification. Similarly,

we have previously reported that the spatial distribution

of stromal cells is prognostic in breast cancer and that

this feature is not easily measurable by genomic assays

[13]. Previous work in the context of breast and prostate

cancer, has demonstrated the capacity of a computational

approach to interrogate spatial, relational and geometric

features of tissues for outcome prediction [14, 19, 20].

Many of these parameters could not be practically esti-

mated by other means, and in this respect machine

learning can provide deeper insight into tissue morph-

ology than is possible by manual evaluation.

We performed a data-driven selection of tissue fea-

tures associated with pCR. Median lymphocyte density

emerged as the best predictor of chemosensitivity. In a

previous study we have reported an association between

automated estimates of lymphocytic infiltration and breast

cancer survival in ER-negative disease [13, 21]. Similarly,

studies of patients who received neo-adjuvant chemother-

apy based on genomic assays and histopathology have also

reported an association between the immune response

and pCR [22]. Ignatiadis et al. conducted a meta-analysis

of gene-expression data from pre-surgical specimens in

996 patients and investigated associations between 17

previously reported gene modules and pCR [22]. They

found that the gene modules most reliably associated

with pCR across cancer subtypes were those relating to

the immune response. Tumour infiltrating lymphocytes

estimated by a pathologist from H&E sections have also

been found to be associated with outcome and response

to chemotherapy [8, 23], including some in the neo-

adjuvant setting [6, 10], largely in accord with the findings

of this study.

To our knowledge, this is the first report showing that

an increase in lymphocyte density following the perturb-

ation of chemotherapy is associated with a lower likeli-

hood of pCR. Previous studies have also shown that the

composition of the post-treatment immune repertoire is

associated with survival [24, 25]. In addition, we found

that the sequence in which chemotherapy agents were

administered affected the strength of this association.

Where patients received a taxane second, increased

lymphocyte density was more strongly associated with

relative resistance to chemotherapy than in patients who

received a taxane first.

A limitation of this study is that we were not able to

digitize and analyse samples from all patients enrolled in

the Neo-tAnGo trial and that associated clinical data

were not complete, leading to a loss of around one third

of observations in multivariate analyses. This is inevit-

able in the context of large multicentre trials. A second

limitation is that by using H&E sections we have not

accounted for the immune phenotype or functional state

of infiltrating lymphocytes.

The functional basis of the interaction we observed

between the immune response and chemotherapy is

uncertain. It should, however, be noted that all patients

received an anthracycline (epirubicin) as part of their

treatment. Anthracyclines have been extensively investi-

gated in pre-clinical studies as a chemotherapeutic agent

with a tumoricidal effect that can in part be attributed to

stimulation of the immune response [26]. For example, a

recent study reported that upon exposure to an anthracy-

cline tumour cells produce type I interferons evoking an

immunological cascade reminiscent of that seen in cells

infected by a virus and that this effect may be partly ex-

plained by the release of self-RNAs by dying cells [27].

That greater clinical benefit of anthracyclines is signifi-

cantly associated with the presence of a pre-existing im-

mune response (tumour-infiltrating lymphocytes) has also

been shown in several clinical studies [8, 23, 28]. However,

our results suggest that the effect of chemotherapy may be

more complex than simply boosting pre-existing immune

attack. First, we find that where the density of lymphocytes

is increased following treatment, fewer tumours undergo

pCR. That is, in this subset of around one quarter of pa-

tients, tumour cells apparently continue to resist the ef-

fects of immune attack in spite of its increased intensity.
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Second, we find that this effect is significantly greater

where a taxane (paclitaxel) was administered after, as

opposed to before, other agents. In the Neo-tAnGo

trial, giving paclitaxel before the other agents signifi-

cantly increased the proportion of cases with pCR [15].

While the association between increased post-treatment

lymphocyte density and treatment resistance holds

whether paclitaxel is given first or second, the effect is

significantly larger in cases where it is given second.

Collectively, these findings raise the possibility that not

only is a chemotherapy-stimulated immune response

not universally effective, but that the efficacy of this re-

sponse can be influenced by the sequence in which

tumour cells are exposed to different chemotherapeutic

agents, most notably taxanes and anthracyclines.

The existence of a substantial subgroup of relatively

resistant tumours in which lymphocyte density is in-

creased following chemotherapy further suggests a clinical

opportunity. The variability in the immune response be-

tween primary breast tumours is well-known and recent

genomic analyses suggest that some of this difference may

be explained by the mutational burden of the primary

tumour [29]. Analyses of clinical trials of immune check-

point inhibitors report that responses are best where there

is a significant pre-existing immune response to the

primary tumour [30, 31]. Given that a large subset of

breast tumours evoke only a mild immune response if

any [23, 32], methods for increasing immune attack

against immunologically quiescent tumours are needed.

Therefore the subgroup we have identified may benefit

from receiving chemotherapy first, to increase the im-

mune response, followed by immune checkpoint inhibi-

tors to amplify its effect.

Digitization of pathology slides from clinical trials

affords the important advantages of providing an enduring

archive of tumour pathology and the opportunity for

systematic image analysis. We anticipate analyses such

as ours becoming more common as digital pathology is

implemented more widely in clinical trials. We provide

a valuable resource of digital pathology images to the

research community, together with all our image-analysis

codes. In addition, linked multiplatform genomic annota-

tion (gene expression, copy number, targeted sequencing)

will be made available for a subset of cases, following pri-

mary reporting of the data. While invaluable resources

such as the Human Protein Atlas already provide access

to an enormous array of tissue images [33], some already

utilized in translational studies [34, 35], widely available

digital images of tumour tissue from large high-quality

clinical studies with molecular annotation such as ours are

currently exceedingly rare. However, general access to

such resources will be necessary to fulfil the potential of

computational pathology as a novel modality that spans

the research and clinical arenas.

Conclusions
This data-driven analysis of computational pathology

metrics reveals that median lymphocyte density is an

independent predictor of response to neoadjuvant chemo-

therapy in breast cancer. Paradoxically, we find that an

increase in the density of lymphocytes following

chemotherapy is associated with relative resistance to

chemotherapy. Computational pathology is a novel and

quantitative method for interrogation of tumour tissues,

which can improve prediction of clinical endpoints.
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