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In recent years, the usual courses on theoretical and experimental physics have been supple-
mented by courses on computational physics at various universities. In this text a short overview
on our experience in establishing such a course within the context of theoretical physics using
Python as a programming language is given. The main aim of the course is to enable the
students to solve problems in physics with the help of numerical computations. In particular
by making use of graphical and interactive exploration a more profound understanding of the
underlying physical principles and the problem at hand should be gained.

After setting up a list of possible topics for the course, one of the first choices to be made
concerned the programming language. The decision for Python was driven by the following
main points

• freely available (Linux, Mac and Windows) so that the students could be provided with
a CD to take home and install.

• full programming language, easy to learn (even for beginners)

• very readable and compact code allows for a short development time for the programms
and therefore to concentrate on the physics problem

• interactive plotting capabilities (e.g. matplotlib)

• Object orientated programming (OOP) is possible, but not required so that the emphasis
can be on the solution of physics problems using the computer and not on learning the
deeper aspects of Python. However, for students with advanced programming knowledge
this makes python also attractive.

The computational physics course was started in 2002 and since then run every summer
term with student numbers increasing from about 20 to 70 covering now more than 50% of each
years physics students. The lectures (2 hours) covering both physical and numerical aspects
are accompanied by tutorials (2 hours) and weekly exercise sheets. The students hand in their
solutions by e-mail and the programms are then printed, tested, corrected, marked and returned
in the next tutorial to provide individual feedback. In addition, extensively commented sample
solutions are posted on the web-page of the course. The topics range from elementary numerical
methods (differentiation, integration, zero finding), differential equations, random numbers,
stochastic processes, Fourier transformation, nonlinear dynamics and quantum mechanics.

The students knowledge of programming languages turned out to be rather diverse, ranging
from no experience at all to detailed expertise in C++. With a few exceptions, no previous
knowledge of Python was present. In order to provide the necessary basics a detailed intro-
duction is provided, which makes extensive use of the interactive capabilites of Python (using
IPython). This covers the use of variables, simple arithmetic, loops, conditional execution,
small programms and subroutines. Of particular importance for numerical computations is
the use of arrays as provided by numpy which allows to write efficient code without explicit
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loops. Again this makes the code compact and also enhances the readability and speed of
programming. For further numerical routines, e.g. solving ordinary differential equations or
computation of special functions, scipy is used.

Finally a short introduction to plotting using matplotlib is given, e.g. after starting ipython
with support for interactive plotting via ipython -pylab one can simply do

x = linspace(0.0, 2.0*pi, 100) # Array of x values

plot(x,sin(x)) # graph of sin(x) vs. x

plot(x,cos(2*x)) # add another graph

and then for example zoom into the resulting plot using the mouse.
A first non-trivial example is the dynamics of a driven pendulum which can be described

by the coupled differential equation

ϕ̈ = sinϕ+ 1/4 cos t ⇐⇒ ϕ̇ = v
v̇ = sinϕ+ 1/4 cos t

(1)

for which this simple programm computes the time evolution

from pylab import * # plotting routines

from scipy.integrate import odeint # routine for ODE integration

def derivative(y, t):

"""Right hand side of the differential equation.

Here y = [phi, v].

"""

return array([y[1], sin(y[0]) + 0.25* cos(t)]) # (\dot{\phi}, \dot{v})

def compute_trajectory(y0):

"""Integrate the ODE for the initial point y0 = [phi_0, v_0]"""

t = arange(0.0, 100.0, 0.1) # array of times

y_t = odeint(derivative, y0, t) # integration of the equation

return y_t[:, 0], y_t[:, 1] # return arrays for phi and v

# compute and plot for two different initial conditions:

phi_a, v_a = compute_trajectory([1.0, 0.9])

phi_b, v_b = compute_trajectory([0.9, 0.9])

plot(phi_a, v_a)

plot(phi_b, v_b, "r--")

xlabel(r"$\varphi$")

ylabel(r"$v$")

show()

The resulting plot is shown as a screenshot in fig. 1 and shows that in the considered system a
moderate change in the initial condition leads to quite different behaviour already after short
times.
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Figure 1: Dynamics of the driven pendulum described by (1) for two different initial
conditions, visualized using matplotlib.

A more advanced example is the visualization of the quantum probability densities for wave
functions of the hydrogen atom, which in spherical coordinates reads

Ψn,l,m(r, ϑ, ϕ) = Ylm(ϑ, ϕ) ·
√

(n− l − 1)!(2/n)3

2n[(n+ l)]!
(2r/n)le−r/n L2l+1

n−l−1(2r/n) . (2)

Here n, l,m are the quantum numbers characterizing the wave function, Y is the spherical
harmonics, numerically determined using scipy.special.sph_harm and L is the associated
Laguerre polynomial, determined by scipy.special.assoc_laguerre.

As ψ(x, y, z) is a scalar function defined on R3 one can either use a density plot or plot
equi-energy surfaces. Instead of writing the corresponding (non-trival) visualization routines
from scratch, we use the extremely powerful visualization toolkit (VTK, www.vtk.org) whose
routines are also accessible from Python. So the first step is to generate a data file suitable for
VTK choosing a rasterization in Cartesian coordinates (x, y, z), on [−40, 40]3 with 100 points
in each direction,

# vtk DataFile Version 2.0

h_data.vtk Data for hydrogen wave functions

ASCII

DATASET STRUCTURED_POINTS

DIMENSIONS 100 100 100

ORIGIN -40.0 -40.0 -40.0
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SPACING 0.8 0.8 0.8

POINT_DATA 1000000

SCALARS scalars float

LOOKUP_TABLE default

... 1000000 real numbers corresponding to |\psi_{5,2,1}(x,y,z)|^2 ...

Then this data set can be visualized using MayaVi by starting

mayavi -d h_data.vtk -m IsoSurface -m Axes

This reads the datafile h_data.vtk, loads the IsoSurface module and adds axes to the plot. By
modifying the value for the isosurface one obtains a plot as shown in fig. 2a) for n, l,m = 5, 2, 1.
Adding a scalar-cut-plane, a different look-up table and varying the view leads to fig. 2b). This
short example shows that with only a moderate effort, highly instructive and also appealing
visualizations of data are possible.

Figure 2: (a) Screenshot of a MayaVi visualization showing a surface of constant
value of |ψ(x, y, z)|2 for the hydrogen atom. (b) Same type of plot, together with a
scalar cut-plane and a different lookup-table with a transparency gradient.

At the end of the course the students give a short presentation on a small project of their
own choice. In particular here the creativity of the students was not limited by python, which
enabled them to create highly illustrative dynamical visualizations, for example also in 3D using
VPython (www.vpython.org).

To summarize one can say that the initial experiment of using Python for teaching compu-
tational physics has proven to be highly successful. It even turned out that several students
continued to use python for various tasks, like data analysis in experimental physics courses or
during their diploma thesis, not just in our group.
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