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Abstract: In bio-medical mobile workstations, e.g., the prevention of epidemic viruses/bacteria,
outdoor field medical treatment and bio-chemical pollution monitoring, the conventional bench-
top microscopic imaging equipment is limited. The comprehensive multi-mode (bright/dark field
imaging, fluorescence excitation imaging, polarized light imaging, and differential interference
microscopy imaging, etc.) biomedical microscopy imaging systems are generally large in size and
expensive. They also require professional operation, which means high labor-cost, money-cost and
time-cost. These characteristics prevent them from being applied in bio-medical mobile workstations.
The bio-medical mobile workstations need microscopy systems which are inexpensive and able
to handle fast, timely and large-scale deployment. The development of lightweight, low-cost and
portable microscopic imaging devices can meet these demands. Presently, for the increasing needs
of point-of-care-test and tele-diagnosis, high-performance computational portable microscopes are
widely developed. Bluetooth modules, WLAN modules and 3G/4G/5G modules generally feature
very small sizes and low prices. And industrial imaging lens, microscopy objective lens, and
CMOS/CCD photoelectric image sensors are also available in small sizes and at low prices. Here
we review and discuss these typical computational, portable and low-cost microscopes by refined
specifications and schematics, from the aspect of optics, electronic, algorithms principle and typical
bio-medical applications.

Keywords: computational imaging; portable microscope; point-of-care-test

1. Introduction

Disease cross-regional transmission (e.g., COVID-19 explosion), food safety
(e.g., pathogenic Escherichia coli) and environmental pollution (e.g., water eutrophication)
might break out suddenly and unexpectedly [1–6]. These have threatened human health,
life and the environment. Biological and medical detection and analysis are the impor-
tant ways to prevent and control these problems. For biological and medical detection
and analysis, a microscope is a very important optical instrument, one which directly
promotes the development of biotechnology, medicine and pathology. Nowadays, research-
level and desktop microscopes have been widely used in medical centers and scientific
institutes [7–18], including bright-field microscopes, dark-field microscopes, fluorescence
microscopes, Zernike-phase-contrast (ZPC) microscopes, differential-interference-contrast
(DIC) microscopes, laser confocal microscopes and super-resolution microscopy imaging
systems, etc. These traditional microscopy imaging systems are suitable for hospitals
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and research-level laboratories. They are expensive and bulky. And their operations and
analysis require professional skill. Additionally, the medical centers and scientific institutes
might be far away from the outdoor biological/medical sampling sites. The above issues all
affect detection speed and efficiency. Especially in some underdeveloped remote areas, the
medical conditions and resources cannot guarantee effective detection and analysis. Further,
with the development of mobile/online medicine, daily medical inspection demands arise
quickly. Addressing the above demands, point-of-care-test (POCT) devices and techniques
attract many researchers and engineers for observation and tele-diagnosis [19–26].

The POCT aims to quickly collect samples, analyze results, and provide test reports.
Small and simplified-operation POCT microscopes are particularly desirable [19–21]. POCT
diagnostic microscopy devices generally need some of the following characteristics: (1)
results are timely: the test results can be quickly provided at the site, without the need
to wait for several days to print a report; (2) the operating system is simple: anyone can
operate the instrument without special training, and it can be used in a wide geographical
range without regional restrictions; (3) accurate qualitatively or quantitatively: instant
detection not only requires rapid detection results, but also relatively accurate results;
qualitative and quantitative accuracy is the most critical means to achieve user promotion,
and POCT’s detection should rival the results of professional instrumentation equipment;
(4) portability: to achieve rapid detection in any location, small and portable is an essential
factor.

With the development of consumer-level electronic and optical products, modern
opto-electronic elements (e.g., laser diodes (LDs) or light-emitting diodes (LEDs), optical
fibers and binary optical components, CMOS/CCD photoelectric image sensors) are char-
acterized by smaller sizes and lower prices. These promote portable biomedical testing
platforms, mainly focusing on spectroscopy [22], microscopy and so on. Distinct from
spectroscopy, POCT microscopy provides direct 2D-vision information. POCT microscopy
devices are becoming cheaper and smaller. More importantly, we are in the 5G+ telecom-
munication and AI era [27,28]. High-performance processing chips are widely used in daily
life. For example, the advanced central processing unit (CPU) and graphic processing unit
(GPU) enable excellent computing hash-rate and image processing capabilities in a laptop.
The Bluetooth module, WLAN module and 3G/4G/5G module are sufficiently miniature
and low-priced. The pinhole lens, industrial monitor lens and microscopy objective lens
are also characterized by small size and low price. As a typical example, smartphones
simultaneously take into account good optical imaging performance, advanced image
sensing equipment, high-performance processing chips and big-data telecommunication,
functionalities which can be easily achieved by the industry. The coming 5G+ telecommu-
nication era will quicken big-data transmission. Data interaction and processing can be
carried out between the machine with wireless access to the remote super-computing server
workstation and cloud storage space. Given these conditions, computational, portable and
low-cost microscopes evolve quickly, serving for POCT and tele-diagnosis [19–21,27,28].
Here we would review these typical cases as a sort of imaging theorem, mainly includ-
ing lens-free microscopes, smart-phone microscopes, singlet microscopes and portable
super-resolution microscopes.

2. Lens-Less Microscopy
2.1. Projection Lens-Less Microscopy

Projection imaging is the simplest and earliest lens-less microscopy method. The entire
process does not require unique image reconstruction algorithms [29–39]. Figure 1 is a
typical schematic of lens-less diffraction microscopy setups based on a single frame [39], in
projection lens-less microscopy, the sample is placed directly on the CCD/CMOS image
sensor. A light source, e.g., a LED, directly illuminates the sample, and the projected
shadow of the sample is directly captured by the CCD/CMOS image sensor. Assuming the
distance from the light source to the sample is z1, the gap from the sample to the image
sensor is z2. The light modulated by the sample information propagates along z2 to the
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CMOS image sensor. When the light source is incoherent, the directly recorded image is a
defocused blur image at the out-of-focus distance of z2. When the light source is (partially)
coherent, the recorded image may be the diffracted pattern with concentric interference
fringes. These defocused blurs and concentric interference fringes both deteriorate the
image’s resolution abilities and the image’s contrast. When the image is incoherent, the blur
might be optimized by the computational deconvolution algorithms, such as the famous
Richardson-Lucy method. When the image is diffracted, the resolution might be improved
by the hologram reconstruction algorithms. Besides, other hardware processes, such as
placing a hole-array between the sample and the image sensor, might be considered to
improve the resolution. An opaque metal layer is coated in the image sensor, and an array of
sub-micron small holes are arranged on the metal layer, where each hole corresponds to each
pixel on the image sensor. This projection lens-less microscopy method effectively reduces
the volume of the imaging system while improving the imaging resolution. However, put
briefly, the projection lens-less microscopy is mainly limited by its resolution ability.
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Figure 1. Typical schematic of lens-less diffraction microscopy setups based on a single frame [39].

2.2. Fluorescence Lens-Less Microscopy

Fluorescent labelling methods are widely used in bio-medical and pathological observ-
ing. The CMOS image sensor records the emitted fluorescent light, not the light source’s
rays. Usually, the wavelength spectrum of the emitted light and that of the light source are
different. It is generally necessary to place a filter between the sample and the CMOS image
sensor to filter out the original wavelength spectrum of the light source in a fluorescent
lens-less microscope [40–46]. However, even with a wavelength spectrum filter, there
may still be some leakage of the light source’s rays into the CMOS image sensor. Other
methods are used to reduce these leaked rays, such as adding a total internal reflection
(TIR) prism. The resolution ability of the lens-less fluorescent microscopy is limited by the
system’s point spread function (PSF). The PSF can be tested and calculated by recording
light from a single point in the sample plane. The light would spread to a spot on the
CMOS image sensor. Then, the PSF size would be measured. Therefore, it can be seen that
the sample-to-sensor distance will affect the PSF. For example, when the defocusing gap is
~200 µm, the PSF limits the resolution to ~200 µm, which is far worse than the resolution of
most lens-based microscope systems. Therefore, despite the obvious advantages of lens-less
fluorescence imaging devices in terms of cost, portability and field-of-view, the spatial
bandwidth product obtained by this method is not superior to conventional bench-top
microscopes. In order to improve the resolution of lens-less fluorescent microscopy, there
are several methods: (1) Place the filter directly on the sensor, so that defocusing gap can
be minimized. Using this method, the spatial resolution can be improved to ~10 µm. (2)
The fluorescent light is relayed using a densely packed fiber array. In principle, when these
fibers deliver light to the image sensor, the fiber beam is amplified, providing a degree of
magnification for lens-less imaging. Using this method, the resolution can be improved
to ~4 µm. (3) The mask of the nanostructure would be placed close to the object; the PSF
of the system is no longer spatially invariant, but will depend on nanostructures. With
this approach, sub-pixel resolution of up to 2–4 µm can be achieved. (4) computational
deconvolution and compression decoding algorithms could be as the post process.
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2.3. Digital Holographic Lens-Less Microscopy

When the light source is spatially and temporally coherent, the diffracted pattern
recorded by the CMOS image sensor are the on-axial holograms. Different from projection
lens-less microscopy and fluorescent lens-less microscopy, digital holographic lens-less
microscopy uses the recorded holograms to computationally reconstruct the intensity and
phase information of the sample [47,48]. In general, lens-less microscopy based on digital
holographic reconstruction is essentially on-axial digital holographic reconstruction. In
principle, the acquired image is the light UO(x, y) scattered by the object on the sample and
the the reference light UR(x, y) of the transparent substrate:

U(x, y) = UR(x, y) + Uo(x, y) = AR + AO(x, y) exp[iϕo(x, y)], (1)

where AR are the amplitude information of the reference light and AO is the object light,
respectively; ϕo is the phase information of the object light. The digital holographic
reconstruction seeks to reconstruct the object light through the directly recorded hologram
I(x, y). The transfer function of coherent wave propagation is

Hz(x, y) =

{
exp

(
ikz
√

1− λ2 f 2
x − λ2 f 2

y

)
, f 2

x + f 2
y ≤ 1

λ2

0, f 2
x + f 2

y ≥ 1
λ2

, (2)

where λ is the wavelength of the illumination wavelength. f x and f y are the spatial
frequency domain coordinates.

2.3.1. Phase Recovery Based on Single Frame

In lens-less holographic microscopy, the conjugate image is unavoidable. The simplest
single-frame phase recovery method is an iterative phase recovery method based on
support domain constraints [49–53]. The key to this approach is the support field/mask of
the object plane. For example, one can use a simple threshold or segmentation algorithm
to automatically estimate the position of the object, computationally creating an object-
dependent support field/mask. Also, a hardware mask can be created with Talbot grating
illumination. The collected single-frame object image is used as the amplitude information
of the complex amplitude UO

2 of the initialization object, and an arbitrary value is used
as the phase. The complex amplitude Uk+1

2 (denoted as UO
2 for the first time, and k is the

number of times the complex amplitude is limited to be updated) is propagated to the
object plane using the angular spectrum propagation, and the light intensity information
propagated to the plane is updated by using the predicted support domain information,
and the phase is kept unchanged, a new complex amplitude Uk+1

1 is obtained, and the
complex amplitude is propagated back to the image plane. Similarly, the light intensity
information of the complex amplitude Uk

2 at this time is updated by using the hologram
of the directly collected image plane to obtain a new Uk+1

2 , then the loop iterates to get
the final complex amplitude information. This single-frame-based lens-less microscopic
imaging method is generally simple in structure, so the system is compact. Thus, it would
be widely used in places with low requirements for imaging quality and high requirements
for portability, such as water pollution monitoring. In addition, with some additional
devices (which may slightly increase the volume of the system), cell movement monitoring
can be achieved.

2.3.2. Phase Recovery Based on Multiple Holograms

Multiple-hologram phase recovery methods can be classified into those based on
multi-distance recorded holograms, multi-wavelength illumination, and multi-angle illu-
mination [39,54–58]. The typical image reconstruction is essentially the Gerchberg-Saxton
(G-S) iterative phase recovery method. The typical experimental setup is shown in Figure 2;
the light source directly illuminates the sample, the sample is axially scanned along the
z-axis, and holograms are directly recorded by the CMOS image sensor at different distance
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planes. For computational reconstruction, firstly the holograms collected in each plane
should be registered. Then the image at the first plane (phase initialized to a zero 2D-matrix)
is propagated to the second plane. The phase remains unchanged, and the amplitude is
substituted by the square root of the intensity at the second plane. A new complex ampli-
tude is synthesized, and then is afterwards propagated computationally. These same steps
are executed to the n-th plane, completing one iteration loop. After completing multiple
iterations, the reconstructed complex amplitude is computationally propagated to the focal
plane. The high-resolution complex amplitude information (i.e., amplitude and phase) of
the object would be obtained, where there is no twin-image-noise.
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Figure 2. Typical schematic of lens-less diffraction microscopy setups based on multiple holograms:
(a) the principal schematic; (b) a 3D mechanical design of a lens-less diffraction microscope; (c) typical
H&E stained pathological slide [57].

The above multi-distance-based phase recovery method needs to collect intensity
holograms at different defocus planes, so a mechanical displacement device is generally
required. To avoid this problem, Zuo et al. proposed a method based on multi-wavelength
illumination to achieve the phase recovery of objects. The whole reconstruction processes
are as follows: holograms under different wavelengths are collected, such as R/G/B
illumination. Then, the TIE solver is used to guess the initial value, to obtain the complex
amplitude of the object under G light illumination. According to the diffraction integral
equation, the wavelength λ and the propagation distance z always appear in pairs. The
change of the wavelength is equivalent with the change of the propagation distance.
Therefore, for a non-scattering sample, if the illumination wavelength is changed from λ to
λ + ∆λ, the collected diffraction pattern can be equivalently seen as a change in propagation
distance ∆z = z·∆λ/λ. Holograms of different wavelengths can be regarded as images
collected at different defocus planes under the same illumination wavelength. Finally, the
high-resolution complex information would be obtained with no twin-image-noise, using
the G-S iterative method.

2.4. Deep Learning Lens-Less Microscopy

The deep learning lens-less holographic phase recovery algorithm is without iterative
optimization processes [59–63]. The deep learning algorithm to reconstruct the single-
frame complex information by convolution neural network (CNN) architecture is shown
in Figure 3. The training set is obtained, and the trained neural network can recover the
corresponding complex amplitude of the object according to the input diffraction image.
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Figure 3. CNN architecture to recover complex-value information of the object [59].

2.5. Colorful Lens-Less Microscopy

The high-resolution lens-less microscopy relies on the hologram recorded on the CMOS
image sensor. When the illumination source is completely incoherent, the resolution will be
relatively poor. Therefore, in order to improve the coherence of the illumination light source,
quasi-monochromatic light is generally selected for illumination, which is within a narrow
spectrum band. However, in many bio-medical observing cases, valuable information on
biological samples is generally stained by chemical dying. Bio-medical researchers prefer
to use color images for diagnosis, such as the H&E staining. Therefore, researchers have
proposed lens-free color imaging [63–66]. One of the simplest methods is statistical based
color mapping. Greenbaum et al. used this method to achieve color imaging of human
breast cancer, Pap smear, etc. [63]. Another relatively simple colorization method is to firstly
illuminate the object with monochromatic red, green, and blue light sources, acquiring
three images in sequence. Then, by superposing the reconstruction results at the three
illumination wavelengths, the final color reconstructed image is obtained. Additionally, the
deep learning’s virtual colorizing would also achieve colorful lens-less microscopy under
only one coherent illumination, as shown in Figures 4 and 5.
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Figure 4. (a,b) Deep learning virtually colorizing to achieve colorful lens-less microscopy [57].
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2.6. 3D Tomographic Lens-Less Microscopy

In the field of biological research, fast and compact 3D structure imaging and analysis
are very attractive. The schematic diagram of 3D tomographic lens-less microscopy using at
least two angular illuminations is shown in Reference [67]. In the lens-less 3D tomography
based on multi-angle illumination, the height of the micro-object is determined by calculat-
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ing the lateral displacement of the hologram [67–71]. This 3D tomography is based on the
Fourier diffraction projection theory. For example, the multi-angle and multi-wavelength
illumination are provided by the LED array to realize the 3D tomographic microscopy [67].
Using such techniques, a spatial resolution of 1 µm × 1 µm × 3 µm is achieved in the x,
y, and z directions within a large volume of approximately 15 mm. The sample is placed
directly on the CMOS image sensor, and a partially coherent light source is ~70 mm away
from the CMOS image sensor, and the sample is illuminated from different angles (±50◦)
to obtain lens-less on-axial holograms at different angles.

2.7. Lens-Less Microscopy Application Examples for POCT and Biomedicine Diagnosis

Projection lens-less microscopy. Zheng et al. developed a projection lens-less micro-
scope to track cell growth and differentiation of embryonic stem cells [29]. This imaging
platform enables high-resolution and autonomous imaging of cells plated or grown on low-
cost CMOS sensor chips, with the ability to image samples with a FOV with 6 mm × 4 mm
with a resolution of 660 nm. The total data acquisition process takes about 20 s, and the
reconstruction time of a single digital image is less than 1 s. Their cell culture experiments
showed that their application of this technique could be a useful tool for long-term cell
observation in vitro. At the same time, their device mainly consists of a smartphone and
Lego bricks, demonstrating that their imaging platform can be easily assembled.

Fluorescence lens-less microscopy. Several researchers have successfully imaged
fluorescent C. elegans samples on a fluorescence lens-less microscopy platform enhanced
by compression encoding algorithms [42]. The imaging FOV is >8 cm2. The spatial
resolution is about 10 µm. Additionally, they tested the effectiveness of this on-chip imaging
approach using different types of imaging sensors, which achieves similar resolution ability
independent of the imaging sensor chip. This provides a useful tool for high-throughput
screening applications in observing fluorescent biomedical samples.

Digital holographic lens-less microscopy. Although there are many reconstruction
methods for the digital holographic lens-less microscopy, the application examples are
almost similar to each other. The resolution abilities, FOV and the imaging speed are
similar to each other. For example, Cedric Allier et al. provide a method based on holo-
graphic lens-less video microscopy to measure important metrics for cell proliferation
studies, e.g., cell cycle-duration and cell dry mass [35]. The microscopy imaging FOV
is ~29.4 mm2, and the resolution ability of the reconstructed phase image is ~5 µm. By
tracking 2.7 days’ acquisition of HeLa cells in culture, they would get a dataset with
2.2 × 106 single-cell morphology measurements and 10,584 cell cycle trajectories, with the
speed of 1/10 frame per minute across the FOV. In addition to this study on cell prolifera-
tion, the setup could be used for the study of cell migration by tracking a large number
of trajectories simultaneously over several hours. Deep learning computational methods,
coloring and 3D tomography would enhance the holographic lens-less microscopy. For
example, Liu et al. demonstrated a deep neural network-based virtual staining technique
for label-free cells, named PhaseStain [62]. It is based on the quantitative phase image
(QPI) obtained by lens-less microscopy and converted into a stained image equivalent
to a bright-field microscopy image. Their experiments demonstrated the effectiveness of
this virtual staining method on tissue sections such as human skin. This digital staining
framework can further enhance the various uses of label-free QPI technology in pathology
applications and general biomedical research, eliminating the need for histological staining,
reducing costs and saving time associated with sample preparation. The implementation of
a color opto-fluidic microscope SROFM prototype is reported. Based on a multi-wavelength
illumination lens-less microscope, the system can scan approximately 400 cells per second
for monochromatic imaging and 100 cells per second for color imaging, with the highest
acuity optical resolution of 0.66 µm. They successfully applied the technique to color-image
red blood cells infected with P. falciparum.



Cells 2022, 11, 3670 9 of 29

3. Smart-Phone Microscopy

The explosive application of smart phones not only provides a portable AI and tele-
communication device, but also promotes a perfect and high-resolution camera. As shown
in Figure 6, in the coming 5G telecommunication technology era, the development of
modern mobile communication networks makes data transmission and remote information
sharing. This also provides new development opportunities for computational, portable
and low-cost microscopic imaging technology [72–78]. Thus, it is very potential to be
applied to medical services in various remote and complex environments. The biologi-
cal/medical images collected by smartphones can be transmitted to the central processing
station for expert analysis or to a network server for cloud computing, such as image
post-processing. Finally, the expert analysis results and image post-processing data are
transmitted to the mobile phone for display, by the 5G+ networks and the Internet. Com-
pared to the standard microscopic imaging systems, the smart phone’s back camera lens
can be viewed as the tube lens and the CMOS image sensor, while an attached lens is
the objective microscopic lens. According to the different attached lens, the microscopic
imaging system based on the smartphone platform can be divided into three categories:
the commercial microscopic objective lenses, the customized single lenses and the inverted
pinhole lenses. As shown in Figure 7, there are three types of novel microscopic imag-
ing optical path structures based on smartphone platforms. The first type of structure
uses standard microscope objectives and eyepieces to form an infinity microscope optical
system, and the smartphone platform is only used as an image recording and display
device. Compared with traditional camera sensor acquisition equipment, the smartphone
platforms, with integrated image acquisition and display features, provide strong com-
patibility, having the advantage of instant observation. The second type of structure uses
the imaging lens and CMOS image sensor as an optical imaging and image acquisition
device. Under this structure, a customized singlet lens with optical magnification capability
is used as the objective lens for microscopic imaging, such as ball lens, aspheric lens or
liquid lens. These customized singlet lenses are not sensitive to the gap between themselves
with smartphone camera lens, so the total volume can be optimized. Distinct from the
customized singlet lens design, since the multiple lens group matches the image sensor of
the smartphone platform, the inverted pinhole/phone camera lens provides a third type of
imaging optical path design, which can correct the image aberration and make better use of
the image of the smartphone platform. As examples in Figure 8, based on the smartphone
platform’s convenient and fast wireless data transmission capability, deep learning image
enhancing and deep learning recognition algorithms would broaden applications of these
cost-effective and portable microscopic imaging systems in medical diagnosis, disease
diagnosis in remote areas testing and food safety testing [77,78].

3.1. Smartphone-Based Phase Contrast Microscopy

Image vision contrast in clinical microscopy is often achieved by chemical staining
or labeling. By these dying methods, specific features of the sample can be enhanced, but
they require extensive sample preparation. Label-free phase contrast imaging techniques
do not require staining, and have not been developed for several years. Due to the higher
cost of the associated optical hardware and the complexity of the system, their applications
are limited. Now, computational, low-cost and portable microscopes based on smartphone
platforms make label-free phase contrast techniques useful and possible in the fields of on-
site testing and remote medical diagnosis [79–82]. To improve the quality of phase contrast
images collected by smart-phone microscopes, deep learning networks can also transfer the
style of directly collected images. Deep learning methods can extremely improve low-cost
smartphone-based microscopes up to the imaging performance of bench-top microscopes.
Bian et al. designed a portable microscope based on a smartphone platform, where an
aspheric single lens is used as the imaging objective lens. The image data are transmitted to
the computer through 5G/WIFI communication. Combined with the deep learning method
of image style transfer, a virtual DPC image is obtained. Figure 9a,b show the structure
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and workflow of this setup. Traditional Zernike phase contrast microscopes require the
insertion of a circular Zernike phase plate at the Fourier plane of the microscope objective.
Also, traditional differential interference microscopes require finely assembled birefringent
crystals such as Wollaston prisms. Now, only a self-designed aspheric single lens is used
and a deep learning-based generative adversarial network to obtain a virtual phase contrast
image with the same effect. Besides, the computational illumination could also achieve
phase contrast microscopy, as shown in Figure 9c. These efforts by deep learning to transfer
image style and improve the spatial resolution, will close the performance gap between
smartphone microscopy and state-of-the-art bench-top DPC microscopy systems.
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Figure 8. Smartphone-based bright-field microscope with deep learning. (a) Deep learning en-
hanced mobile-phone microscopy [77], and (b) a photograph of the smartphone-based bright-field
microscope. [78].

Figure 9. Smartphone-based phase contrast microscopy setups: (a) a 2D principle schematic based
on a singlet objective and deep learning architecture for image enhancing [81]; (b) a 3D mechan-
ical design [81]; (c) smartphone-based phase contrast microscope based on computational LED
illumination [79].
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3.2. Smartphone-Based Dark-Field Microscopy

Similar to bench-top dark-field microscopes, in Figure 10, smartphone-based dark-
field microscopes can also use ring illumination [83–85]. Instead of a dark-field condenser
to achieve ring illumination, the outer ring of the LED array can be activated to provide
ring illumination by using a programmable LED array. The LED array realizes dark field
imaging by modulating the illumination aperture to be larger than the numerical aperture
of the objective lens. Smartphone dark-field microscopy could also be based on total
internal reflection (TIR) prism. TIR-based dark-field microscopy methods provide better
signal-to-noise ratios than traditional oblique illumination-based dark-field microscopy,
while eliminating the need for annular illumination apertures.
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3.3. Smartphone-Based Quantitative Phase Microscopy

Digital holographic microscopes based on quantitative phase imaging have attracted
much attention due to their quantitative phase imaging capabilities. Taking advantage
of the cost-effective light source and compact system structure, various portable digital
holographic microscopes have been designed based on smartphone platforms for sample
observation and measurement [86–88]. Lee et al. also proposed a low-cost design for
molecular diagnostics via digital holography on a smartphone platform [88]. Although
LEDs can be used as light sources in portable smartphone digital holographic microscopes,
a pinhole is still required to meet the requirement of illumination coherence. Furthermore,
the high-resolution images would be reconstructed computationally based on diffraction
algorithms. While both quantitative intensity and phase of the sample can be recovered
from the hologram, the process is still time-consuming, including back-propagation and
phase recovery. Based on these optical wave diffraction methods, Meng et al. developed an
accurate, high-contrast, cost-effective, and portable phase imaging microscope based on a
smartphone platform [86]. The system can be used to image biological samples such as Pap
smears. In this TIE-based smartphone phase imaging microscope, the system resolution is
~1 µm, which can be used for 3D morphological studies of red blood cells. Phillips et al.
used a hemispherical illuminator composed of an LED array as the illumination source
and attached to an inverted smartphone platform-based microscope system. Compared
to planar LED arrays, hemispherical LED arrays offer significantly better light efficiency,
enabling shorter acquisition times and more efficient power usage.

3.4. Smartphone-Based Fluorescent Microscopy

When equipped with the appropriate accessories, fluorescence microscopy imaging
is possible on a smartphone platform. This would provide more diagnostically-oriented
biomedical observation [89–104]. A typical smartphone platform-based fluorescence mi-
croscope consists of an excitation light source (LED or laser diode), an emission filter, and
an objective lens. In Figure 11a,b, smartphone fluorescence microscopes are proposed,
which use an LD or an LED to excite the test tube sample. After passing through the
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sample, the fluorescence emission is collected perpendicular to the excitation direction. The
key accessories of the epi-optical path are fluorescence excitation modules, which contain
excitation filters, dichroic mirrors and emission filters. They can realize the orthogonality
of the excitation optical path and the fluorescence emission optical path, and improve the
signal-to-noise ratio of microscopy imaging. Wei et al. proposed a smartphone fluorescence
microscope using laser diode oblique incidence illumination [100,103,104]. The sample
is backlit by the excitation beam of a small laser diode with a wavelength of 450 nm at
an incidence angle larger than the numerical aperture of the objective lens. This results
in a high signal-to-noise ratio for imaging nano-scale analytes including DNA molecules,
nanoparticles and viruses. Dai et al. used PDMS inkjet printing lens technology to design a
lens with both focusing and filtering functions, and integrated the dual-function printing
lens into a smartphone fluorescence microscope system [102]. The system’s structure is
shown in Figure 11c. LEDs are used for bright-field imaging and LDs are used for fluo-
rescence imaging. After inserting the LED chip or LD chip into the illumination source,
the light source chip is positioned by two micro magnets and connected to the electrodes,
which automatically turns on the LED or LD. The collimated laser beam irradiates the
sample at an incident angle of 45◦, which was greater than the acceptance angle of the dual
function printing lens. Therefore, the excitation light is not directly coupled into the image
sensor, effectively reducing the background noise.
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3.5. Smart-Phone Microscopy Application Examples for POCT and Biomedicine Diagnosis

For sperm counting and monitoring, Computer Assisted Sperm Analysis (CASA) and
Visual Assessment (VA) are the two assessment techniques used in the analysis. A method
is proposed for sperm count analysis using smartphone microscopes and computers. [33]
Smartphone microscopes are used to acquire image videos similar to visual assessment
(VA) techniques; the videos of the samples are recorded by a high-resolution camera with
a resolution of 1920 × 1080 and 30 Hz. Then the image data are wirelessly transmitted
to the computer sever. A computerized sperm count software (CSCS) is designed to
count and monitor sperm using a counting chamber. In contrast to the CASA system,
a smartphone-based microscope offers a lower cost design. Compared with CASA and
VA-based sperm count analysis, the proposed smartphone-based sperm concentration
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analysis is very attractive due to its modularity, functionality, accuracy, and cost. Using an
LED light source, a dark-field condenser, and a 20× objective with a mobile phone camera,
Sun et al. developed a dark-field smartphone microscope that can quantify nanoparticle
signals for various research and medical applications [83]. The device captures images up
to 8.0 megapixels. It weighs less than 400 g, and costs less than 2000 USDs. This method
forms the basis of most clinical trials, combining kinetic and biomarker quantification,
and provided a novel nanoparticle-based diagnostic assay for tuberculosis. The system is
simple, robust, nanoparticle-based activity and quantitative analysis in resource-limited
regions. Yang Zhenyu et al. demonstrate the integration of a quantitative phase imaging
(QPI) method into a smartphone platform [87]. It is used for imaging red blood cells,
with a resolution of about 1 µm. For algorithms, the computations actually run on a more
powerful server. The computation time is less than 1 s. This device exhibits acceptable
capabilities in erythrocyte imaging and reconstruction of cell thickness from computed
phase maps for 3D morphological studies. In another example, a fluorescence microscopy
imaging platform is developed on a mobile phone. [88] They demonstrated their platform
for fluorescence imaging of labeled leukocytes in whole blood samples. Besides, water-
borne pathogenic protozoan parasites, such as Giardia cysts, are successfully imaged over
a large FOV of 81 mm2. A resolution of 10 µm is achieved. This compact and cost-effective
fluorescence microscopy imaging platform weighs only about 28 g and measures about
3.5 × 5.5 × 2.4 cm. This setup could potentially be used for various lab-on-a-chip assays
developed for global health applications, such as monitoring CD4-cell count or virus
measurement for HIV patients.

4. Singlet Microscopy

Singlet lens is also another attractive way to achieve portable and low-cost microscopy
setups. Commercial microscope objective lens and other imaging lens have become inex-
pensive due to mass industrial production. However, as they consist of multiple pieces
of lenses, the cost mainly focuses on the lenses’ mounting and testing. In contrast, singlet
lenses have no need for precise assembly, alignment and testing. The singlet lenses can re-
duce the time, money and labor cost extensively, resulting in a further price and integration
revolution of imaging devices [105].

4.1. Singlet Bright-Field Microscopy

In Figure 12, the singlet microscopy setup is combined with only one aspheric lens and
deep learning computational imaging technology [105]. The designed singlet aspheric lens
is an approximate linear signal system. In this singlet microscopy setup, MTF curves on all
FOVs are almost coincident with each other. The purpose of this design is to further improve
imaging performance by using a deep learning algorithm. The total setup weighs only 400 g.
By the sample of USAF-1951 target and pathological tissue slices, the experimental results
show that both the resolution ability and FOVs of the singlet microscope are competitive
with those of a commercial microscope with the 4X/NA0.1 objective lens. Figure 13 is the
algorithm flowchart of the employed deep learning computational imaging method [105].
The algorithm includes two parts: the first is about the training stage of deep neural
networks (DNN), and the other is the practical working stage. For the R/G/B illumination
microscope, the data should be recorded separately, and the DNN training is executed
respectively. The improved R/G/B channel images by deep learning would be combined
as a colorful image computationally.
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4.2. Singlet Achromatic Microscopy

The most attractive element of the singlet lens is freedom from precise testing, assem-
bly, and alignment. These are very helpful for the application of portable and low-cost
microscopes. But when the singlet is with only one kind of material, it would be difficult
to overcome wavelength spectrum dispersion and chromatic aberrations. In Figure 14,
the singlet lens and the deep learning image-style-transfer algorithms are combined to
achieve achromatic aberrations [106]. These concepts and experiments have been proved
and executed in clinical pathological slide microscopy. In the realm of hardware, the singlet
aspheric lens is designed and fabricated. The lens has a high cutoff frequency and linear
signal properties. There is only one mono-chromatic LED illumination, and the images are
recorded by the CMOS image sensor. For algorithms, an image-style-transfer deep learning
network is trained, which transfers mono-chromatic-illuminated greyscale microscopy
images to virtual chemically stained images. A ‘U-Net’-like GAN framework architecture
is designed to achieve image-style-transfer. Before the image-style-transfer, a conventional
deep learning deconvolution method is interposed to improve the resolution and image con-
trast. In other computational art-applications, such as photo-to-comics, photo-to-painting,
day-to-night and others, the textural details are not important. However, for medical and
pathological observing, the image texture and high-resolution-content features should be
kept in the virtually colorized images. In the proposed ‘U-NET’-like generator network, it
strongly retains the high-resolution-content features of the original greyscale images. The
loss function also contains two targets. One is to achieve the style transfer, and the other is
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to keep the high-resolution-content features. As shown in Figure 15, by experiments, data
analysis and discussions, the proposed virtual colorization microscope imaging method
is effective for H&E stained tumor tissue slides in singlet microscopy. It is believable
that computational virtual colorization method for singlet microscopes would promote
low-cost and portable singlet microscopy development in medical pathologic label staining
observation (e.g., H&E staining, Gram staining, Fluorescent labeling, and so on).
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Figure 15. Experimental singlet achromatic microscopy results [106].

4.3. Singlet Multi-Spectral Microscopy

To obtain more texture-spectrum information under different narrow wavelength spec-
trum bands, multi-spectral and hyper-spectral imaging methods and setups are proposed.
Similarly, these portable and cost-effective multispectral microscopes are necessary in some
remote biomedical applications. In Figure 16, the innovation concerns a portable and
cost-effective multispectral microscopy setup [107]. In the optics hardware, a customized
singlet lens is designed and fabricated. It could control rotational symmetric aberrations
and eliminate the asymmetric optical aberrations. Then the image performance would
be improved by the deep learning enhancing algorithms. The designed method helps to
reduce the extreme difficulties of singlet lens fabrication due to the simple surface pro-
duced by the aberration optimization, while ensuring the high resolution. The singlet
lens connects Zernike polynomial coefficients with singlet lens parameters through wave-
front aberrations. By imaging a gold standard resolution pattern (Figure 17) and typical
bio-samples, experiment results demonstrate that this portable singlet microscope would
achieve multi-spectral microscopy well and cost-effectively.
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picture 8 was imaged by commercial microscope with 4X objective. (b) Sub-picture 1–7 recovered
by deep learning algorithm with 7 wavelength, respectively; and sub-picture 8 was imaged by
commercial microscope with 10X objective.

4.4. Singlet Virtual Phase Contrast Microscopy

Phase imaging microscopy is for observing biological tissues and cells in vitro. With-
out chemical dying and fluorescent labeling, transparent and weakly scattering biological
tissues/cells are imaged as the relative/quantitative phase information distribution. Con-
ventional phase contrast microscopes consist of extensive precise and clean optics elements,
which limits their usage, such as Zernike phase contrast (ZPC) microscopes (Figure 18a). In
Figure 18, a singlet virtual Zernike phase contrast microscope is proposed for unstained
pathological tumor tissue slide. In optics hardware, the objective lens is only one piece
of lens. And there is no inset Zernike phase plate, which is even more expensive than a
whole bright-field microscope setup. The Zernike phase contrast is virtually achieved by
the deep learning computational imaging method. In the practical virtual Zernike phase
contrast microscopy, the computational time consumed is less than 100 ms, which is far
less than other computational quantitative phase imaging algorithms. By a conceptual
demo experimental setup, it is competitive to a research-level conventional Zernike phase
contrast microscope and effective for the unstained transparent pathological tumor tissue
slides. Figure 18b is a singlet objective lens utilized to achieve virtual ZPC microscopy
based on the deep learning computational imaging method [108]. The circular illumination
part is still a Kohler illumination modulated by an annulus stop. However, instead of
the conventional microscope objective consisting of multiple lens, a customized aspheric
singlet lens is used here. The pathological tissue slide is at the objective plane, while a
digital CMOS image sensor is at the conjugate imaging plane. But only based on the optic
hardware in Figure 18b, one could not get a ZPC microscopy image of the transparent
pathological tissue slice. One needs to computationally process the directly-recorded image
by the deep learning ZPC-transfer method. In Figure 18c, the ‘using stage’ of the singlet
virtual ZPC microscopy is presented. Before the ‘using stage’, ZPC-transfer DNN kernel
would be deeply trained in the ‘training stage’. When the digital CMOS image sensor
records an image, this image would be convoluted with the ZPC-transfer DNN kernel.
Then the visual contrast of the microscopy image would be improved.
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4.5. Singlet Meta-Lens Microscopy

Due to its ultrathin and flat structure, meta-lens has shown its wonderful capabilities
in modulating and controlling light. Compared to the thick lens, the meta-lens has the most
advantage of its high integration. This advantage would be very attractive for a portable
microscope in the coming 5G+ telecommunication and AI era. Its high integration would be
a good substitute for traditional thick lenses. In Figure 19, the ultrathin meta-lens is directly
mounted on a CMOS image sensor, which constructs a highly integrated microscopy
setup [109–111]. Different from conventional microscope objectives, the working distance is
about sub-millimeters. The designed meta-lens is with NA0.78, made of GaN, in Figure 19a.
The designed NA of this meta-lens objective lens is 0.37. The objective resolution is ~1.74
µm under the illumination wavelength of 630 nm, with a unit magnification. And the
objective resolution is ~1.23 µm, with a 1.5×magnification. Besides, this meta-lens array
approach would flexibly expand the FOV without sacrificing the resolution ability. This
FOV extension method would achieve a high space-bandwidth product (SBP) for a wide-
field microscopy application. Figure 19b shows the centimeter-scale FOV microscopy
imaging, with a very high compact integration. But the illumination light should be
polarized, with LCP light or RCP light. In this highly integrated microscopy setup, the
meta-lens objective lenses are fabricated as a 6 × 6 meta-lens array. The total size of this
setup is ~3.5 cm × 3 cm × 2.5 cm. Moreover, using the wavelength spectrum dispersion of
the meta-lens, a highly integrated microscopy setup would develop tomography without
mechanical scanning. Using the large diffractive dispersion property, this portable and
cost-effective microscope would get an excellent tomographic imaging ability with a large
DOF. And it successfully achieves the microscopic imaging for a frog egg cell. In conclusion,
since the nature of ultrathin, flat and highly integration, the singlet meta-lens shows high
potential in portable, low-cost and computational microscope in the 5G+ telecommunication
and AI era.
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4.6. Singlet Microscopy Application Examples for Biophotonics

Shen et al. propose a deep learning singlet microscope with imaging performance
competitive with research-level commercial microscopes [81,105–107]. It has a total size of
about 10 cm × 10 cm × 20 cm and weighs only 400 g. The resolution is up to 1.38 µm and
a large FOV (diagonal 5 mm) is achieved. Since the singlet objective is a plastic model, it
is very cost-effective compared to commercial objectives. The H&E stained pathological
tumor tissue slides are successfully imaged multi-spectrally and colorfully. It can be seen
that the portable singlet microscope has great application potential in biology, materials
science, environmental science and other fields. Xu et al. demonstrate a compact imaging
device with integrated meta-lens for wide-field microscopy [111]. The meta-lens is directly
mounted on the image sensor. The device is based on a silicon lens working in the red
wavelength range, with an overall size of about 3.5 × 3 × 2.5 cm. In this application,
bio-samples of Pap smear and dragonfly wing are successfully imaged as the resolution
of 1.74 um and a FOV of 1.2 × 1.2 mm2. Chen et al. proposed a metalens-based spectral
imaging system that achieved high lateral and vertical resolutions, i.e., approximately
775 nm and 6.7 µm, respectively, with an aspheric GaN metalens (NA = 0.78) [110]. This
computational portable microscopy setup successfully imaged the bio-sample of frog egg
cells and showed excellent tomographic images of cell membranes and nuclei with distinct
depth-of-focus (DOF) features.

5. Super-Resolution Microscopy
5.1. Super-Resolution Fourier Ptychography Microscopy

With optical microscopy developing, super resolution, large FOV, and phase imaging
have been the hot researching focus. In some research-level microscopic setups, super-
resolution and phase imaging capability have been outstanding advantages, compared with
traditional microscopic imaging setups. But these advantages are at the cost of complex
hardware structure, complicated operations and reducing other imaging performance, such
as stochastic optical reconstruction microscopy (STROM), stimulated emission depletion
(STED) microscopy and fluorescence emission difference (FED) microscopy. Fourier ptycho-
graphic microscopy (FPM) is an attractive and typical method to achieve QPI microscopy
and super-resolution simultaneously, without affiliated precise optomechanical elements.
Thus FPM has shown its high value and application prospect in low-cost portable micro-
scopes [112–116]. In a typical FPM microscope, an LED array provides illumination from
different directions. The CMOS image sensor collects a series of low-resolution images in
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turn. High spatial resolution, large FOV and quantitative phase imaging are achieved by
computational phase recovery algorithms. Actually, FPM is the lens-based Fourier domain
form of PIE, which is an extension of PIE phase recovery technology. The FPM uses a
programmable LED array to provide flexible wavelength and illumination angles. FPM
setups go beyond their super-resolution microscopy, and also computationally achieve
quantitative phase imaging and tomography. Unlike a traditional Kohler lighting module,
the illumination light source of FPM is a programmable LED array board. By sequentially
illuminating each LED unit, the plane wave illuminates the bio-sample slide in different
directions, while simultaneously the CMOS image sensor captures a series of low-resolution
images. Each digitally recorded image corresponds to relative sub-spectral regions of the
bio-sample. The illumination wave vector determines the center of the circular sub-spectral
region. The illumination wavelength and the NA determine the radius of the region. In the
assumed physical and mathematical model of FPM, the light wave from one LED, with
wave vector of

(
kx, ky

)
, illuminates the thin sample. This means a central shift

(
kx, ky

)
of

the sample Fourier spectrum. The complex amplitude transmittance function t(x, y) can be
used to represent the sample information. When the illumination plane wave goes through
the sample, the distribution of the transmitted light can be expressed as:

Eout(x, y) = Ein(x, y)·t(x, y), (3)

where Ein(x, y) is the complex function of the incident light. The FPM phase recovery
process consists of the following five steps:

(1) Generate the initial value of high-resolution complex amplitude in the spatial domain,√
Ih exp(iϕh).

(2) Filter the illumination plane wave at a certain vector in the Fourier domain. And
an inverse Fourier transform is implemented to generate a low-resolution image,√

I1 exp(iϕ1).
(3) The collected low-resolution image intensity Ilm is replaced by I1, and the correspond-

ing sub-regions in the Fourier domain are updated.
(4) Repeat Steps (2) and (3) for inclined plane wave irradiation from N vectors.
(5) Repeat Step (2) to Step (4) for a new round of iterative update. The termination

conditions for iteration updating can be set in advance.

According to Step (1) to Step (5) above, the inverse Fourier transform is performed in
the Fourier domain, and then the high-resolution quantitative phase information is obtained
in the spatial domain. Based on this FPM framework, some low-cost computational super-
resolution microscopes have been achieved.

5.2. Super-Resolution Lens-Less Microscopy Based on Sub-Pixel Displacement

The sub-pixel displacement of the sampling plane with respect to the CMOS image
sensor is one of the super-resolution methods [117–120]. This mechanical lateral displace-
ment could be carried out by displacement of the sample/sensor or moving the light source.
When the sample/sensor is being displaced, the displacement accuracy must be at the
sub-pixel level. This is usually the sub-micron displacement, which will increase the cost
significantly. However, using the lateral displacement of the light source to obtain sub-pixel
shifted images can greatly reduce the cost. Assuming that the gap between the light source
and the sample is z1, the gap between the sample and the CMOS image sensor is z2. In
a unit-magnification lens-less microscope, z1 is much longer than z2, i.e., z1 >> z2. The
ratio between the light source’s lateral movement and the corresponding displacement of
the CMOS image sensor is z1/z2. Therefore, moving the light source would reduce the
precision requirement of the system’s mechanical displacement. As a consequence, this
method of improving the resolution achieved by the mechanical displacement of the light
source is widely used in lens-less super-resolution phase imaging. Although moving the
light source has lower requirements on the accuracy of the stage than the displacement
sensor/sample, mechanical displacement is still required. In order to reduce this mechani-



Cells 2022, 11, 3670 22 of 29

cal displacement, the light is coupled to different fibers. After optical fiber coupling, these
fibers are accurately assembled into a small area, which not only realizes the light source’s
lateral displacement, but also promotes the spatial coherence of the light source.

5.3. Super-Resolution Lens-Less Microscopy Based on Wavelength Scanning

Similar to scanning the angles and sub-pixel, wavelength scanning would also achieve
super-resolution lens-less microscopy. A wavelength-tunable laser would be used to
generate wavelengths ranging from 498 nm to 510 nm (with an interval of 3 nm), and each
dominant wavelength corresponds to a spectral width of about 2 nm [121]. Furthermore,
additional multi-angle illumination and multi-height were added during the experiment.
For the algorithm, a high-resolution correction matrix process for calculating limited light
intensity is incorporated into the phase recovery method based on synthesizing apertures.
Reference [119] shows the schematic diagram of the device. Based on 60 holograms,
5 angles of illumination and 12 wavelengths of illumination, the pixel size of the final
1.12 µm camera achieves a resolution of 0.5 µm.

5.4. Super-Resolution Lens-Less Microscopy Based on Multi-Angle Illumination

In super-resolution lens-less microscopes based on multi-angle illumination (Figure 20),
the light source is mounted on a rotating arm in order to achieve oblique illumination of
two orthogonal axes. In the super-resolution algorithm, the light source has a lateral motion
at every angle. Thus, the high-resolution hologram images are generated by synthesizing
holograms at each angle [122]. This approach is extremely similar to the FPM framework.
Different angles of light are equal to the synthesis of Fourier spectrum information. The
reconstruction relays on the derived G-S recovery algorithms backward and forward, be-
tween the spatial domain and the Fourier domain. By recovering the super-resolution
complex amplitude information at the sensor plane, the information is propagated back
to the object surface through numerical diffraction calculation. Ultimately, the objective
light intensity and phase distribution with high resolution are obtained. Actually, sub-
pixel displacement, wavelength scanning and multi-angle illumination could be combined
simultaneously to achieve lens-less super-resolution.
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5.5. Super-Resolution Lens-Less Microscopy Based on Axial Scanning

Axially scanning the distance is used between the CMOS image sensor and the sample
for super-resolution lens-less microscopy [123]. The CMOS image sensor collects low-
resolution light intensity in different defocus planes. After computational reconstruction,
pixel super-resolution and phase recovery would simultaneously be achieved. This method
introduces pixel transfer function into the traditional iterative phase recovery method.
TIE is used to solve the phase as the initial value of iterative reconstruction, which can
significantly accelerate the speed of iterative reconstruction. This proposed adaptive G-S
iterative phase recovery imaging algorithm can be considered as an incremental gradient
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descent optimization algorithm. This algorithm not only maintains the fast convergence of
the initial iteration by the incremental gradient method, but also remarkably improves the
robustness. With the camera pixel size of 1.67 µm, the half-width resolution of 0.77 µm was
finally achieved based on 10 defocus holograms.

5.6. Portable Super-Resolution Microscope Applications on Biomedical Observation

For observing CTCs, using a portable FPM setup, the researchers obtained high res-
olution color images of large FOV micro-filter samples, with a quantitative phase data.
This portable FPM setup can refocus the 300 µm depth range of the sample. The sample
image acquisition time is about 3 min, the reconstruction time of each color channel is about
10 min, and it takes a total of 39 min to generate a color image of a large FOV with a quanti-
tative phase data. This portable FPM setup demonstrated high image quality, efficiency,
and consistency in detecting tumor cells when the corresponding micro-filter samples were
compared to standard microscopes with high correlation (R = 0.99932). Bishara et al. report
a sub-pixel-shift-based lens-less super-resolution microscope. It is a compact on-chip micro-
scope weighing approximately 95 g [71]. It is capable of reconstructing holographic images
(amplitude and phase) of observed objects (e.g., human malaria parasites) with a resolution
of less than 1 µm. Its FOV reaches up to 24 mm2. This lens-less on-chip microscope has
successfully imaged malaria parasites. The results show that a compact and lightweight
on-chip microscope is important for addressing global health problems such as diagnosing
infectious diseases in remote areas. Luo et al. report a wavelength-scanning-based pixel
super-resolution technique [121]. The technique allows analysis of achromatic (e.g., un-
stained) and stained/stained organisms. The red blood cells with a large area is used as
the typical bio-sample. Besides, Luo et al. also provide a multi-angle illumination lens-less
super-resolution microscopy technique [122]. To demonstrate the validity of this synthetic
aperture-based holographic on-chip microscope, unstained Pap smears are successfully
imaged on a very large FOV of 20 mm2. This compact synthetic aperture-based approach
on-chip microscopes can be used in a variety of applications in medicine, physical science,
and engineering that require high-resolution, wide-field imaging.

6. Discussion

The above computational portable microscopes show attractive potential applications
for point-of-care-tests and tele-diagnosis. But, as developers and users, we should not
be too optimistic. Usually, a computational portable microscope is developed for certain
biomedical applications. Once designed, its function is almost unchangeable. That means
one setup for one application. When faced with other applications, the setup should be
modified slightly. Besides, for computational algorithms, unfortunately, some popular
computational approaches are also marred by lack of universality, risking the generation
of errorri artifacts. For example, the well-known issues with ‘over trained’ AI-based
algorithms. It is not a big problem to generate a nearly ideal AI model for the selected
data set, but design and validation of the robust, stable, and universal AI-algorithms is
a different story. As for validation, some proof-of-concept studies do not cover this part
much. Thirdly, low-cost is another claimed advantage. Commonly, research-level and
desktop microscopes have been widely used in the medical centers and scientific institutes,
which are relatively expensive. For example, a bright-field microscope is about $3000, a
dark-field microscope is about $3000, a fluorescence microscope is about $10,000, a Zernike-
phase-contrast (ZPC) microscope is about $20,000, a differential-interference-contrast (DIC)
microscope is about $20,000, a laser confocal microscope is about $0.15 million and a
super-resolution microscopy imaging system is about $1 million. Although computational
portable microscopes are not widely purchased as a universal commercial price, the cost of
computational portable microscope would be estimated as Table 1.
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Table 1. Estimated prices of key optical and electronic elements in computational portable micro-
scopes.

Type Elements Cost

Lens-less Microscopy

Light source under $1

Sensor $50 to $200

Structure under $10

Smart-phone microscopy

light source under $1

Smartphone under $800

Objective lens $10 to $100

Customized singlet lens under $100

Reversed smartphone camera lens under $50

structure under $10

Singlet microscopy

light source under $1

Sensor $50 to $200

Singlet lens under $100

structure under $10

Super-resolution microscopy

light source ~$500

Sensor $50 to $200

Lens $10 to $100

structure under $100

7. Conclusions

With the needs of POCT and tele-diagnosis increasing, computational portable micro-
scopes become more and more necessary in bio-photonics and bio-medicine applications.
As electronic products, home computers, computer sever stations and AI algorithms de-
velop fast. Their costs are approaching an acceptable level due to the industrial mass
scale effect. Thus, these cost-effective optical, electronic and computational resources are
easy to get [124]. Obviously, in above mentioned lens-less microscopy setups, smart cell-
phone microscopes, singlet lens microscopes and super-resolution portable microscopes,
the components are easy to be collected by a designer. Moreover, the widely applied
5G+ telecommunication and WIFI wireless networks make it very convenient to transfer
big-data, for example, high resolution images. The available computer sever station and
cloud storage space would provide cheap computational resources, with a powerful hash-
rate. These available hardware and software environments provide the base condition for
developing computational, portable and low-cost microscopes. Briefly, this is the best era
for POCT and tele-diagnosis [124–127]. It is believable that more ideas and innovations for
developing computational, portable and low-cost microscopes for POCT and tele-diagnosis
would boom.
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