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Abstract

Background: The Hedgehog (Hh) signaling pathway, acting through three homologous transcription factors

(GLI1, GLI2, GLI3) in vertebrates, plays multiple roles in embryonic organ development and adult tissue homeostasis.

At the level of the genome, GLI factors bind to specific motifs in enhancers, some of which are hundreds of kilobases

removed from the gene promoter. These enhancers integrate the Hh signal in a context-specific manner to control the

spatiotemporal pattern of target gene expression. Importantly, a number of genes that encode Hh pathway molecules

are themselves targets of Hh signaling, allowing pathway regulation by an intricate balance of feed-back activation and

inhibition. However, surprisingly few of the critical enhancer elements that control these pathway target genes have

been identified despite the fact that such elements are central determinants of Hh signaling activity. Recently,

ChIP studies have been carried out in multiple tissue contexts using mouse models carrying FLAG-tagged GLI

proteins (GLIFLAG). Using these datasets, we tested whether a meta-analysis of GLI binding sites, coupled with a

machine learning approach, could reveal genomic features that could be used to empirically identify Hh-regulated

enhancers linked to loci of the Hh signaling pathway.

Results: A meta-analysis of four existing GLIFLAG datasets revealed a library of GLI binding motifs that was substantially

more restricted than the potential sites predicted by previous in vitro binding studies. A machine learning method

(kmer-SVM) was then applied to these datasets and enriched k-mers were identified that, when applied to the mouse

genome, predicted as many as 37,000 potential Hh enhancers. For functional analysis, we selected nine regions which

were annotated to putative Hh pathway molecules and found that seven exhibited GLI-dependent activity, indicating

that they are directly regulated by Hh signaling (78 % success rate).

Conclusions: The results suggest that Hh enhancer regions share common sequence features. The kmer-SVM machine

learning approach identifies those features and can successfully predict functional Hh regulatory regions in genomic

DNA surrounding Hh pathway molecules and likely, other Hh targets. Additionally, the library of enriched GLI binding

motifs that we have identified may allow improved identification of functional GLI binding sites.
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Background
The Hedgehog (Hh) signaling pathway is critical for em-

bryonic organ development and adult tissue homeostasis

across animal phyla [1–4]. In multiple tissue-specific

settings, Hh signaling directs specific cell fate choices,

controls tissue patterning and governs cell proliferation.

In mammals, Hh signaling originates with any of three

ligands (Sonic hedgehog (Shh), Indian hedgehog (Ihh) or

Desert hedgehog (Dhh)) (for Review see [5]). Release of

the lipid modified HH ligand has been shown to be facili-

tated by SCUBE in conjunction with the transmembrane

protein Dispatched [6–9]. Once discharged, HH ligands

interact with the Patched (PTCH1 or PTCH2) receptor

protein and with Hh-binding proteins BOC, CDO and

GAS1 on target cells to relieve PTCH-dependent in-

hibition of the Smoothened (SMO) transmembrane

protein [10, 11]. HH ligands can also be sequestered by

the Hedgehog-interacting protein (HHIP), which dampens

signaling [12].

Hh-mediated signal transduction culminates in the

nucleus, with the binding of zinc-finger transcription

factors (GLI1, GLI2, GLI3) to target gene sequences

[13, 14]. However, proteolytic processing determines

whether the GLI proteins act as repressors or activa-

tors. GLI1, which is not processed, functions exclusively

as a transcriptional activator and may act to amplify Hh

signals [15]. GLI2 and GLI3 can be converted to a re-

pressor form in the absence of Hh ligand. In the pres-

ence of the Hh ligand, this processing is inhibited,

allowing full-length GLI proteins to traffic to the nu-

cleus and activate gene expression [15–17]. Processing

of GLI proteins requires passage through the cilia [13, 18];

the kinesin KIF7 helps to properly construct the cilium

and is enriched at the cilium tip, along with GLI and

SUFU (Suppressor of Fused) [19].

The Hh signaling pathway is regulated by both positive

and negative feedback. Indeed, a number of Hh pathway

components, including Boc, Cdo, Gas1, Gli1, Hhip, Ptch1

and Ptch2 are thought to be direct transcriptional targets

of Hh signaling in multiple tissue contexts [12, 15, 20–29].

Thus, an important aspect of Hh pathway self-regulation

is integrated at the level of the enhancers that control

response of the pathway target genes to local Hh signaling

levels. However, despite the high functional conservation

of this pathway, surprisingly little is known about the

enhancer elements that control self-regulation in any

organism.

One way to identify Hh target enhancers is to perform

chromatin immunoprecipitation (ChIP). Genetically modi-

fied mouse models carrying inducible FLAG-tagged GLI

proteins have allowed analysis of GLI binding sites in vivo

in several different tissue contexts. Four in vivo GLI bind-

ing studies, including three ChIP-chip analyses [26, 27, 29]

and one ChIP-seq study [25], have been carried out using

these models. Interestingly, examination of all four data-

sets for common GLI binding sites that are annotated to

Hh pathway molecules reveals only three such sites (in

Gli1, Ptch1, and Ptch2 loci [15, 24, 28]) that are uniformly

detectable. Several other established Hh pathway genes,

including Boc, Hhip, Gli2, and Hipk2, appear to exhibit

different GLI-bound genomic locations, depending on

context, suggesting that each of these pathway compo-

nents is regulated by multiple distinct genomic enhancers

that have context-specific features.

Using ChIP studies on diverse tissues, it may be pos-

sible to eventually identify all of the multiple enhancers

that control each target gene in every context. While a

valuable goal, such analyses are currently expensive and

time consuming and often technically challenging where

the number of cells available for analysis is limiting, as in

many developmental contexts. Importantly, computational

methods can reveal sequence features that characterize

enhancer activity. We therefore asked whether analysis of

all existing GLI ChIP data could reveal common sequence

features that might be used to empirically and globally

predict functional enhancers de novo. A publicly available

machine learning approach, kmer-SVM [30], was used to

predict novel Hh enhancer regions. This tool uses a

support vector machine (SVM) to determine sequence

features (k-mer frequencies) that identify positive genomic

regulatory regions [31]. SVMs are classifier algorithms

that define a boundary between members of two different

groups. Kmer-SVM calculates weights for sequence fea-

tures that determine the effectiveness of that feature to

distinguish between positive and negative regulatory re-

gions. Once the features are determined, they can be used

to identify novel enhancer regions not present in the

original positive set. The strength of this approach is that

it relies exclusively on short regions of DNA sequence

(length 3–10 bp) which are in the size range of tran-

scription factor binding sites (TFBS). Additionally, the

organization of the k-mers within a sequence does not

impact the score; this feature is consistent with the

variable arrangement of TFBS in enhancers [32, 33].

Using the kmer-SVM tool [30], analysis of the four

existing GLI binding datasets identified a set of k-mers

that appeared to successfully predict potential GLI-

regulated enhancers. Application of this set of k-mers

to the mouse genome pinpointed over 37,000 potential

enhancers. Several putative enhancers that were anno-

tated to Hh pathway components were then tested for

their ability to drive Hh-dependent activity in transfected

cells. The functional significance of the GLI binding

motifs (GBM) was also tested within each active enhancer

by mutation. Of the nine predicted regulatory regions

tested, seven (78 %) drove reporter expression in a GLI-

dependent fashion. These findings substantially increase

the number of functionally verified Hh enhancers found
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in Hh pathway molecules and validate the use of machine

learning on ChIP data as a valuable tool to empirically

predict likely Hh-dependent regulatory regions.

Results and discussion

Analysis of GLIFLAG datasets to identify likely in vivo GLI

transcription factor binding motifs

A previous in vitro analysis of GLI transcription factor

binding resulted in the identification of a set of likely

binding sites for this factor [34]. However, this spectrum

of sites may not accurately represent GLI binding site

preferences in vivo. To begin to examine this, we per-

formed a meta-analysis of four existing GLI-ChIP datasets.

All of these datasets utilize transgenic mice carrying

FLAG tagged GLI1 (GLI1FLAG) or GLI3 (GLI3FLAG) in the

ROSA26 locus, activated by Cre recombination, in four

different tissue contexts: limb bud development (LD) [27],

cerebellum development (CD), medulloblastoma (MB)

resulting from Hh signaling overexpression [29], and

neural progenitor cells (NP) [25]. An additional study of

neural progenitors [26] was excluded from analysis since

it contained a low number of significant peaks and mirrors

the same experimental conditions as the NP dataset [25].

For each of the datasets, the reported percentage of ChIP

peak sequences with GLI binding motifs (GBM) was as

follows: LD 55 %, CD 26 %, MB 46 %, and NP 91 %. How-

ever, the definition of GBM was not the same across all

datasets: one study allowed only two mismatches from the

consensus [27] and others generated a GLI motif de novo

based on the sequences of recovered peaks [25, 29].

To collate the spectrum of GBM observed in all four

datasets, we applied a de novo motif enrichment analysis

to each dataset individually [35]. Sequences that contained

at least one site that matched the de novo motifs were re-

moved from the dataset. The remaining sequences were

analyzed for residual motifs that resembled a GBM using

DREME [36] and Tomtom [37] (see Methods). This re-

sulted in 548 putative GBM (12-mers) (Additional file 1:

Table S1), encompassing the range of GBM that are

present in existing ChIP data. This set therefore represents

a collection of likely genomic GLI binding sites, although

some functional GLI binding sites in vivo could be absent

from this set and some false positive sites may be in-

cluded. Each 12-mer was classified as high confidence

(HC), medium confidence (MC), or low confidence (LC) if

it was found within sequences from all four datasets, two

to three datasets, or one dataset, respectively. The sequence

logos [38] for each classification, provided in Fig. 1a, show

a nearly absolute representation of CCxC in positions 4–7

for all sites. Indeed, concordant (C and C or G and G)

Fig. 1 Definition of GLI binding motifs (GBM) and characterization of GLIFLAG datastets. a Sequence logos (Weblogo) of 12-mer GBM. High confidence

(HC), medium confidence (MC), and low confidence (LC) GBM are found in all four (HC), three or two (MC) or one (LC) datasets. b Relative frequency

of peaks containing one or more GBM in the GLIFLAG ChIP-chip LD (red), CD (blue), MB (green), and GLIFLAG ChIP-seq NP (yellow) datasets. A

high proportion of sequences contain only one GBM. c Overlap of sequences identified by all four GLIFLAG datasets; only 26 individual peaks

are found in all contexts
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nucleotides at the 5th and 7th position were previously

found to be required for GLI binding [39]. Interestingly, for

high confidence sites, there is no variation at 5 of the

12 positions, including the 5th and 7th positions

(xGxCCxCxCxxx).

Using the recommended matrix similarity score cutoff

of 81 % overall matrix similarity to the optimal consen-

sus GLI site as defined by the in vitro DNA binding

assay [34] results in 1,432,161 putative GLI TFBS across

the mouse genome. This is substantially more than the

191,745 found using the new GLI library defined by the

in vivo ChIP studies. However, several of the sites pre-

dicted by the in vitro binding studies do not contain the

concordant (C and C or G and G) nucleotides at the 5th

and 7th position. Thus, the newly generated GLI library

(Fig. 1a) may more accurately represent functional GBM.

According to this new library of 548 GBM, 41 % of

LD, 27 % of CD, 32 % of MB, and 80 % of NP peaks con-

tain putative GLI binding sites. For those sequences that

contain a GBM, the vast majority contain only a single

site (85.5 % LD, 90.7 % CD, 88.0 % MB, 89.8 % NP)

(Fig. 1b). The overlap of genomic binding regions among

datasets is shown in Fig. 1c; only 26 genomic coordi-

nates are shared among all datasets (Additional file 2:

Table S2). Since pathway components must respond to

the Hh signal in all tissues, it might be expected that this

common response would be integrated by a single en-

hancer. However, only three of the 26 shared regions

are annotated to known Hh pathway components

(Gli1, Ptch1, Ptch2). Indeed, for Boc and Hhip, distinct

genomic GLI binding regions are found in different

datasets. This result suggests that some of these genes

may have multiple enhancers that work to transduce

the Hh signal in different tissue contexts.

Given this apparent complexity in regulatory regions,

we next asked whether the existing datasets of ChIP peaks

might contain additional sequence information that could

be used to predict the location of other Hh-responsive

enhancers in the mouse genome. A machine learning

approach was employed to test this question.

Assessment of kmer-SVM performance and prediction

Kmer-SVM assessment of classification using GLIFLAG

datasets

For each GLIFLAG dataset, only sequences with at least

one GBM (wGBM, meaning with GBM) were used. This

was done since a high proportion of the ChIP-chip data-

sets did not contain a putative GLI binding site as de-

fined in the original papers (LD 55 %, CD 26 %, MB

46 %, and NP 91 %) or by our assessment (41 % of LD,

27 % of CD, 32 % of MB, and 80 % of NP peaks). Each

individual dataset was submitted to kmer-SVM and the

ability of each classifier to correctly label a candidate se-

quence as positive was assessed. Background sequences

were randomly selected from the genome, but matched

for GC content with the positive set.

Kmer-SVM randomly divides the data as follows: 80 %

of the sequences are used as a training set and 20 % are

used as a testing set. The ability of the classifier built

with the training set to accurately identify the members

of the remaining 20 % testing set is then assessed. This

is repeated five times, each with a different random

division of the data. Receiver operating characteristic

(ROC) curves and precision recall curves (PRC) are used

to assess the success of the classifier to correctly label

regions in the testing set as positive (see Methods).

ROC curves display the cumulative distribution of the

true positive rate compared to the false positive rate.

This characteristic assesses how well the classifier is able

to label the positive sequences from the test set. The

area under the curve was 0.898 for LDwGBM (Fig. 2a),

0.856 for CDwGBM (Fig. 2b), 0.862 for MBwGBM

(Fig. 2c) and 0.976 for NPwGBM (Fig. 2d). Thus, the

classifier performs best in LD and NP datasets.

PRC displays the predictive value against the true posi-

tive rate and represents the accuracy of the labeling. The

PRC plots indicated high values for LDwGBM (AUC =

0.753) and NPwGBM (AUC = 0.880) but low values for

CDwGBM (AUC = 0.490) (Fig. 2f ) and MBwGBM

(AUC = 0.546) (Fig. 2e-h). The ROC and PRC plots for

LDwGBM and NPwGBM datasets suggested that the

classifier sequence features used were able to distin-

guish between positive and negative groups with a low

level of false labeling.

Predictions

The classifiers for LDwGBM and NPwGBM were then

individually run on 600 bp of sequence centered on

every GBM in the mouse genome (191,745, as deter-

mined using the new GBM from in vivo data, described

above). Use of both the LDwGBM and NPwGBM data-

sets for prediction incorporated data from the GLI1FLAG

(predominately activator) and GLI3FLAG (predominantly

repressor) transcription factors in two diverse contexts

(neuronal precursor and limb development).

The length of 600 bp was selected based on motif

enrichment analysis of the LD and NP datasets using

MEME-ChIP [40] and Centrimo [41]. This analysis

showed that, within the ChIP-chip LD dataset, enrich-

ment for the location of GLI motifs (green line) has a

broad profile that spans 200 bp to either side of the

midpoint (Additional file 3: Figure S1A). The GLI motif

has a narrower profile in the NP data, a feature that is

expected for ChIP-seq (Additional file 3: Figure S1B).

The profile for the Sox motif (blue line), an established

tissue specific GLI cofactor [25], shows an enrichment

peak that is centered around 200 bp on either side of the

midpoint (Additional file 3: Figure S1B) and suggests
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that cofactors for Hh may reside outside of the immediate

vicinity of a GLI binding site. We therefore used 600 bp to

capture both common Hh features as well as potential

context specific sequence.

For the LDwGBM classifier, scores ranged from −4.33

to 12.00 with 18.4 % of the 191,745 analyzed genomic

regions scoring as positive (Score > 0). The NPwGBM

results ranged from −2.54 to 5.48 with 5.7 % positive

(Fig. 3a; Additional file 4: Table S3). The categorization

of a sequence is dependent on the sign of the score and

the weight of the value is less important than the rank-

ing. Overall, the correlation between scores for individ-

ual genomic regions calculated by the LDwGBM and

NPwGBM classifiers is poor (0.68 Pearson) (Fig. 3b).

However, if only sequences with positive scores are

considered, the correlation improves (0.85 Pearson). If

scores are restricted to values indicating only the high

confidence scores (calculated posterior probabilities = 1.0,

Additional file 5: Figure S2), the values are very well corre-

lated (0.96 Pearson). In total, 8627 genomic regions were

predicted as Hh enhancers by both classifiers. Of those,

1198 regions (14 %) overlapped at least one peak in the

four GLIFLAG datasets. Among high confidence scores

(LDwGBM: 5951 ≥ 1, NPwGM: 547 ≥ 1) 528 genomic

regions were shared between the two datasets and 187 of

these (35 %) overlapped with peaks from at least one of

the four GLIFLAG datasets. All of the scored regions are

listed in Additional file 4: Table S3.

Evaluation of predictions

To assess whether kmer-SVM predictions were likely to

represent Hh enhancers, we examined whether the pre-

dicted genomic regions overlapped publically available open

chromatin and enhancer histone marks in tissues that were

likely to be transducing Hh signals. We first examined the

DNaseI hypersensitive profile collected from mouse

mesoderm at E11.5 at genomic regions that were pre-

dicted with high confidence as positive (1 ≤ score; pos-

terior probability = 1) or negative (−1 ≥ score; posterior

probability = 0) (Additional file 5: Figure S2). A signifi-

cantly higher proportion of overlap was found with the

predicted positive regions than with predicted negative

regions (Z-Score = 2.8332; p-value < 0.05) (Additional

file 6: Table S4). We also examined publically available

H3K4me1, H3K4me3, and H3K27ac ENCODE data col-

lected from heart and liver at E14.5. Monomethylated

H3K4 (H3K4me1) and histone H3 acetyl Lys27 H3K27ac

[42] were used as enhancer markers while trimethylated

H3K4 (H3K4me3) was expected to be depleted in enhan-

cer regions [43]. Although Hh signaling is active during

early development of both tissues, available in situ analysis

for GLI1 (GenePaint: EN1215) [44, 45] shows GLI1

expression in liver but not heart at E14.5 (Additional

file 7: Figure S3). Thus, we expected signals for both

H3K4me1 (poised enhancer) and H3K27ac (active en-

hancer) to be enriched in the predicted positive re-

gions in liver but not heart at this time point. Indeed

Fig. 2 Assessment of classification capability of kmer-SVM trained GLIFLAG datasets containing sequences with at least one GBM. For all curves,

each dataset is randomly split into 80 % for training and 20 % for prediction and the prediction is repeated five times (represented by individual

lines). Plots assess the likelihood that the specified classifier can successfully predict sequences that have at least one GBM as positive or negative.

a-d ROC plots depicting true positive rates (TPR) and false positive rates (FPR). Area under the curve (AUC) scores as calculated by kmer-SVM are:

0.89 for LDwGBM (a), 0.85 for CDwGBM (b), 0.86 for MBwGBM (c) and 0.97 for NPwGBM (d) datasets. e-h Precision recall curves depicting the

positive predictive value (PPV), calculated as true positive / (true positive + false positive), versus the TPR. AUC of 0.75 for LDwGBM (e) and 0.88

for NPwGBM (h) indicate reasonable confidence in the classification while AUC of 0.49 for CDwGBM (f) and 0.55 for MBwGBM (g) indicate a low

probability that the region is correctly labeled when the sequence is classified as positive
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this was the case: H3K4me1 (Z-Score = 2.5511; p-value <

0.01) and H3K27ac (Z-Score = 8.076; p-value <0.01), with

no significant difference in H3K4me3 when predicted

positive regions were compared to predicted negative re-

gions. As expected, the heart data did not show enrich-

ment for H3K4me1 or H3K27ac. Together, the results

(summarized in Additional file 6: Table S4) are consistent

with the conclusion that the kmer-SVM classification cor-

rectly identifies Hh enhancer regions.

Next, we evaluated the sequence features, or k-mers,

that kmer-SVM identified as primary components of Hh

enhancer regions. The weights of k-mers are calculated

during the SVM training and reflect the contribution of

the k-mer to categorization of a sequence. Weights can

be positive or negative and the sum of the weights of

iterative k-mers across a sequence comprise the overall

score of that sequence. Not surprisingly, alignment of k-

mers with high scoring weights shared between both

datasets returned a motif that strongly resembles the

GBM (Fig. 3c). Unique high weighted k-mers that oc-

curred in each individual dataset represented potential

context specific features. An E-box motif was identified

for the LDwGBM dataset while a Sox motif was returned

for NPwGBM (Fig. 3d). Negative weights that occurred

in both datasets include AC and ACC repeats as well as

other C rich sequences.

Functional verification of GLI-dependent enhancer activity

Predicted genomic regions were annotated to the two

nearest genes using GREAT [46]. Because our goal was

to identify enhancers for Hh pathway components, we

selected a subset of predictions that were positive in

both the LDwGBM and NPwGBM datasets and that were

annotated to members of the GO:0007224 Smoothened

signaling pathway gene set. Because Hh pathway compo-

nents are required for active Hh signaling, we reasoned

that enhancers annotated to these genes would be more

likely to function in any tissue that transduces Hh signal.

Therefore, high scoring regions annotated to different

members of the GO:0007224 gene set that were readily

cloned were functionally tested for enhancer activity. Two

previously known Hh enhancers for Ptch1 and Ptch2

appeared on this list [24, 28]. Interestingly, an estab-

lished Gli1 regulatory region was not predicted [15].

The test set consisted of genomic regions annotated to

Boc, Gli3, Hhip, Hipk2, Ptch1, Scube1, Shh, and Tgfbr2.

An additional region, annotated to Dpp6 (near Shh)

was also tested (Table 1).

The nine genomic regions were screened for Hh respon-

siveness in a cell culture assay that has been previously

used to validate Hh enhancers [47, 48]. In this assay,

C2C12 cells are transiently transfected with constructs

containing the putative Hh regulatory region cloned

Fig. 3 Assessment of genomic kmer-SVM predictions using classifiers trained on LDwGBM and NPwGBM datasets. a All genomic sequences matching

the restricted 548 GBM 12-mers (wGMB) were identified and the 600 bp surrounding each GBM were assessed and scored using the kmer-SVM classifier

that was trained on each of the two datasets. b Correlation plot depicting the relationship between LDwGBM and NPwGBM scores; scores >1 are highly

correlated in the two datasets. c GLI motif generated from overlapping high weighted k-mers shared between LDwGBM and NPwGBM

classifiers. d High weighted k-mers (identified by Tomtom) represented in either LDwGBM (Tcf and Zfp) or NPwGBM (Fox and Sox)
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upstream of a minimal promoter that drives luciferase

expression (see Methods). To induce a Hh response,

enhancer reporter constructs were co-transfected with

a plasmid that drives constitutive expression of GLI1 in

mammalian cells [26]. For those candidate enhancers that

demonstrated apparent Hh activation, GLI-dependent ac-

tivity was confirmed by retesting after mutagenesis of the

GLI binding sites (GKO). Either complete loss of enhancer

activity or attenuation of response in GKO sequence was

considered GLI-dependent. The established Hh enhancer

region for Ptch2 was used as a positive control [28].

For the 9 regulatory regions annotated to Hh pathway

component genes, 7 exhibited Hh activation that was dir-

ectly dependent on a GLI binding site (Fig. 4). The Ptch2

positive control region showed a complete loss of Hh re-

sponse after mutation of the GLI site (Fig. 4) as did the

regulatory regions annotated to Hhip, Hipk2, Ptch1, and

Scube1. Regions annotated to Boc, Dpp6, and Tgfbr2

showed a significant decrease in Hh activation upon GLI

TFBS mutation, but not a complete loss of response. This

suggests that additional regulatory inputs influence the ac-

tivity of these enhancers. Neither the Gli3 nor Shh region

exhibited Hh dependent enhancer activity. However, we

cannot rule out the possibility that these regions might be

positive if examined in a different cellular context [26].

Two previous in silico methods have been described

for the identification of Hh-regulated enhancers in verte-

brates: Enhancer Element Locator (EEL) and Module

Cluster Analysis (MCA). EEL analyzes the estimated en-

ergy of a single transcription factor binding event, as

well as the possible interaction between adjacent, highly

conserved transcription factor binding sites, to detect

potential enhancers [34]. In contrast, MCA utilizes Pois-

son modeling to determine the relative enrichment of

binding sites in highly conserved, non-coding sequence

and, thereby, identify putative enhancers [26]. While

both of these methods have had some success (~25 %)

in detecting putative Hh-regulated enhancers, a disad-

vantage to these approaches is that the search is limited

to regions of high sequence conservation and to regions

close to promoters. In contrast, kmer-SVM approach

used here employs a genome-wide empirical analysis to

locate regions that contain sequence features predictive

of Hh enhancer function. Though these predictions miss

one of the three known Hh pathway enhancers [15] indi-

cating that the algorithm does not capture all Hh-driven

enhancers, the high success rate (78 %) of the kmer-

SVM predictions far exceed the previous prediction rates

for EEL or MCA. It is important to note, however, that

the predictions tested here are all for pathway genes,

which may have a unique signature. It would be necessary

to test additional enhancers in tissue-specific assay

Table 1 Assessment of predicted Hh enhancer regions

Annotated gene Genomic coordinates (mm9) Hh responsive LD CD MB NP

Ptch2 chr4:116,767,757-116,769,455 + + + + +

Boc chr16:44,502,136-44,503,346 + - + + -

Dpp6 chr5:27,248,056-27,249,266 + + - - -

Gli3 chr13:15,764,694-15,765,904 - - - - -

Hhip chr8:82,838,195-82,839,405 + + - - +

Hipk2 chr6:38,614,001-38,615,211 + - - - -

Ptch1 chr13:63669992-63671202 + + - + +

Scube1 chr15:83503053-83504263 + - - - -

Shh chr5:28832033-28833243 - - - - -

Tgfbr2 chr9:116,151,184-116,152,394 + - - - -

Seven of the nine regions predicted to be GLI-driven enhancers were indeed determined to be Hh responsive and GLI binding site dependent in a cell culture

assay. Overlap of the predicted regions with peaks from the GLIFLAG ChIP datasets (LD, CD, MB, NP) is indicated by the plus sign. Boc, Hipk2, Scube1 and Tgfbr2

were predicted by kmer-SVM and found to be positive, even though those regions do not overlap any of the peaks identified in the LD or NP datasets used to

generate the kmer-SVM classifier

Fig. 4 Functional verification of GLI-dependent enhancer activity.

Putative regulatory regions were cloned upstream of a minimal

promoter co-transfected into C2C12 cells, along with a GLI1 expression

vector. Relative activity is plotted (stimulated/basal). The Ptch2 region is

used as a positive control. Novel regions annotated to the Boc, Dpp6,

Hhip, Hipk2, Ptch1, Scube1, and Tgfbr2 loci exhibit upregulation in

response to GLI1 co-transfection (green). Dependence on GLI was

assessed by mutating all putative GLI TFBS (GKO) within the sequence

and retesting in the assay (gray)
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systems (e.g., transgenic mice) to determine the overall

success of this method in identification of tissue-specific

enhancers.

To examine the impact of k-mers that contribute to

predictions of the positive regions, weights were plotted

across each of the sequences. The Ptch2 sequence (Fig. 5a),

a known enhancer region [28], contained matching pro-

files for 8-mers predicted from LDwGBM (red) and

NPwGBM (yellow) that are GC rich and similar to the

GBM k-mers However, mutation of the single GLI TFBS

(Fig. 5b, green box) ablates the Hh response, indicat-

ing that the presence of this GBM is required to trans-

duce Hh signaling. Mutation of the GBMs annotated

by the green boxes for Hhip, Hipk2, Ptch1, and Scube1

(Fig. 5e, f, g, h) is also sufficient to abrogate Hh signal

transduction. For Boc, Dpp6, and Tgfbr2, which show

enhancer activity that remains after ablation of the

GBM (Fig. 5b, c, j), there were no sequence character-

istics that were indicative of a shared feature respon-

sible for this remaining response to induction by GLI1.

The Boc profile was the only one that contained a high

weighted k-mer (annotated with an asterisk) that was

unique to the LDwGBM (red) profile. This k-mer was

similar to a Krox motif (Tomtom p-value < 0.004) [37]

and may be enriched in the LDwGBM dataset as a con-

text specific transcription factor, since it has roles in

limb development [49, 50]. In general, most of the

tested regions contain distributed high weighted 8-mers in

Fig. 5 K-mer weights plotted across sequences that show enhancer activity. Diagrams were generated in UCSC Genome browser and

show coordinate information for regions annotated to Ptch2 (a), Boc (b), Dpp6 (c), Gli3 (d), Hhip (e), Hipk2 (f), Ptch1 (g), Scube1 (h), Shh (i)

and Tgfbr2 (j). Green boxes represent GBM. Weights for LDwGBM and NPwGBM are represented by the red and yellow lines, respectively.

Refseq gene annotations are represented in blue. A putative Krox-20 TFBS (*) that has a high weight in the LDwGBM classifier but not

the NPwGBM classifier occurs in the sequence annotated to Boc. Note that most sequences show weighted k-mers located several

hundred bp from the central GBM, suggesting that sequence motifs that predict Hh enhancer activity may be distributed

Gurdziel et al. BMC Developmental Biology  (2016) 16:4 Page 8 of 11



addition to the central GBM and had profiles that con-

tained consistent peaks in both LDwGM and NPwGBM

datasets (Fig. 5).

Conclusions

We have utilized the kmer-SVM machine learning ap-

proach to examine four existing GLI ChIP databases and

to generate classifiers that can empirically predict func-

tional Hh enhancers from genomic DNA. The analysis

was facilitated by a new GBS library generated from a

meta-analysis of genomic regions identified in in vivo

binding studies [25–27, 29]. When compared to the pre-

vious library derived from in vitro binding studies [34],

this new GBS library resulted in the identification of a

subset (approximately 10 %) of potential GLI transcrip-

tion factor binding sites across the mouse genome. Of

nine predicted Hh target regulatory regions tested, seven

were functionally verified as GLI-dependent. All of the

tested regions were annotated to genes believed to be

components of the Hh pathway and important determi-

nants of the Hh response. Given the high success rate of

Hh enhancer prediction in this small scale screen (78 %),

it is quite possible that a large number of the other

37,000 predicted regions (Score > 0 in Additional file 4:

Table S3) may harbor Hh enhancer activity.

Methods

Computing resources

Except where otherwise indicated, all computational steps

were performed using custom Perl and R scripts.

Publically available datasets

Genomic analysis was conducted on chromosomes 1 to

19, X and Y of mouse build mm9. Mouse ENCODE data

[51] comprising open chromatin DNaseI data that was

collected at embryonic day 11.5 in the mesoderm and

histone (H3K4me1, H3K4me3, and H3K27ac) data

collected from embryonic day 14.5 for heart and liver

were downloaded from the UCSC genome repository

(goldenPath).

Definition of putative GLI binding motifs

The library of putative GLI binding motifs (GBM) was

compiled using de novo motif analysis [35] on each of

the individual GLIFLAG datasets iteratively. Sequences

that contained a GBM were removed from the dataset

and the remaining sequences were analyzed for enriched

motifs using DREME [36]. If Tomtom [37] returned a

GLI motif, the dataset was reanalyzed using

HOMER [35]. The process continued until no residual

GBM remained enriched in the dataset. Confidence in

the GBM was classified as high (HC) if it was shared

across sequences from all four GLIFLAG datasets,

medium (MC) if it was found in two or three datasets,

and low (LC) if it only occurred in one.

kmer-SVM parameters and evaluation of classifiers

Training was run on the Beer lab webserver (http://

kmersvm.beerlab.org/), using a k-mer of length of 8.

Performance of the classifier built by kmer-SVM’s

training algorithm was assessed using Receiver Operating

Characteristic (ROC) and Precision-Recall curves (PRC)

generated within the kmer-SVM program. True positive,

true negative, false positive and false negative counts were

generated by segregating the sets of positive and negative

sequences into a training set (80 % of the sequences) and

a testing set (the remaining 20 % of the sequences). Each

member (individual sequence) of the testing set that is

correctly annotated as positive increases the true positive

count while an incorrect prediction of a positive sequence

as negative increases the false negative count. ROC curves

asses the sensitivity and specificity of the classifier output.

A steep curve with a high area under the curve (AUC) in-

dicates a high true positive rate and a low false positive

rate. PRC evaluate the accuracy and relevance of the clas-

sifier output. A high AUC indicates that the results have a

low false positive rate (high precision) and a low false

negative rate. The trained SVM is evaluated by assessing

its ability to classify the testing set correctly. The classifier

was assessed five times by resetting members in the

training set and testing set.

Cloning of putative enhancer regions

Putative enhancers were amplified from C57BL/6

genomic DNA (supplied by Jackson Laboratory) using

template-specific PCR primers (Additional file 8: Table S4).

A CACC extension was added to the end of one primer to

facilitate directional cloning. PCR fragments were cloned

into the pENTR/D-TOPO vector using the standard kit

(Invitrogen) and then shuttled into the pGL3-Promoter lu-

ciferase vector (Promega) using the Gateway® cloning sys-

tem (Invitrogen). QuikChange mutagenesis (Stratagene)

was used to mutate putative GLI binding sites by replacing

the C in the 6th position to a G.

Luciferase assay

C2C12 cells (35,000) were plated per well on 12-well

plates (10 % fetal bovine serum treated with penicillin,

streptomycin and glutamate). After 24 h, cells were

transfected, using lipofectamine, with 400 ng of the

construct containing the putative enhancer region plus

either a control vector or GLI1 (in equal molecular

weight). Renilla (Promega pRL-CMV) was also included

to normalize transfection efficiency. After an additional

24 h, cell media was changed to no serum to promote

ciliogenesis [52]. Cell lysate was collected after 48 h and

measured for luciferase activity using the Dual-Luciferase®
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Reporter Assay System (Promega) on a Perkin Elmer

Wallac Victor3 1420 Multilabel Counter. Three experi-

mental replicates were collected for each condition.

Additional files

Additional file 1: Table S1. GLI binding motif 12-mers. Library of 12-mers

enriched in GLIFLAG datasets. Motifs were considered high confidence (HC) if

the 12-mer occurred in all four GLIFLAG datasets, medium confidence (MC) if it

occurred in 2 or 3, or low confidence (LC) if it only occurred in one dataset.

(XLSX 17 kb)

Additional file 2: Table S2. Peak coordinates that overlap between all

four GLIFLAG datasets. The 26 regions that have shared peaks across all

GLIFLAG datasets. Peaks are annotated to nearest genes. (XLSX 9 kb)

Additional file 3: Figure S1. Determination of sequence length buffer

surrounding the GBM. Plots depicting the positional distribution of the

best GLI motif (green) were generated by submitting 300 bp of sequence

surrounding the center of each peak to Centrimo. (A) LDwGBM shows a

broad profile for the best GBM, consistent with ChIP-chip data. (B) The

profile for the ChIP-seq sequences from NPwGBM is more narrow and

suggests that most of the GBM fall within 240 bp around the center of

the peak. In neural precursor cells, the motif for the GLI cofactor, Sox, has

a profile that contains a central apex plus two additional summits at a distance

of 240 bp on either side of the peak. This suggests that context-specific TF

binding may occur outside the central peak region. (TIF 15871 kb)

Additional file 4: Table S3. GLIFLAG dataset kmer-SVM scores. kmer-SVM

scores for LDwGBM and NPwGBM datasets. (XLSX 20714 kb)

Additional file 5: Figure S2. Posterior probability of kmer-SVM scores.

Plots depicting the posterior probabilities assigned to scores for both (A)

LDwGBM and (B) NPwGBM datasets. The graphs indicate that scores above

1 have a high confidence of being Hh regulatory regions. (TIF 14263 kb)

Additional file 6: Table S4. Overlap of predicted high confidence

positive and negative regions with embryonic open chromatin. Tabulation

of the number of genomic regions predicted by both LDwGBM and

NPwGBM that are classified with high confidence as Hh enhancer

regions or as nonregulatory regions that overlap with mesoderm

DNaseI (E 11.5) or enhancer markers (E14.5). (XLSX 9 kb)

Additional file 7: Figure S3. Expression of GLI1 within E14.5 mouse

embryo. In situ hybridization of GLI1 (image from genepaint.org, EN1215)

showing active Hh signaling at E14.5 in liver but not heart. (JPG 216 kb)

Additional file 8: Table S5. PCR primers for amplification of mouse

genomic regions. Mouse genomic coordinates (mm9) for primer sequence

used to amplify candidate regions. (XLSX 10 kb)
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