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ABSTRACT
Purpose To investigate if drug solubility in pharmaceutical ex-
cipients used in lipid based formulations (LBFs) can be predicted
from physicochemical properties.
Methods Solubility was measured for 30 structurally diverse
drug molecules in soybean oil (SBO, long-chain triglyceride;
TGLC), Captex355 (medium-chain triglyceride; TGMC), polysor-
bate 80 (PS80; surfactant) and PEG400 co-solvent and used as
responses during PLS model development. Melting point and
calculated molecular descriptors were used as variables and the
PLS models were validated with test sets and permutation tests.
Results Solvation capacity of SBO and Captex355 was equal on a
mol per mol scale (R2=0.98). A strong correlation was also found
between PS80 and PEG400 (R2=0.85), identifying the significant
contribution of the ethoxylation for the solvation capacity of PS80. In
silico models based on calculated descriptors were successfully
developed for drug solubility in SBO (R2=0.81, Q2=0.76) and
Captex355 (R2=0.84,Q2=0.80). However, solubility in PS80 and
PEG400 were not possible to quantitatively predict from molecular
structure.
Conclusion Solubility measured in one excipient can be used
to predict solubility in another, herein exemplified with TGMC

versus TGLC, and PS80 versus PEG400. We also show, for the
first time, that solubility in TGMC and TGLC can be predicted
from rapidly calculated molecular descriptors.
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INTRODUCTION

For many new drug candidates, poor aqueous solubility is a
significant barrier to effective drug development. Typically,
poorly soluble compounds have erratic absorption from the
gastrointestinal (GI) tract (1) and 70–90% of all discovery
compounds have been estimated to have solubility-limited
absorption (2,3). Erratic absorption raises safety concerns as
irreproducible responses may lead to adverse effects or lack of
therapeutic effect. This is often revealed late in development,
in the worst case during clinical studies, resulting in costly and
late project termination. For poorly soluble drugs the dosage
form used to deliver the drug plays a critical role in improving
absorption. Commonly, the formulation is selected by screen-
ing a number of standard formulations and, hence, requires
compound synthesis (4–8). This process is time, labour and
cost intensive. The overarching hypothesis that underpins the
work in our laboratory is that significant improvements in
time and efficiency could be accomplished by the develop-
ment of computational tools to forecast the utility of different
formulation strategies. The importance of this hypothesis is
supported by recent work in which physiology-based pharma-
cokinetics were used in an attempt to predict drug exposure.
In this case, only 23% of the drugs were predicted cor-
rectly after oral administration (compared to 69% of the
i.v. drugs), and this was in part, attributed to poor predic-
tion of formulation performance in vivo (9).

In response to the increased number of highly lipophilic,
poorly water soluble compounds identified during lead opti-
mization, interest in lipid based formulations (LBFs) as a
solution to low solubility has increased (2,10). In contrast to
conventional oral formulations such as tablets, LBFs usually
present the drug to the stomach in a solubilized state. Further,
LBFs maintain a supersaturated state in the intestinal fluid
and hence, increase the concentration in the GI tract and
facilitate GI absorption (4,11). Typically, LBFs consist of oil,
surfactant, co-surfactant and water-soluble organic solvents in
various proportions depending on the molecular properties of
the drug and the purpose with the delivery (i.e. oral,
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transdermal or injectable formulation). The lipid formulation
classification system (LFCS), as proposed by Pouton (12,13),
serves as a tool to classify and compare LBFs with regard to
composition. Although this scheme has rationalized the design
of and characterization needed for LBFs (14,15) the optimi-
zation of these formulations remains a complex, iterative and
labor-intensive task.

One of the most important conditions for a successful
lipid formulation is adequate drug solubility in the lipid
system used (2,16). Efforts to facilitate computational pre-
diction of this property are therefore warranted and are
expected to increase the throughput and lower the costs of
lipid formulation development (2). As described by
Anderson et al. (17), ideal solubility theory and regular
solution theory fail to give an accurate prediction of drug
solubility in polar organic lipid solutes and solvents, due to
the absence of molecular interactions in the calculations.
Similarly, Thi et al. (16) examined the solubility of ten
compounds in ten LBF excipients, but were unable to find
a clear link between the physicochemical properties of the
drugs investigated and solubility in the excipients. Recent
advances in computational technologies, however, have
allowed the development of more complex in silico simula-
tions and models, in which molecular structure,
physiochemical properties and specific solute-solvent inter-
actions may be taken into account. For example, Rane et al.
(18,19) have provided an improved understanding of drug
solubility in mono- and triglycerides by using molecular
dynamics simulations of mixtures of tricaprylin and 1-
mono-caprylin. Through these simulations, the authors
found that drug solubility in such systems was dependent
on the inevitable presence of water and whether the drug
resides in the lipid or water phase, or at the lipid-water
interface. Similar methodologies have also been applied to
other types of lipidic systems (20–22).

To this point, no models exist that accurately predict de
novo drug solubility in the excipients commonly included in
LBFs. Therefore, other means to rationalize the formulation
design have been established. Calculations of solubility in
formulations based on phase diagrams or more simplified
calculations based on solubility determination in the single
excipient have recently shown promising results (23,24). In
the latter, the amount dissolved in a formulation is calculat-
ed based on the fraction of each excipient and the solubility
measured in that particular excipient, and the sum of these
values provide the maximum solubility in the formulation.
Although these studies yield promising results they have so
far investigated only a few compounds, and more impor-
tantly, still require extensive experimental work.

In aqueous systems, solubility has successfully been pre-
dicted from physiochemical properties and molecular struc-
tures using the general solubility theory (25) and more
advanced computational methods such as partial least

squares (PLS) models (26,27). In the current study we have
therefore investigated whether similar approaches are feasi-
ble for the prediction of drug solubility in excipients com-
monly used in LBFs. To this end, the solubility of 30
structurally diverse, poorly water soluble drug molecules
has been measured in four exemplar excipients; soybean
oil (SBO; a long chain triglyceride (TGLC)), Captex355 (a
medium chain triglyceride (TGMC)), polysorbate 80 (PS80,
a surfactant) and polyethylene glycol 400 (PEG400, a co-
solvent). These excipients were selected to provide examples
of the major classes of excipients used in the LFCS. Thus;
SBO and Captex355 are commonly included in LFCS
formulations I–III and PS80 and PEG400 in LFCS class
III–IV (12,13). The measured solubility data was subse-
quently analyzed together with calculated and measured
physicochemical properties using multivariate data analysis
in order to develop predictive computational models and an
improved understanding of solubility in these systems.

METHODS

Dataset Selection and Characteristics

A dataset of 30 structurally diverse compounds were select-
ed for this study (Table I and Fig. 1). Compounds with a
calculated logP greater than 2 were selected to focus on
those with poor aqueous solubility for which LBFs typically
improve bioavailability, minimize interindividual differ-
ences in absorption and reduce food effects (11,28,29). All
drug compounds were purchased from SigmaAldrich (USA)
except acitretin (Ontario chemicals Inc., Canada),
candesartan and candesartan cilexetil (Angene ltd, China),
danazol (Coral drugs IVT, India), fenofibric acid
(Labratoreo chimico internazionale, Italy), halofantrine
(SmithKline Beecham Pharmaceuticals, India) and
itraconazole (Lee Pharma Ltd, India). Felodipine was a gift
from AstraZeneca (Mölndal, Sweden).

SBO, PS80 and PEG400 were purchased from
SigmaAldrich (USA). The representative fatty acid com-
position of SBO was found to be linoleic acid 51% (Mw
280.45 g/mol), oleic acid 25% (Mw 282.46 g/mol),
palmitic acid 10% (Mw 256.42 g/mol), linolenic acid
7% (Mw 278.43 g/mol) and stearic acid 5% (Mw
284.48 g/mol) (30), resulting in an average fatty acid
Mw of 273.0 g/mol. Captex355 was purchased from
Abitec (Janesville,WI). Captex355 is described in the prod-
uct specification to comprise caprylic acid 54.8% (Mw
144.21 g/mol), capric acid 44.5% (Mw 172.26 g/mol)
and lauric acid 0.5% (Mw 200.52 g/mol) providing an
average fatty acid equivalent Mw of 156.7 g/mol.
Acetonitrile (analytical grade) was purchased from Ajax
Chemicals (Australia).
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Solid State Characterization

The melting temperature (Tm), heat of fusion (ΔHf), entropy
of fusion (ΔSf), crystallinity and purity were determined for
each compound by differential scanning calorimetry (DSC).
Thermograms were recorded with a DSC6200, Seiko, Japan
coupled to an automatic cooling system. A sample of 1–3 mg
was placed in a sealed and pierced aluminium pan (TA
Instruments, Delaware), heated from room temperature to
approximately 30°C above their expected Tm at a rate of
10°C/min and purged with nitrogen gas at a flow rate of
80 mL/min. For saquinavir thermal analyses were also
performed at lower (2°C/min) and higher (50°C/min) flow

rates. For candesartan, levothyroxine and saquinavir the solid
state transformation was further observed in a capillary melt-
ing point apparatus (Electrothermal, England).

Solubility Measurement

The solubility studies were performed based on previously
described standard procedures (31). An excess amount of drug
was added to triplicate glass vials containing each of the four
excipients, and the vials were vortexed thoroughly and placed
in a 37°C incubator for the period of the solubility study. Vials
were tightly sealed and vortexed periodically to keep the drug
suspended and were sampled at 24, 48 and 72 h, or longer if

Table I Physicochemical Properties of Investigated Compoundsa

Compound Mw (Da) logP Tm (°C) PSA (Å2) Number of

Nitrogens Double bonds Rotable bonds

Acitretin 326.5 5.6 221 46.5 0 5 6

Bezafibrate 361.9 3.8 185 75.6 1 2 7

Candesartan 440.5 4.6 178 118.8 6 1 7

Candesartan cilexetil 610.7 7.4 167 143.3 6 2 13

Cinnarizine 368.6 5.5 119 6.5 2 1 6

Clotrimazole 344.9 5.2 142 17.8 2 0 4

Danazol 337.5 4.9 227 46.3 1 1 0

Diflunisal 250.2 3.1 213 57.5 0 1 2

Disulfiram 296.6 4.6 67 121.3 2 2 7

Ethinylestradiol 296.4 4.9 183 40.5 0 0 0

Felodipine 384.3 3.6 143 64.6 1 4 6

Fenbendazole 299.4 3.8 226 92.3 3 1 4

Fenofibrate 360.9 5.1 79 52.6 0 2 7

Fenofibric acid 318.8 4.1 184 63.6 0 2 5

Glibenclamide 494.1 4.1 174 122.0 3 4 8

Halofantrine 500.5 8.2 77 23.5 1 0 10

Haloperidol 375.9 3.9 151 40.5 1 1 6

Indomethacin 357.8 4.2 160 68.5 1 2 4

Itraconazole 705.7 6.5 166 104.7 8 2 11

Ivermectin 875.2 4.7 150 170.1 0 5 8

Levothyroxine 776.9 4.6 235 92.8 1 1 5

Niclosamide 327.1 3.6 231 95.2 2 3 3

Noscapine 413.5 3.0 175 75.7 1 1 4

Perphenazine 404.0 4.2 94 59.9 3 0 6

Praziquantel 312.5 2.7 139 40.6 2 2 1

Progesterone 314.5 3.6 128 34.1 0 3 1

Saquinavir 670.9 3.9 nd 166.8 6 4 13

Sulfasalazine 398.4 2.0 255 146.2 4 7 6

Tolfenamic acid 261.7 4.1 213 49.3 1 1 3

Toltrazuril 425.4 6.1 192 111.4 3 3 4

a All physiochemical properties were calculated with DragonX 1.4 (Talete, Italy) except melting point (Tm) which was experimentally determined with
differential scanning calorimetry (see the Methods section). Tm of levothyroxine was taken from Merck index (35). The logP column displays the calculated
AlogP from DragonX 1.4 (Talete, Italy)
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Fig. 1 Molecular structures of the compounds studied. 1. Acitretin; 2. Bezafibrate; 3. Candesartan; 4. Candesartan cilexetil; 5 Cinnarizine; 6. Clotrimazole; 7.
Danazol; 8. Diflunisal; 9. Disulfiram; 10. Ethinylestradiol; 11. Felodipine; 12. Fenbendazole; 13. Fenofibrate; 14. Fenofibric acid; 15. Glibenclamide; 16.
Halofantrine; 17. Haloperidol; 18. Indomethacin; 19. Itraconazole; 20. Ivermectin; 21. Levothyroxine; 22. Niclosamide; 23. Noscapine; 24. Perphenazine;
25. Praziquantel; 26. Progesterone; 27. Saquinavir; 28. Sulfasalazine; 29. Tolfenamic acid; 30. Toltrazuril.
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required to reach equilibrium. Prior to sampling, the vials were
centrifuged at 37°C, 2,800 g for 30 min in a temperature con-
trolled centrifuge (Eppendorf centrifuge 5804R). Approximately
2 drops (20–30mg) of the supernatant were transferred into tared
5 ml volumetric flask and diluted with 66% v/v chloroform in
methanol for the SBO samples or 7% v/v chloroform in meth-
anol for all other samples. Highly concentrated samples were
further diluted prior to the analysis if needed to allow quantifica-
tion using the standard curve established. Drug concentrations
were subsequently determined by reverse phase HPLC (Waters
2795 alliance HT, Waters 2489 UV/visible detector), using a
Phenomenex C18 Gemini 5 μm column (3.0×150 mm). The
compounds were analyzed with suitable mobile phases at a flow
rate of 1 ml/min using compound specific wavelengths.
Equilibrium solubility was determined as the value when the
solubility between two consecutive samples points (24 h time
difference) differed by less than 10%.

To address the impact of water sorption in ethoxylated excip-
ients four compounds (itraconazol, candesartan, danazol and
indomethacin), were chosen as model drugs for complementary
solubility studies performed under dry conditions. The solubility
of the four drugs ranged from low to high in PEG400 and
represents neutral, basic and acidic compounds. The same pro-
tocol as for the solubility studies in ambient conditions were
followed, but to obtain an anhydrous milieu samples were placed
in a desiccator containing phosphopentaoxide and only sampled
once after 72 h or 96 h to minimize water sorption. The relative
humidity in the desiccator was monitored throughout the exper-
iment andmaintained ≤ 1.8%. Anhydrous PEG400 could not be
purchased but a freshly opened container of PEG400 declared to
contain <0.5% w/w water was used. Later the water content in
both PEG400 containers was determined by Karl Fischer titra-
tion in room temperature and under ambient conditions (KF
Coulometer 831, Metrohm). The PEG400 samples were first
dissolved in a 1:3 proportion with anhydrous methanol
(Hydranal-Methanol-Dry). Approximately 2 ml of pre-diluted
sample were injected to the reaction vessel. The titrants used were
Hydranal-Coulomat AG (anodic compartment) and Hydranal-
Coulomat CG (cathodic compartment). The drift was recorded
to <2 ug/ml and all determinations were performed in triplicates.

Statistics and Model Development

Experimentally determined solubility values are reported as
mean ± standard deviation (n≥3). A two tailed t-test (assuming
equal variance) was performed in excel (Microsoft Office
Professional Plus 2010) to assess whether a significant difference
in the solubility values determined under ambient or dry con-
ditions existed. Linear regressions were also performed in excel,
for standard curves and simple correlations R2 (coefficient of
determination) was used to validate the goodness of fit.

To investigate how molecular features and physiochemical
properties influence solubility andwhether solubility in excipients

commonly used in LBFs can be predicted from molecular prop-
erties multivariate data analysis (Simca v13, Umetrics, Sweden)
was performed. Corina 3.0 (Molecular networks, Erlangen,
Germany) was used to convert SMILES strings into three-
dimensional structures, which then were used as input for calcu-
lation of molecular descriptors with DragonX 1.4 (Talete, Italy).
The dataset was sorted into training and test set. Strong outliers
identified in the DModX plot of the principal component
analysis (PCA) of the dataset were excluded from the training
set, and instead placed in the test set, as these otherwise may
distort the model development. The responses used were the
logarithm of the solubility in SBO, Captex355, PS80 and
PEG400 presented as mol compound/mol excipient. The aver-
age molar mass used were 273 g/mol for SBO, 156.7 g/mol for
Captex355,1310 g/mol for PS80 and 400 g/mol for PEG400.
Compounds with qualitative solubility values, e.g. compounds for
which solubility was not determined to better accuracy than
‘smaller than’/‘greater than’ values, were excluded from the
model development. For the remaining compounds PCA was
applied to randomly select the training and the test set with the
criterion that the training set should cover the chemical space of
the test set (Fig. 2). Partial least squares projection to latent
structures (PLS) was then used to identify trends, to predict
quantitative response values and to understand differences be-
tween the different excipients studied. The PLS model develop-
ment followed the standard steps described in previous
publications from our group (26,32,33). Firstly, all descriptors
were de-identified,mean centered and scaled to unity of variance
followed by removal of skewed descriptors. After the initial steps
the matrix submitted for variable selection consisted of 725 vari-
ables. The variable selection was performed in order to decrease
complexity, increase interpretability and robustness (i.e. reduce
noise) of the model and to identify the key molecular properties
of highest importance for excipient solubility. In the next step, all
variables, except the 100 found to be most important for the
response, were excluded based on the variable of importance
(VIP) graph. Thereafter additional variables were removed;
those removed were identified as having low importance for
the response and/or having information duplicated by other
variables and hence, positioned in the same area in the loading
plot. The variable selection was monitored by R2 and the leave-
one-out cross-validated by R2 (Q2) using 7 cross-validation
groups. If the exclusion of variables did not affect, or resulted
in an increase in the Q2, the variables were excluded perma-
nently from the model. The accuracy of the PLS models was
validated by root-mean square error of the estimate (RMSEE)
calculations and permutation tests (100 iterations). The final
models were validated with test sets.

A General Solubility Equation for Lipids

Multiple linear regression (MLR) was performed in excel
(Microsoft Office Professional Plus 2010) to investigate
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correlations between solubility in excipients and selected vari-
ables, with the aim of achieving an easily interpretable equa-
tion similar to the general solubility equation (GSE) described
by Yalkowsky and coworkers for aqueous systems (25). A
number of easily calculated and transparent variables that
were found important during the PLS model development
was included in the MLR analysis, these being the number of
nitrogens (nN), number of double bonds (nDB), polar surface
area (PSA) and number of hydrogen acceptors (nHacc). In
addition, melting point (Tm) was included since this has been
found important in previous studies of homologous series of
compounds (34). Moreover, the ΔSf and the value calculated
fromΔSf(Tm-25)/1364 were investigated as a substitute to the
melting point since these have been shown by Yalkowsky et al.
to be closely related to the solubility of liquid or crystalline
organic nonelectrolytes in aqueous systems (25). Lipophilicity
(AlogP descriptor obtained from Dragon 1.4) was included to
reveal the significance and contribution of this physicochem-
ical property to lipid solubility. MLRwas performed using the
same training and test sets as those used in the PLS model
development to allow complete comparison between the
resulting predictions.

RESULTS

Solid State Characterization

The DSC measurements generated sharp peaks in the ther-
mograms when the compounds melted and the Tm (Table I)
correlated well with literature data for the stable poly-
morphs. However, the thermograms for candesartan and

levothyroxine were unclear and therefore these compounds
were further studied in a capillary melting point apparatus
(Electrothermal, England). The Tm of candesartan was con-
firmed by this approach to be 178°C. Levothyroxine melted
quickly above 200°C and the Tm could not be accurately
determined with this method and hence, the literature value
of 235°C as reported in Merck Index (35) was used in the
modelling. Saquinavir did not produce a sharp peak in the
thermogram despite repeated measurements using different
heating rates. Through step-wise analysis of saquinavir, in

Fig. 2 Principal component analysis (PCA) of chemical space covered by the studied compounds. PCA was used to select training and test sets for the
solubility model development. Principal components 1 and 2 are shown explaining 52% of the chemical variation observed in the dataset. a The training
(black dots) and test (grey squares) sets used for SBO and Captex355 model development. b The training (black dots) and test (grey squares) sets used for
PS80 and PEG400 model development. The training set was mainly kept constant in all models, but smaller changes had to be made due to the slight
difference in compounds that were quantitatively determined in the four different vehicles.

Fig. 3 Comparison between the established small-scale method and
literature values using larger volumes of excipients. The downscaled
method was in excellent agreement with literature data and still
allowed at least six consecutive samples to be taken for slowly
dissolving compounds. Literature data were taken from Kaukonen
et al. (37) and the following compounds are included in the valida-
tion: cinnarizine, danazol and halofantrine solubility in SBO and
Captex355.
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which several samples were run but terminated at different
temperatures in the interval of 150–300°C, it was suggested
by visual examination of the samples that the material grad-
ually transformed and likely decomposed as visualised by
colour change. The gradual solid state transformation was
also observed in the capillary melting point apparatus where
solid saquinavir slowly liquefied starting at ~100°C. In con-
clusion, saquinavir does not appear to have a sharp melting

point and at high temperatures decomposes. As such a Tm
could not be determined.

Solubility in Excipients

Thirty poorly soluble drugs were selected and measured for
solubility in four commonly used excipients of LBFs. The
dataset was selected to be as diverse in chemical properties

Fig. 4 Measured solubility in
four different excipients. (a)
Solubility in soybean oil
(SBO; light blue) and Captex355
(dark blue). In SBO bezafibrate,
candesartan, glibenclamide and
levothyroxine were determined
qualitatively due to the solubility
being less than the limit of
detection of the HPLC method
used. Praziquantel could not be
detected due to interfering peaks
with the SBO itself. In Captex355
the solubility in levothyroxine was
determined qualitatively. (b)
Solubility in polysorbate 80
(PS80; dark blue) and
polyethylene glycol 400
(PEG400; light blue). In both
excipients ethinylestradiol was
determined qualitatively due to
the high solubility and limited
amount of compound available.
In PEG400 also saquinavir was
determined qualitatively for the
same reason. All solubility values
are plotted as mean ± standard
deviation.
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as possible but still suitable for development as LBFs. The
dataset had the following physicochemical properties: lipo-
philicity (reflected by the calculated octanol/water partition
coefficient, AlogPoct) 2.0 to 8.2, molecular weight
250.2 g/mol to 875.2 g/mol, polar surface are (PSA) 6.5–
171.1 (Table I) and the compounds were selected to be
exemplar structures of acids, bases and non-ionizable com-
pounds. During the course of the work the standard solubil-
ity method was down scaled and the initial amount of
excipient used (2 g) was lowered to 1 g to reduce the amount
of drug needed. This downsizing resulted in the same solubil-
ity values as those measured in the larger scale (Fig. 3). The
determined equilibrium solubilities ranged from <0.01 mg/g
to 79.9 mg/g in SBO (Fig. 4a), <0.01 mg/g to 168.8 mg/g in
Captex355 (Fig. 4a), 0.7 mg/g to >119.7 mg/g in PS80
(Fig. 4b), and 1.1 mg/g to >300.0 mg/g in PEG400
(Fig. 4b).

For this dataset it was observed that the solubility in
Captex355 frequently appeared to be twice as high as the
solubility in SBO when reported in mg/g (Fig. 4a).
However, when the solubilities were converted to mol solu-
bility the correlation became close to linear (R2 of 0.98)
(Fig. 5a), which demonstrates equal solvation capacity for
the two excipients. Interestingly, the correlation between
solvation capacity of PS80 and PEG400 also proved to be
strong (R2 of 0.85) (Fig. 5b).

Prediction of Solubility in Excipients

The model development was performed in three steps and
the results are presented in Tables II and III. Firstly, PLS
models were developed for all excipients using calculated
molecular descriptors. This resulted in excellent predictions
for SBO (R2 of 0.81, Q2 of 0.76; Fig. 6a) and Captex355 (R2

of 0.84, Q2 of 0.80; Fig. 7a) based on only a few calculated
descriptors. For PS80 and PEG400 only qualitative models
could be developed resulting in R2<0.62 for both vehicles
(data not shown). In the next step we therefore included the
experimentally determined Tm to analyze if this property
would strengthen, in particular, the predictions obtained for
PS80 and PEG400. Interestingly, inclusion of Tm did not
improve the prediction of solubility in PS80 and PEG400
and was in fact identified as a variable of minor importance
and excluded early during model development. However,
inclusion of Tm did improve the solubility predictions for
SBO (R2 of 0.90, Q2 of 0.83; Fig. 6b) and Captex355 (R2 of
0.88, Q2 of 0.83; Fig. 7b).

The finding that Tm together with just a few other
molecular descriptors was sufficient for the prediction of
solubility in SBO and Captex355 led to an investigation
whether a General Solubility Equation applicable to lipids
(GSELipid) was possible based on the current dataset. This
resulted in the following equations based on Tm, number of

nitrogen atoms (nN) and number of double bonds (nDB):

logSSBO ¼ −0:19−0:01Tm−0:26nN−0:21nDB ð1Þ

with an F value of 28.3 and p value of 1.24×10−6, the
results are presented in Fig. 6c.

logSCaptex355 ¼ −0:15−0:01Tm−0:27nN−0:18nDB ð2Þ

with an F value of 26.7 and p value of 1.81×10−6, the
results are presented in Fig. 7c.

The results from the multilinear regression did not improve
by exchanging Tmwith ΔSf alone but the value obtained after
correcting for the Tm (i.e. ΔSf (Tm-25)/1364) gave slightly
better accuracy in the predictions. The latter resulted in R2 of

Fig. 5 Relation between solubility in different excipients. (a) A strong
correlation was observed between the solubility in SBO and Captex355
resulting in an R2 of 0.98. (b) A strong relationship between the solubility
determined in PS80 and PEG400 was also identified resulting in an R2 of
0.85. The latter indicates that the ethoxylation is the main determinant for
the solvation capacity of PS80.
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0.94 and RMSETe of 0.75 in SBO and R2 of 0.94 and
RMSETe of 0.85 in Captex355.

DISCUSSION

Drug solubility in lipid based formulations is a critical deter-
minant of utility as it defines the maximum possible dose that
can be administered, without resorting to two-phase suspen-
sion formulations. Measurement of drug solubility, however,
is both compound and time dependent and the development
of LBFs would therefore be more cost and time efficient if
solubility in the formulation could be predicted from molec-
ular structure or based on minimal experimental effort.
Recently it was proposed that the maximal drug concentra-
tion that could be obtained in a formulation is possible to
calculate by summing the amounts that can be dissolved in
each excipient fraction in the final formulation (24). Even
though this process requires experimental determination of
drug solubility in each excipient, the total number of solubility
measurements that must be undertaken is reduced since the
potential drug loading of a wide range of excipient combina-
tions can subsequently be forecasted.

In the current work we sought to extend this concept
further either by predicting solubility de novo from drug
physicochemical properties, or to predicting drug solubility
in one excipient from data obtained in another. With re-
spect to the latter suggestion, during the experimental study
we found a strong correlation between the solvation capac-
ities of a wide range of drugs in SBO and Captex355 (R2 of

0.98). We propose that this correlation can be used to
calculate the maximum solubility in e.g. SBO from determi-
nations in Captex355 and hence reduce the experimental
screening efforts. This has additional practical ramifications
as the measurement of drug solubility in the TGMC is
somewhat easier than it is in the more viscous TGLC. This
trend, i.e. that solubility, when measured in mg/g, decrease
with increasing fatty acid chain length has previously been
observed for a small number of compounds (36). Further, a
close relationship between the solvation capacities of TGLC

and TGMC has been suggested based on data obtained for a
limited compound set of five lipophilic drugs (37). The
current work has confirmed these initial trends and expand-
ed the relationship to a significantly larger and more struc-
turally diverse dataset. The equal solvation capacity of
TGLC and TGMC has previously been proposed to reflect
the equal concentrations of ester function per mol of the
vehicle, rather than, for example, the length of the fatty acid
constituents of the glycerides (38,39). A strong correlation
was also obtained between the solvation capacities of PS80
and PEG400 (R2 of 0.85), but not between either of the
glycerides and either of the ethoxylated materials. This in-
dicates that the solubility determinants for PS80 and
PEG400 are related, but different to that of the triglycerides
and infers a specific contribution of ethoxylation to the
solvation capacity of PS80 and PEG400. The experimental
data reported here therefore suggests that drug solubility in
one triglyceride may be predicted from another, and that
solubility in an ethoxylated excipient may be predicted from
solubility in e.g. PEG400. This finding has the potential to

Table III Results from the Model Development of Drug Solubility in Captex355

R2 Q2 RMSETr RMSETe Variables

PLS descriptors 0.84 0.80 0.47 0.73 (n=9) TPSA(NO), ICR, JGI6, Mor21v

PLS descriptors + Tm 0.88 0.83 0.41 0.75 (n=8) TPSA(NO),Tm, Mor18m, nN, GATS7m

MLR 0.83 – 0.45 0.99 (n=8) Tm, nN, nDB

The following abbreviations are used: training set (Tr), test set (Te), partial least square projection to latent structures (PLS), multilinear regression (MLR),
total polar surface area of N and O atoms (TPSA(NO)), radial centric information index (ICR), mean topological charge index of order 6 (JGI6), the 3D
MoRSE signal 18 weigthed for atomic masses (MOR18m), number of nitrogens (nN),Geary autocorrelation lag 7 weighted by atomic masses (GATS7m)
and number of double bonds (nDB)

Table II Results from the Model Development of Drug Solubility in SBO

R2 Q2 RMSETr RMSETe Variables

PLS descriptors 0.81 0.76 0.52 0.25 (n=5) TPSA(NO), DECC, MOR21v, MATS6m, DP06

PLS descriptors + Tm 0.90 0.83 0.44 0.35 (n=4) TPSA(NO), Tm, DECC, TI2, MATS6m, MOR21v

MLR 0.84 – 0.45 0.48 (n=4) Tm, nN, nDB

The following abbreviations are used: training set (Tr), test set (Te), partial least square projection to latent structures (PLS), multilinear regression (MLR),
total polar surface area of N and O atoms (TPSA(NO)), eccentric (DECC), the 3D MoRSE signal 21 weigthed for van der Waals volume (MOR21v), the
Moran autocorrelation lag 6 weighted by atomic masses (MATS6m), Randic global molecular 3D profile number 6 (DP06), melting point (Tm), the second
Mohar index (TI2), number of nitrogens (nN) and number of double bonds (nDB)
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reduce the number of solubility experiments that must be
performed to profile drug solubility across a series of non-
aqueous vehicles.

The main aim of the current work was to investigate if
drug solubility in excipients commonly used in LBFs could
be predicted solely from physicochemical properties, and in
particular whether calculated molecular descriptors could

be used for this purpose. Our modeling efforts resulted in
excellent models for SBO and Captex355, and suggest that
for simple triglyceride lipids this may indeed be true. In
contrast, we were less successful in obtaining models for
PS80 and PEG400. The reasons for the differences in be-
havior of these excipients are unknown and are likely to be
multifactorial. We speculated that two of these reasons were
the relatively small solubility interval of the 30 compounds
in PS80 and PEG400 and the potential for water to have a
greater complicating effect on solubility prediction in highly
ethoxylated excipients. The solubility interval for the com-
pound set in PS80 and PEG400 was ~100 times (i.e. 2 log10
units) whereas the same series of compounds had >10,000
times (i.e. 4 log10 units) difference in solubility in SBO and
Captex355. The smaller solubility interval makes the model-
ing more demanding since the large chemical diversity of
the compounds is not reflected by a large variation in
PEG400 and PS80 solubility. The potential for water to
complicate solubility assessment was well known to us in
initiating the project, but in the first instance the excipients
were not used in their dry state. The main reason for this
was that more valuable predictive data was expected to be
obtained for drug solubility in ‘off the shelf’ excipients, since
these materials typically are used under ambient (non-dry)
conditions during the formulation stage. Additionally, the
practical utility of the data obtained would also be limited
since water will be present during formulation processing,
capsule filling etc. However, after measuring the water con-
tent in PEG400 and also performing solubility studies in
PEG400 under dry conditions it became clear that the water
sorption in this study was minimal and therefore unlikely to
have had a significant effect on the solubility values deter-
mined. The PEG400 used in the original study contained
0.32% w/w water compared to the freshly opened container
which contained 0.11% w/w water. Solubility determina-
tions of itraconazol, danazol and indomethacin confirmed
the first results, no significant difference were seen between
ambient or dry conditions. The solubility of candesartan was
of the same magnitude for both determinations, 13.8±
1.5 mg/g in ambient milieu compared to 16.0±0.6 mg/g
in dry milieu (p=0.042). Candesartan was one of the last
drugs to be determined for solubility in our compound series
and hence is an exemplar of a ‘worst case’ effect of the water
sorption in the ethoxylated vehicles. Based on the measure-
ments we argue that the difficulties in developing quantita-
tive models for PEG400 and PS80 were not results of the
water sorption.

Only a few molecular descriptors were needed to success-
fully predict drug solubility in the triglycerides. For SBO, these
were PSA, eccentric (DECC), the 3D MoRSE signal 21
weighted for van der Waals volume (MOR21v), the Moran
autocorrelation lag 6 weighted by atomic masses (MATS6m)
and Randic global molecular 3D profile number 6 (DP06).

Fig. 6 PLS and MLR models obtained for SBO solubility. (a) PLS model
obtained based on molecular descriptors only. The following calculated de-
scriptors, TPSA(NO), DECC, MOR21v, MATS6m and DPO6 resulted in R2

of 0.81 and RMSEte of 0.25. (b) Including the experimentally determined
melting point (Tm) into the variable selection produced a PLS model with R2

of 0.90 and RMSEte of 0.35. In the final model, six variables TPSA(NO), Tm,
DECC, TI2, MATS6m and MOR21v were included. (c) MLR based on Tm,
number of nitrogens and number of double bonds resulted in R2 of 0.84 and
RMSEte of 0.48. In figures (a–c) the training set is shown as light blue circles
and test set as grey squares.
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Not all of these descriptors are easy to understand. However,
the DECC, MOR21v and DP06 are related to the shape of
2D or 3D structures, whereas MATS6m rather describes the
distribution of the atomic masses in a molecule (based on the
2D structure). The model shows that, in general, all these
properties negatively impact on lipid solubility. The
MOR21v descriptor has negative values for all drugs and
hence, the lower MOR21v descriptor the higher the SBO
solubility. The MATS6m range from positive to negative
values and as such, drugs with negative MATS6m values will
have higher SBO solubility than those with positive values.
Overall, the descriptors found to be of importance to drug
solubility in SBO are related to polarity, shape, size and
atomic mass distribution. Several shape factors were weighted
for size and atomic mass, complicating interpretation, yet the
negative impact of the DECC and DP06 descriptors indicates
that the more elongated the molecule is, the lower the solu-
bility. This effect is likely coupled to the need to form larger
cavities in the SBO in order to solubilize an oval/elongated
molecular structure when compared to that required for more
spherical molecules. As expected, the model also shows that
the larger the PSA, the lower the solubility in TGLC. For
Captex, PSA and MOR21v remained important, and in
addition to these the radial centric information index (ICR)
and the mean topological charge index of order 6 (JGI6)
proved important for the drug solubility. ICR reflects eccen-
tricity but at the atom level (rather than DECC which cap-
tures this information at the molecule level). JGI6 gives
information on the topological charge distribution. JGI6 pos-
itively contributes to drug solubility in Captex355, whereas
ICR contributes negative. Taken all together the results from
the Captex355 model suggests that similar properties (polar-
ity, size and shape) are of importance for solubility in TGMC as
in TGLC but also informs that molecules with low topological
charge index are poorly solubilized in TGMC.

The addition of Tm as a descriptor in the variable matrix
resulted in slightly different models with improved accuracy
for prediction. Based on our compound series we found that
an increase in Tm negatively impacted on the solubility in
both SBO and Captex355, highlighting the impact of the
crystal lattice also on solubility of drugs in lipids. Tm has been
identified previously as an important indicator of drug solu-
bility in lipids using a homologous series of compounds (34),
however, in a recent study based on a small dataset (n=10) of
structurally diverse drug molecules no clear link between Tm
and solubility in triglycerides was found (16). Interestingly we
did not find Tm to significantly influence drug solubility in
PS80 and PEG400. This was surprising as Tm has been
suggested previously to be important in attempts to model
drug solubility in PEG400 (40,41). The latter studies exam-
ined the solubility of a dataset of 92 molecules in PEG400
resulting in solubility differences of more than 50,000-fold. In
that study regression analysis of predicted solubility based on

Tm versus observed PEG400 solubility resulted in models with
R2 of 0.71 and RMSETr of 0.55. Our PEG400model gave R2

values of 0.62 and RMSETr of 0.44. The rather modest
statistics of both of these modeling efforts for drug solubility
in PEG400, regardless of the dataset, modeling technique or
solubility interval used for the prediction, suggests that

Fig. 7 PLS and MLR models obtained for Captex355 solubility. (a) PLS
model obtained based on calculated molecular descriptors only. The following
calculated descriptors, TPSA(NO), ICR, JGI6 and MOR21v resulted in R2 of
0.84 and RMSEte of 0.73. (b) Including the experimentally determined melting
point (Tm) into the variable selection produced a PLS model with R2 of 0.88
and RMSEte of 0.75. In the final model five variables, TPSA(NO), Tm,
MOR18 m, nN and GATS7mwere included. (c) MLR based on Tm, number
of nitrogens and number of double bonds resulted in R2 of 0.83 and RMSEte
of 0.99. In figures (a–c) the training set is shown as dark blue circles and test
set as grey squares.
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solvents containing high fraction of ethoxylated chains are
difficult to predict. We speculate that Molecular Dynamics
simulations of ethoxylated excipients e.g. PEG400 and PS80
may facilitate improved understanding of the solvation capac-
ity of such excipients.

The finding that Tm improved the predictions of drug solu-
bility in lipids, did allow the development of a GSELipid starting
with the properties that were found to be most important during
the PLS model development. Here we included Tm as a prop-
erty describing the dissociation of the molecule from the crystal
lattice. We also added calculated descriptors that were identified
as important during model development and which were be-
lieved to reflect the ability of the drug to interact with the lipid. In
this step descriptors that were easily calculated either manually
(e.g. nDB, nHacc, nN) or through standard and non-expensive
software (e.g. PSA) were included in order to make the GSELipid

widely applicable to laboratories where more advanced software
and calculation programs are not available. This strategy pro-
duced good models based on Tm and calculated molecular
properties (Tables II and III). Exchanging Tm with ΔSf alone
did not result in successful solubility predictions but when it was
combined with Tm slightly better accuracy was obtained.
However, the scope of the MLR was to create a generally
applicable equation based on easily calculated and/or measured
properties. For this purpose Tm is the preferred variable since
this property can be determined with methodologies, e.g. capil-
lary melting point apparatus, were ΔSf is not generated. Further,
when new formulations are explored during e.g. generic product
development and/or life cycle management, the Tm is easily
found for most molecules whereas it is difficult to find e.g.
literature data on ΔSf. Several versions of GSE have been
published to date but to the best of our knowledge this is the
first contribution in which the GSE has been adapted to tri-
glycerides and where the focus has been on predictions across a
structurally diverse dataset of drugs.

CONCLUSION

In this work we have shown that solubility predictions in
excipients can be rationalized at several levels. Experimentally
the solubility in one vehicle may be possible to predict from the
solubility in another, in this study exemplified with the strong
correlation observed for SBO and Captex355, and PS80 and
PEG400. This reduces the experimental screening efforts and
simultaneously reduces the amount of material used during
excipient screening. It was also shown, for the first time that
drug solubility in triglycerides (SBO and Captex355) may be
predicted with high accuracy from calculated molecular de-
scriptors. Molecular properties with strong impact on the
resulting solubility in these vehicles were related to PSA, the
number of nitrogen atoms, the number of double bonds, ec-
centricity, topological charge, size and shape. The PLS

predictions were further improved when Tm was included as
a descriptor, and general solubility equations based on Tm, the
number of double bonds and the number of nitrogens resulted
in accurate calculations of SBO and Captex355 solubility.

However, solubility in the ethoxylated excipients (PS80
and PEG400) was not possible to quantitatively predict from
molecular structure and the inclusion of Tm in the modeling
efforts did not improve the predictions. The difficulty to
predict drug solubility in PS80 and PEG400 may be associ-
ated with the rather small solubility interval obtained in these
vehicles, which from a modeling perspective results in data
that is more demanding to predict. To obtain predictive
models for the ethoxylated excipients other modeling tech-
niques than linear regression approaches e.g. neural net-
works, vector machine or random forest may improve the
predictions and expand the mechanistic understanding of
such systems.
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