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Abstract. Post-transcriptional modification (PTM) in a form of covalently at-
tached proteins like ubiquitin (Ub) are considered an exclusive feature of eukar-
yotic organisms. Pupylation, a crucial type of PTM of prokaryotic proteins, is 
modification of lysine residues with a prokaryotic ubiquitin-like protein (Pup) 
tagging functionally to ubiquitination used by certain bacteria in order to target 
proteins for proteasomal degradation. Pupylation plays an important role in reg-
ulating many biological processes and accurate identification of pupylation sites 
contributes in understanding the molecular mechanism of pupylation. The exper-
imental technique used in identification of pupylated lysine residues is still a 
costly and time-consuming process. Thus, several computational predictors have 
been developed based on protein sequence information to tackle this crucial is-
sue. However, the performance of these predictors are still unsatisfactory. In this 
work, we propose a new predictor, PSSM-PUP that uses evolutionary infor-
mation of amino acids to predict pupylated lysine residues. Each lysine residue 
is defined through its profile bigrams extracted from position specific scoring 
matrices (PSSM). PSSM-PUP has demonstrated improvement in performance 
compared to other existing predictors using the benchmark dataset from Pupdb 
Database. The proposed method achieves highest performance in 10-fold PSSM-
PUP with accuracy value of 0.8975, sensitivity value of 0.8731, specificity value 
of 0.9222, precision value of 0.9222 and Matthews correlation coefficient value 
of 0.801. 
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1 Introduction 

The chemical alterations of proteins after being transformed in the ribosome creates 
a relevant biological reaction in the cell. Post-translational modification (PTM) is alter-
ation of amino acids in the protein sequence, which contributes to diversify the prote-
ome [1, 2] There are many PTMs, listed from methylation [3] and ubiquitination [4] to 
acetylation [5], succinylation [6, 7] and phosphoglycerylation [8]. Recently, the scien-
tific community are looking into another PTM called pupylation.  A bacterial prokary-
otic ubiquitin-like protein (Pup) is an intrinsically unstructured protein with 64 amino 
acids [9]. Pupylation is a process of Pup attaching substrate lysine via is opeptide bonds 
which plays important role in regulating various cellular processes such as protein deg-
radation and signal transduction in prokaryotic cells [10]. Although pupylation and 
ubiquitylation are functionally the same, the enzymology involved in the two are dif-
ferent. Ubiquitylation requires three enzymes (activating enzyme, conjugating enzyme, 
and protein ligase), whereas pupylation requires only two enzymes; deamidase of Pup 
(DOP) and proteasome accessory factor A (PafA) [11-13]. Firstly, C-terminal gluta-
mine of Pup is deamidated to glutamate via DOP and then deamidated Pup is attached 
to specific lysine of substrate proteins by PafA. The prokaryotic pupylation is still 
mostly unknown [14-16].  

It is important to accurately identify pupylation sites to understand the fundamental 
mechanisms of pupylation. The traditional wet-lab experiment to identify pupylated 
site is expensive, inefficient and time-consuming and therefore computational tools for 
prediction are essential. Although there a number of computational methods developed 
for this, the prediction performance is still unsatisfactory. The first predictor to predict 
pupylation sites was proposed by Liu et al., called GPS-PUP which used a group-based 
prediction system (GPS) sequence encoding [17]. Zhao et al., employed the bi-profile 
Bayes feature extraction with support vector machine (SVM) classifier to develop En-
semblePup [18]. Zhao et al., also proposed another computational predictor PrePup 
which uses multiple feature encoding such as position-specific scoring matrix (PSSM) 
conservation scores, structural disorder score, amino acid index property (AAindex), 
secondary structure, solvent accessibility, and feature space with a SVM classifier [19]. 
Another computational predictor PUL-PUP, was established by Jiang and Cao using 
positive-unlabeled learning with a composition of k-spaced amino acid pairs feature 
(CKSAAP) and SVM algorithm [20]. Ju et al., proposed a predictor IMP-PUP by con-
structing features based on the composition of k-spaced amino acid pairs and on the 
basis of semi-supervised self-training SVM algorithm [21]. In SVM based predictor 
iPUP, Tung et al., also used the CKSAAP [22]. Chen et al proposed PupPred, where 
the sequential, structural and evolutionary hallmarks around pupylation sites were in-
vestigated and employed some of the sequence-derived features [23]. The features in-
cluded physicochemical properties, binary features, protein secondary structures, 
amino acid pairs and PSSM with a k-nearest neighbor algorithm in SVM-based classi-
fier. Hasan et al., developed pbPUP predictor on the basis of profile-based composition 
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of k-spaced amino acid pair (pbCKSAAP) encoding with SVM classifier [24]. In recent 
paper by Hasan. et al., shows the progress and challenges faced in protein pupylation 
sites prediction [25]. Most recently, Xuanguo et al., proposed an enhanced positive-
unlabeled learning algorithm (EPuL) which employs only positive and unlabeled sam-
ples. The EPuL algorithm is implemented to select the reliably negative initial dataset 
and then iteratively picking out the non-pupylation sites [26]. In very recent work, Bao 
et al., developed CIPPN which identifies pupylation sites using neural network [27]. 
Most of the predictors have used the benchmark datasets from the PupDB database 
[28].  

Although there are several predictors available, performance of pupylated lysine res-
idues prediction remains unsatisfactory. Therefore, better approaches are needed by us-
ing relevant characteristics of amino acids for perception information. From the exist-
ing predictors, PrePup [19]  and PupPred [23] incorporated evolutionary information, 
but performance can be further improved. In this work, we propose a new predictor 
named as PSSM-PUP (position specific scoring matrix into bigram for pupylation pre-
diction) which employs evolutionary features of amino acids where we computed 
PSSM for each protein for predicting pupylated lysines. We selected a segment com-
prising 21 amino acids, 10 upstream and 10 downstream corresponding to each lysine 
residue for feature extraction. Afterward, profile bigram [29] was computed on this 
segment which is used to define the features of lysine residue. Since there is not enough 
information available from the knowledge of primary sequences, PSSM-PUP is de-
signed to obtain information by evaluating each protein sequence related to pupylation 
sites.  

For this work, we used a benchmark dataset consisting of 153 proteins from PupDB 
database [28]. This dataset has a very high number of non-pupylated lysine residues 
(negative samples) over the pupylated lysine residues (positive samples). We employed 
k-nearest neighbors cleaning treatment [1] to reduce this imbalance. Finally, a LIBSVM 
(library for support vector machines) package was used to develop pupylation predic-
tion. PSSM-PUP has shown improvement in performance compared to existing predic-
tors [20, 21]. 

2 Materials and Methods 

This paper discusses the predictor called PSSM-PUP, which uses PSSM of a protein 
with the profile bigram of amino acids around lysines to predict pupylated and non-
pupylated lysine residues [29]. The following sections discusses the benchmark data 
used for this study, extraction of evolutionary feature via PSSM, computation of profile 
bigram from PSSM for a segment of amino acids around corresponding lysine reside 
and SVM classifier used for pupylation prediction.  

2.1 Benchmark Dataset 

The dataset used in this study was downloaded from PupDB database [28]. It com-
prises of 153 protein sequences with pupylated and non-pupylated lysine residues. All 
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the protein sequences were used for computing the sequence identity of the dataset. We 
used the cd-hit program [30] to have less than 40% sequence alignment. We evaluated 
each protein sequence and retrieved its pupylated and non-pupylated lysine residues. 
We obtained 181 pupylation sites (positive samples) and 2290 non-pupylation sites 
(negative samples).  

2.2 Evolutionary feature via PSSM 

For a given amino acid, PSSM gives its substitution probability with the 20 amino 
acids of the human genome, according to its location in the protein sequence. These 
probabilities are obtained using PSI-BLAST tool that aligns the protein sequence to 
similar sequences found in the protein data bank [31]. PSI-BLAST calculates the prob-
abilities for all the protein sequences in our benchmark dataset. The output of this tool 
are two L x 20 matrices in which L represents the protein sequence length and 20 the 
amino acids of the genetic code. One matrix is called log-odds, while the other one, the 
linear probabilities of amino acids. In this work, the latter is used, i.e., the linear prob-
abilities of amino acids. PSSM extracts promising features relevant for evolutionary 
information [32-38]. 

2.3 Feature Extraction 

In this work, PSSM feature is used to discriminate the pupylated and non-pupylated 
sites by considering 10 downstream and 10 upstream amino acids to the lysine residue. 
The lysine residue in the center, with downstream and upstream amino acids (see Fig. 
1) and makes a total window size equal to 21. We computed predictor’s performance 
with window sizes of 15, 21, 25, 27, 31, 37, 41 and 21 gave the best result. Four of the 
previous studies [19-21, 26]also used window size 21 for pupylation prediction.  For 
the case where a lysine is located towards the N or C terminus of the protein sequence 
and there are not enough residues for either downstream or upstream, the mirroring 
effect  [1, 6, 8, 39, 40] is used (see Fig. 2). Usage of the mirror technique to deal with 
the issue of insufficient residues may not be biologically correct procedure, but it has 
been the most effective solution by far. We can represent each lysine residue with 10 
amino acids downstream and 10 amino acids upstream by 

 S = [L-10, L-9, …, L-2, L-1, K, L1, L2, …, L9, L10] (1) 

The residues L-i (1 ≤ i ≤ 10) are the upstream amino acids and Li (1 ≤ i ≤ 10) are the 
downstream amino acids. It can be observed from Eq. (1) that each lysine residue is 
represented by 21 amino acids, including the lysine itself in the center. The segment S 

describing each lysine residue belongs to one of the two classes (c={0,1}), where a non-
pupylated site falls in class 0 (c = 0) while a pupylated site is categorized as class 1 (c 
= 1). The vector that represents each segment S are extracted from the PSSM values 
obtained for the entire protein sequence. Furthermore, this vector was transformed into 
frequency vector with bigram [29]. The resulting 20 x 20 matrix obtained after the 
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PSSM + bigram transformation was reordered into a 400-dimensional vector, which are 
the evolutionary features representing the segment S.          

 

 

Fig. 1. Shows neighboring residues to the one lysine residues (K). Lysine site with enough up-
stream and downstream amino acids. 

 

 

Fig. 2. Illustrates lysine with insufficient number of amino acids on either left or right of lysine 
residue (K). Left mirroring carried out to get adequate upstream and right mirroring is done to 
get missing downstream amino acids. 

The PSSM + bigram procedure and how each segment S are represented is outlined 
below. PSSM obtained from PSI-BLAST for each protein sequence is a matrix of size 
L x 20. Each element of the matrix, which can be labeled as mij, indicates the transi-
tional probability of j-th amino acid at i-th location in the protein sequence concerned. 
In this manner, PSSM results in the substitution probabilities of the 20 amino acids for 
the given protein sequence. The segment S, which is a small part of the entire protein 
sequence, is therefore a 21 x 20 feature vector after the extraction. The profile bigram 
[29] of segment size 21 was calculated by 



6 

 𝐵𝑝,𝑞  = ∑ 𝑚𝑘,𝑝𝑚𝑘+1,𝑞 20𝑘=1   where 1 ≤  𝑝 ≤ 20  and 1 ≤  𝑞 ≤ 20 (2) 

The Eq. (2) returns 400 frequencies that correspond to 400 bigram transitions. Profile 
bigram is known to give good performance in the different areas of protein analysis 
[29, 41, 42]. The matrix 𝐵 (PSSM + bigram) was reordered into a 400 element feature 
vector 𝐹 as shown in Eq. (3) below. The superscript 𝑇 denotes transpose.   

 𝐹 = [𝐵1,1, 𝐵1,2, … , 𝐵1,20, 𝐵2,1, 𝐵2,2, … , 𝐵2,20, 𝐵20,1, 𝐵20,2, … , 𝐵20,20]𝑇     (3) 

The evolutionary information was computed for the 181 lysine residues in the posi-
tive set (c = 1), as well as for the 2471 in the negative set (c = 0). It is worth noting that 
this method provides a 400-dimensional feature vector in spite of the length of the seg-
ment size. This is an important property of profile bigram where the size of feature 
vector does not increase when larger segment sizes are used.     

2.4 Support Vector Machine 

SVM [43] is one type of supervised learning algorithm in the field of machine learning. 
SVM has been used for both regression and classification purposes but is mostly com-
mon for classification tasks and used in many existing pupylation predictors [19-22, 24, 
26]. The way this algorithm works is by finding a hyperplane that best discriminates 
the two classes i.e. it finds a plane that has the maximum distance between data points 
of the two classes. Moreover, the number of features of these data points has the effect 
on the dimensionality of the hyperplane. For instance, feature size of 2 requires a hy-
perplane that is 1 dimensional (a line). Furthermore, not all classes are linearly separa-
ble. In these cases, non-linear kernels are used. Non-linear kernels map the nonlinear 
input space to a feature space of higher dimension in which the classes can be linearly 
separated. LIBSVM [44] predictor has been employed in this work on Matlab platform 
and the SVM type selected was radial basis function kernel and cost value of 2 and 
gamma value of 0.0250.  

2.5 Statistical measures 

To evaluate the performance of the proposed predictor and compare with the existing 
predictors, few measures which are sensitivity (Sn), specificity (Sp), accuracy (Acc), 
precision (Pre) and Matthews correlation coefficient (MCC) are employed in this work.  

One of the key measure is sensitivity, which evaluates the percentage of pupylated 
residues correctly classified by the model. The predictor achieving high sensitivity 
shows that it can accurately detect those positive instances (pupylated residues) in the 
dataset. Simply when sensitivity equals to 1 makes an accurate predictor and when it 
equals to 0 makes it an inaccurate one. The formula for sensitivity is defined as: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑃𝐿+𝑃𝐿++ 𝑃𝐿−            (4) 

where 𝑃𝐿+ is number of pupylated lysine predicted correctly and 𝑃𝐿− represents the 
number of pupylated lysine incorrectly classified by the predictor 
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On the other hand, specificity assesses the proportion of correctly identified non-
pupylated lysine residues. Specificity of 1 demonstrates an accurate predictor which is 
able to predict negative instance of the dataset (non-pupylated residues) and specificity 
equals to 0 shows predictor is unable to identify non-pupylated residues. The metric for 
specificity is defined as 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑁𝑃𝐿+𝑁𝑃𝐿++ 𝑁𝑃𝐿−           (5) 

where 𝑁𝑃𝐿+ is the number of non-pupylated lysine predicted correctly and 𝑁𝑃𝐿− 
represents the number of incorrectly classified non-pupylated lysine by the predictor 

 
For a predictor to correctly distinguish between positive samples and negative sam-

ples is evaluated by the accuracy of the predictor. Predictor with accuracy equals to 1 
shows an accurate predictor whereas a zero accuracy means predictor is totally incor-
rect. Accuracy is calculated as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑃𝐿++ 𝑁𝑃𝐿+𝑃𝐿+𝑁𝑃𝐿            (6) 

where 𝑃𝐿 and 𝑁𝑃𝐿 are the total numbers of pupylated and non-pupylated lysine 
residues, respectively. 

 
Precision is another assessment measure of the predictor defined as the ratio of the 

number of correctly identify pupylated lysine over sum of correctly classified pupylated 
and non-pupylated lysine residues. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝐿+𝑃𝐿++ 𝑁𝑃𝐿+           (7) 

Final statistical measure used in this paper is the Matthews correlation coefficient 
(MCC).  It shows the value of correlation coefficient between predicted and observed 
instances. If a predictor has MCC equals to 1, it implies a perfect correlation between 
prediction and observation whereas, MCC equals to -1 does not show any agreement. 
MCC metric is calculated as  𝑀𝐶𝐶 = (𝑁𝑃𝐿+ × 𝑃𝐿+)−(𝑁𝑃𝐿− × 𝑃𝐿−)√(𝑃𝐿++ 𝑃𝐿−)(𝑃𝐿++ 𝑁𝑃𝐿−)(𝑁𝑃𝐿−+ 𝑃𝐿−)(𝑁𝑃𝐿++ 𝑁𝑃𝐿−)      (8) 

 
A best predictor is the one that achieves high performance in the five statistical 

measures discussed. However, it should perform better at least in some of the measures 
compared to the existing predictors. A predictor which is unable to predict pupylated 
lysine correctly (low sensitivity) cannot be used for pupylation prediction.  

2.6 Validation Scheme 

The effectiveness of a new predictor needs to be assessed with a validation method. 
There are several validation methods discussed in literature, however, two most used 
ones are the jackknife and n-fold validation scheme [45, 46]. In validation phase, an 
independent test set has to be used to assess the predictor. The Jackknife validation is 
less arbitrary than the n-fold cross-validation and provides unique results for a dataset 
[47].  From the literature, the same validation scheme [19-22, 26, 48] (n-fold cross-
validation) technique is used in this study. The n-fold cross-validation technique is car-
ried out in following steps listed in table 1: 
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Table 1. Steps for cross-validation approach 

1. Split the data samples complementary into n folds of roughly equal sample size 
with similar positive and negative sample size in each. 

2. Use one fold as independent test set and the remaining 𝑛 − 1 folds as training 
data. 

3. Use the training data, adjust the parameters of the predictor 
4. Compute all the statistical measures on independent test set  
5. Repeat steps 1 to 4 for the remaining folds for assessment and calculated the av-

erage of each statistical measure. 

In this study, we conducted 6-, 8- and 10-fold cross-validations for assessing the 
PSSM-PUP predictor and result were recorded 

3 Results and Discussion 

Any proposed predictors need to be assessed in order to measure it performance. For 
this study, we used five statistical metrics: sensitivity, specificity, precision, accuracy 
and Matthews correlation coefficient [19, 20, 22, 24, 49] which are commonly used in 
the literature. The following sections discusses how the class imbalance were treated 
and also presents the results of support vector machine classification. The overall per-
formance of PSSM-PUP and comparison with existing pupylation predictors with five 
metrics are also discussed.  

3.1 Reducing the imbalance between classes 

After analyzing the protein sequence of our dataset, we found out the number of 
positive samples (pupylation sites) is much smaller than the negative samples (non-
pupylation sites). This led to a high class imbalance samples that can cause biased clas-
sification results. Imbalance between samples of different classes is a common issue in 
machine learning and it is crucial to mitigate this problem. This proposed predictor 
removes redundant instances before the classification takes place. We used k-nearest 
neighbor technique in this study to deal imbalance of samples between classes. K-near-
est neighbor technique is very popular in pattern recognition which was reintroduced 
for protein attribute prediction by Chou [50]. To balance both negative and positive 
classes, we removed redundant negative samples using  k-nearest neighbors cleaning 
treatment [25]. We calculated Euclidean distance between all the samples in the dataset. 
We first set the cut-off by dividing the number of negative instance and positive in-
stances (2,290/181) which came to a ratio of 12.65. Thus, K=12 was initially set for 
reducing class imbalance. In other terms, we remove a negative sample if one of 12 
nearest neighbor is a positive sample (calculation based on the Euclidean distance be-
tween the negative sample and all other samples in the entire dataset). After this first 
filtering, the imbalance classes still remained, therefore, we kept increasing the K value 
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until the both the sets were almost similar in size. This method reduced the initial neg-
ative samples of 2,290 to 180 with a threshold value of 70, meaning a negative sample 
was removed if at least one positive sample is present within the 70 nearest neighbor. 
The negative instances were reduced to 180 samples. The positive instances remained 
181 as it can affect the sensitivity. The final dataset after filtering (filtered negative 
samples and positive samples) was used to carry out 6-, 8-, 10- fold cross-validation 
and assess the predictor’s performance.  

3.2 Comparison with existing predictors 

We compared our proposed PSSM-PUP predictor with two recently proposed pre-
dictors: PuL-PUP [19] by Jiang and Cao, and IMP-PUP [20] by Ju et al. Unfortunately, 
we could not compare with EPuL algorithm [25] since the given webserver was not 
working and the software package also did not work. The software package for testing 
were given for these two predictors PuL-PUP [19] and IMP-PUP [20]. Since all exiting 
predictors used the same dataset, it is worth noting that the trained model in existing 
predictors would have utilized some of the same protein sequences in their training 
which are in my test samples. Therefore, for comparison purposes, we used the feature 
extraction method to extract the features from the given software package and trained 
and tested using the LIBSVM classifier. The same train and test sets used in our pro-
posed PSSM-PUP predictor was used to train and test for different folds when compar-
ing with other predictors. We calculated the sensitivity, specificity, precision, accuracy, 
MCC for PSSM-PUP, PuL-PUP and IMP-PUP for 6-, 8- and 10-fold cross-validation 
trials.  

Table 2. Table shows performance assessment of two benchmark predictors and PSSM-PUP for 
6-, 8-, 10- fold cross validation. The highest values in each metric are highlighted in bold. 

Fold Predictor Sensitivity Specificity Precision Accuracy MCC 

6 PSSM-PUP 85.645 92.222 91.920 88.916 0.782 
 PUL-PUP 80.054 74.444 76.188 77.272 0.552 
 IMP-PUP 82.276 72.222 74.856 77.272 0.549 

8 PSSM-PUP 85.598 92.762 92.523 89.174 0.788 

 PUL-PUP 79.891 77.841 78.552 78.873 0.583 
 IMP-PUP 81.719 72.826 75.231 77.280 0.551 

10 PSSM-PUP 87.310 92.222 92.290 89.752 0.801 

 PUL-PUP 81.754 76.111 77.693 78.956 0.584 

 IMP-PUP 82.310 70.556 74.145 76.441 0.537 

 
The comparison of predictor PuL-Pup [19], IMP-PUP [20] with PSSM-PUP is 

shown Table 1. Improvement in performance for PSSM-PUP is seen over PuL-Pup [19] 
and IMP-PUP [20] on sensitivity, specificity, precision, accuracy and MCC. The per-
formance improved slightly for sensitivity but significantly for specificity, precision, 
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accuracy and MCC. It is worth noting that only the feature extraction methods were 
used to get the training and test sets. Same LIBSVM classifier with the same SVM 
parameters was used to train and test the predictors for comparison.  

The promising results shows the ability of proposed PSSM-PUP predictor to cor-
rectly identify pupylated and non-pupylated lysine residues. This is possible since pro-
posed predictor uses significant evolutionary information of protein sequences effec-
tively. This information which is stored in the PSSM of each amino acid around lysine, 
when placed in one matrix of bigram shows important characteristic for detecting mod-
ified lysines. The SVM classifier and its effective use in PTM also improves the out-
come. In short, the combination of PSSM + bigram extracts more information around 
lysine residues, which plays a vital role in predicting pupylated and non-pupylated ly-
sine residues.  

 
Our PSSM-PUP predictor’s software package can be accessed from: 

https://github.com/vinzsingh09/PSSM-PUP.  
 

4 Conclusion 

This paper discussed a new predictor named PSSM-PUP, which has used the com-
bination of PSSM + Bigram efficiently for pupylation prediction. The evolutionary in-
formation hidden in PSSMs that is converted to bigram occurrences shows to be a sig-
nificant feature which can used for prediction. The k-nearest neighbors cleaning treat-
ment also plays an important role to solve imbalance data issue and removing redundant 
samples to balance the dataset. A balanced dataset with support vector machine 
(LIBSVM) has shown PSSM-PUP to perform better than exiting existing predictors. 
For future study, we intend to use structural properties of amino acids for pupylation 
prediction and further explore the use of a 21-residue window for describing lysine 
residues.  
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