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Abstract: Proteins and RNA interaction have vital roles in many cellular processes such as
protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional
and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins
(RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural
biology. Previously, a number of experimental methods were developed for the determination of
protein–RNA interactions. However, these experimental methods are expensive, time-consuming,
and labor-intensive. Alternatively, researchers have developed many computational approaches to
predict RBPs and protein–RNA binding sites, by combining various machine learning methods and
abundant sequence and/or structural features. There are three kinds of computational approaches,
which are prediction from protein sequence, prediction from protein structure, and protein-RNA
docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs
and complexes, including data sets used in different approaches, sequence and structural features
used in several predictors, prediction method classifications, performance comparisons, evaluation
methods, and future directions.

Keywords: RNA-binding proteins (RBPs); RNA-binding site; bioinformatics; prediction;
macromolecular docking

1. Introduction

Approximately 6%–8% of proteins are RNA-binding proteins (RBPs). These RBPs play an
important part in gene expression and regulation. Due to study limitations, only a few types of RBPs
have been identified such as HuR, AUF1, TTP, TIA1, and CUGBP2. These RBPs perform essential
roles in various biological processes such as mRNA stability [1], stress responses [2], cell cycle, tumor
differentiation [3], apoptosis, and gene regulation at the transcriptional and post-transcriptional
levels [4]. Determining the three-dimensional (3D) structures of protein–RNA complexes facilitates
the identification of physiochemical properties and biological interactions.

Experimental methods (e.g., nuclear magnetic resonance spectroscopy (NMR) [5] and X-ray
crystallography [6]) typically used for protein–RNA complex structure determination are expensive,
time-consuming and labor-intensive. To date, 2274 protein–RNA complex structures determined by
experimental methods have been deposited in the Protein Data Bank (PDB) database [7]. The number
of protein–RNA complexes in the PDB database is significantly fewer than that which exists in nature.
Given the large numbers of nucleic acid and protein sequences that exist, improved knowledge of
how protein–RNA interactions occur could help us to recognize functional information.

To achieve this goal, it is necessary to develop computational approaches which can reliably
and rapidly identify RAN-binding proteins or sites. In contrast with experimental methods,
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computational tools could inexpensively and quickly identify RNA-binding sites and RBPs, which
would be useful and helpful in studying protein–RNA interactions [8]; however, those methods
based only on amino acid sequence information are difficult since organisms are highly complex.
Several methods have been developed which focus on predicting RNA-binding sites and determining
whether a protein–RNA complex exists. The majority of previous studies have focused on prediction
approaches for RNA-binding sites and RBPs based on sequence similarity [9–12]. The query protein
sequences were searched against databases; if the homologous sequences were known RNA-binding
proteins, the query protein was regarded as an RNA-binding protein. Similarly, RNA-binding
residues and sites in the query sequence could be detected. For another, methods based on predicted
structural and sequence information are the most often used computational approaches to identify
RNA-binding sites or RBPs. If the 3D structure of a target protein is known, the prediction based on
structure information was carried out to distinguish RBPs [13–15]. It is believed that the structural
similarity could provide more reliable and in-depth prediction consequence. Another technique is
docking, a method started from the components coordinates, and aimed at modelling interaction
conformation of macromolecular complexes [16]. Many protein–protein docking tools have been
reported, but no specific RNA–protein docking method exists [17]. Several protein–protein docking
programs accept RNA and protein coordinates as inputs to generate RBPs, such as HADDOCK [18],
GRAMM [19], HEX [20], PatchDock [21], and FTDock [22]. The above strategies for RNA-binding site
and RBP prediction are summarized in Figure 1.
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Although the methodology for predicting protein–protein interactions and protein–DNA
interactions are well established [23,24], analyses of computational approaches used to identify
protein–RNA interactions are lacking [8,17]. In this review, we discuss computational approaches
for predicting RBPs and RNA-binding sites based on protein sequences or known protein 3D
structures. Moreover, RNA–protein complex docking methods were discussed. We summarize
detailed information of these computational tools, including various vectors based on sequence
and/or structure, datasets used in the algorithm, performance comparison, machine learning
methods, and so on. In particular, we summarize those available web servers for RNA-binding sites
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and RBP prediction, which are convenient for scientists. Finally, the future directions and several
implications have been discussed, which can aid in method development.

2. Development of Computational Methods for Prediction of RNA-Binding Site

2.1. Data Set

The sequence and structure of protein–RNA complexes are available from PDB
database and other specific protein–RNA interaction databases (Available online:
http://pridb.gdcb.iastate.edu/) [25]. We analyzed several previous studies and summarize the
datasets and methods used, which are listed in detail in Table 1. Of all existing datasets, RB344 is
the largest and contains 344 non-redundant RBPs with at least 30% sequence identity [26]. In several
studies, authors employed the same dataset to compare the advantages and disadvantages of various
methods. In particular, Cheng et al. [27] constructed a novel PRIPU dataset which differed from
previous datasets. The PRIPU dataset contained positive and unlabeled, but not negative samples.
Such negative samples sometimes are not necessarily genuine negative samples and may even be
unknown positive samples.

Table 1. Commonly used data sets for RNA-binding sites identification.

ID Reference Publication Year Notes

PRIPU
dataset

[27] 2015 The dataset contains positive and unlabeled examples,
which is an innovation because previous ones usually have
negative samples. Such negative samples are not real
negative samples, some even may be unknown
positive samples

a RB344 [26] 2015 344 RNA binding proteins, almost entirely non-redundant
at 30% sequence identity

RB172 [28] 2014 172 protein entries with sequence identity of less than 25%

RB75 [8] 2012 75 RNP complexes released between 1 January and 28
April 2011 from PDB database b, non-redundant at 40%
sequence identity

RB199 [25,29] 2011 Extracted dataset (May 2010) from PDB database. Proteins
with >30% sequence identity or structures with resolution
worse than 3.5 Å were removed

RB164 [30] 2010 The data were downloaded from RsiteDB. After removing
protein and RNA chains with sequence identity above 25%
and 60%, respectively, 205 non-redundant protein–RNA
chains in 164 complexes were obtained

RB86 [31] 2008 86 RNA-binding protein chains were collected for training
and fivefold cross validation

RB147 [32] 2007 Adding novel RNA-binding complexes since 2006, based
on RB109

RB109 [33] 2006 109 RNA–protein complexes extracted from structures of
known RNA–protein complexes solved by X-ray
crystallography in the PDB. Proteins with >30% sequence
identity or structures with resolution worse than 3.5 Å
were removed

a RB: Abbreviation of RNA-binding dataset; b PDB: Protein Data Bank.

RNA-binding residues are determined using two definitions: (i) a residue with any atom within
3–6 Å of any atom in a nucleotide; and (ii) residues involved in hydrophobic, electrostatic interactions
with nucleotides, van der Waals, or hydrogen-bonding [25]. Residues satisfying these definitions
are considered to be RNA-binding residues. As with protein–DNA complexes and protein–protein
complexes, similar sequences in protein–RNA interactions are eliminated before dataset construction.
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Generally, sequences with similarities greater than 30%–40% are considered redundant. Clustering
programs such as blastclust (available from NCBI), CD-HIT [34], and the PISCES web server are used
to generate a non-redundant dataset.

2.2. Feature Selection for RNA-Binding Residues and Protein Predictors

Many features have been used to identify RBPs and binding sites. There are three kinds of
features here, which are structure-based features, sequence-based features, chemical and physical
features. The commonly used features summarized here include amino acid composition, sequence
similarity, evolutionary information, accessible surface area (ASA), predicted secondary structures
(SSs), hydrophobicity, electrostatic patches, cleft sizes, and other global protein features. Details of
these features are shown as follows.

2.2.1. Sequence-Based Features

Amino Acid Composition

One of the most commonly used features of protein sequence is protein amino acid composition,
not only in protein–protein interaction site prediction, but also in RNA-binding site prediction. The 20
amino acids exhibit various properties based on the presence of hydrophobic residues (G, F, L, M, A, I,
P, V), polar residues (Q, T, S, N, C, Y, W), and charged residues (H, R, K, E, D) [35]. One of the encoding
methods are based on the physicochemical properties of the various residue types. The hydrophobic,
polar, charged and residues are encoded as (1 0), (0 1), and (0 0), respectively. Particularly, the
positively-charged RNA backbone is usually more likely to combine with the negatively-charged
residues, as shown in previous studies [36]. The other encoding method is standard binary encoding,
which encodes each amino acid as a 20-dimensional binary vector, such as E (0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0), F (0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0), A (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0), . . . , and Y
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1).

Sequence Similarity

Sequence similarity (also referred to as sequence conservation) is frequently used for
RNA-binding site prediction. The BLAST and PSI-BLAST programs are used to compare the
similarities among various protein sequences. Generally, multiple sequence alignment (MSA) were
obtained by comparing query sequences against the NCBI non-redundant database and were used
to calculate each residue’s sequence similarity score. A number of conservation scoring tools are
available including relative entropy, von Neumann entropy, Shannon entropy, and Scorecons.

Evolutionary Information

Evolutionary information has often been introduced in functional site predictors in recent
studies, including RNA-binding site prediction. Previous studies showed that position-specific
scoring matrix (PSSM) (an important form of evolutionary information) greatly improved the
performance of RBPs prediction. PSSMs were used widely in pervious prediction studies because
they provide the likelihood of a particular residue substitution based on evolutionary information.

2.2.2. Structure-Based Features

The Secondary Structure (SS)

The secondary structure (SS) provides local and geometric patterns, which can be obtained in
two ways: One is that the protein structure is available and real SS could be calculated using SS
assignment approach such as DSSPcont [37,38], the other is that the protein structure is unavailable
and predicted SS could be obtained using SS predicted algorithm such as PSIPRED [38–40]. SS has
been employed as an encoding feature in several studies to predict RNA-binding residues [41,42].
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Accessible Surface Area (ASA)

RNA-binding residues tend to be exposed and interact with proteins, so calculation of solvent
accessibility would be helpful in RNA-binding sites prediction. The relative ASA could be calculated
using NACCESS [43,44], while the protein structure is available. It is worth pointing out that the
relative ASA could not be calculated when the DNA molecule was absent. Residues with ASA value
greater than 5% are defined as surface accessible residues.

2.2.3. Chemical and Physical Features

Hydrophobicity

Hydrophobicity, which represents the proportion of residues repelled by water, is frequently
used by RNA-binding site predictors. Hydrophobicity scale was defined with numerical value for
each amino acid [45].

Electrostatic Patches

A protein surface status can be described by electrostatic patches. Generally, nucleic acid-binding
interfaces are more likely to be positively charged electrostatic patches [46]. Electrostatic patches can
be computed using GRASP [47], GRASS [48], or the web server PFplus (PatchFinderPlus; Available
online: http://pfp.technion.ac.il) [49].

Cleft Size

Cleft size is an important feature because the largest cleft on a protein surface tends to be where
the protein active site is located [50]. The charge, dipole, and quadrupole moments can also be used
to adequately recognize RBPs [51].

2.3. Prediction Methods

The computational methods used in previous studies to identify RBPs or RNA-binding sites can
be divided into three aspects: (1) the use of sequence-based prediction methods when structure is
unknown and sequence is known; (2) prediction methods based on structure when the query protein
structure has been resolved; and (3) modeling using a docking method when the query structure is
unknown. These three approaches are detailed below.

2.3.1. Sequences-Based Methods

Sequence-Based Methods for RNA-Binding Site Prediction

The number of known protein–RNA complex structures is few, so prediction methods which
use only sequence information play an important role. Previously, Jeong et al. [52] introduced
a predictor for RNA-binding sites using predicted secondary structure and amino acid type, and
employingan artificial neural network. Subsequently, Terribilini et al. [33] contributed RNABindR,
which is a classical method to train naive Bayes (NB) classifiers to predict RNA-binding sites.
The RB109 dataset is listed in Table 1. Wang and Brown developed the BindN tool, which is a
predictor of RNA- and DNA-binding sites [9]. The sequence features used in this method include
molecular mass, hydrophobicity index, and the side chain pKa value. In addition, the evolutionary
information was added to predictors, especially in the form of PSSMs. Pprint was developed by
Kumar et al. [31], which combined evolutionary information (PSSM) and support vector machines
(SVMs) and improved RNA-binding site and residue predictions significantly. Wang et al. [53]
used SVM and PSSM profiles coupled with predicted SS and PSI-BLAST profiles in the PRINTR
method to obtain improved performance. Tong et al. [54] introduced RISP, which is a hybrid
RNA-binding site predictor which uses SVMs in conjunction with PSSMs and achieved a 61.0%
increase in sensitivity and an 83.3% increase in specificity. A similar method, RNAProB, using
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SVM and a novel smoothed PSSM encoding method, was developed by Cheng et al. [55] and
it gave better performance than the then current state-of-the-art systems. In 2010, Li et al. [56]
constructed a novel method, employing evolutionary PSSM and structure-derived features to predict
RNA-binding residues, which led to significant improvement. Liu et al. [30] proposed a novel
classification system that combined sequence/structure-based features and interaction propensity,
which is a novel interacting feature. In addition, a novel machine learning method (random forest)
was used. Furthermore, Liu et al. compared their method with previous methods (e.g., RNAProB,
PPRint, BindN and RNABindR) and achieved enhanced performance. Zhang et al. [57] presented an
RNA-binding residue predictor using solvent accessibility, predicted SS, evolutionary conservation
and sequence information. RNABindRPlus [58] is a recently developed predictor which obviously
improved prediction reliability, which combines sequence homology and machine learning methods.
Recently, Cheng et al. [27] developed a predictor (PRIPU) for protein–RNA interactions; the most
important difference between this and original methods is that only positive and unlabeled samples
are used in PRIPU, not negative samples.

Sequence-Based Methods for RNA-Binding Proteins (RBPs) Prediction

Han et al. [36] explored the SVM machine learning method to predict RBPs directly based on
their primary sequence. The dataset in this work contained 447 RBPs and 4881 non-RBPs. The
prediction accuracy was 40.0% and 99.9% for snRBPs and non-snRBPs, respectively, indicating the
need for a sufficient number of proteins to train the SVMs. Shao et al. [59] developed a predictor
to predict RNA-binding proteins with SVM methods using sequence characteristics. Similar to
RNA-binding site prediction, evolutionary information was introduced to improve the performance
of RBP predictions. Kumar et al. [60] exploited RNApred which combined binding residues and PSSM
profiles and the SVM method to discriminate RBPs and non-RBPs. Another voting system was used
to identify RBPs [42]. Zhao et al. developed SPOT for prediction of RBPs using a fold recognition
method, which is freely available on the internet for academic users (Table 2).

2.3.2. Structure-Based Methods

Structure-Based Methods for RNA-Binding Site Prediction

When the structure of the query protein is available and employed in the prediction system,
the prediction became more reliable. There are a number of structure-based RNA-binding site
prediction methods. Kim et al. [13] developed KYG method, which uses sequence profiles, doublets of
spatially close residues, a number of binding scores, and combinations. Chen and Lim [61] developed
a predictor based on structure information including electrostatics, evolution, and geometry. The
disparate cleft and the surface patch were considered to be RNA-binding site. Subsequently,
PRIP [62] was created, which exploited structural and topological information (retention coefficient,
betweenness-centrality, accessible surface area and PSI-BLAST profile) and used two machine
learning methods (SVM and naive Bayes classifiers). Towfic et al. [63] contributed Struct-NB, which
used structural features to predict RNA-binding sites by combining a naive Bayes classifier. Recently,
two predictors based on structure were proposed. RBRDetector [64], which uses evolutionary and
microenvironmental features as inputs, combines feature- and template-based strategies to improve
predictions of RNA-binding residues. The other predictor compares each template patch with
surrounding patches and uses the accumulated distances as structural features [26].

Structure-Based Methods for RBP Prediction

Zhao et al. [15] introduced a predictor for RNA-binding domains based on structure information,
which combined RNA binding affinity and relative structural similarity. SPOT-Seq-RNA [65] is
a template-based structure prediction package which integrates RBP, RNA-binding residue, and
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protein–RNA complex structure prediction. RBPs and protein–RNA complexes are often modeled
using the docking method.

2.3.3. Protein–RNA Complex Docking

Research on protein 3D structure modeling has become increasingly complex. Modeling
structures of a protein–RNA complex is very important to help us understand the mechanisms of
interaction. Several docking techniques used to predict protein–RNA complexes rely on known
RNA and protein structures. There are no protein–RNA interaction docking algorithms, most
reported docking techniques are modified from those protein-ligand interaction and protein–protein
interaction docking softwares by employing certain energy/scoring function that fitted for
protein–RNA interactions. For example, Katchalski-Katzir et al. [19] developed a low-resolution
docking program, which requires specific scoring functions for different ligands. In the modeling
progress, the program performs a six-dimensional search through the rotation of a ligand molecule
and the rigid body translation and generates decoys. Gabb et al. [22] employed the FTDOCK program,
which not only accepts protein–protein docking, but also accepts nucleic acid molecules. Ritchie and
Kemp [20] introduced Hex, which enables protein–nucleic acid and protein–protein docking. The
decoy scoring method contains electrostatics and shape-matching but does not have a special function
for protein–RNA complexes. The method of Haddock [18] enables various molecules (e.g., nucleic
acids, proteins and other small molecules) for docking, which using biochemical and biophysical
characteristics as inputs. Recently, Tuszynska and Bujnicki [66] developed QUASI-RNP and
DARS-RNP, which use statistical and quasi-chemical reference states to score protein–RNA decoys.

2.4. Prediction Algorithms

Almost all popular machine learning methods have been used for prediction of RNA-binding
sites or RBPs. Generally, the machine learning methods obtain satisfactory performance with valid
sequence- and/or structure-based features participation. The machine learning methods frequently
used for RNA-binding research include SVMs [27,67], artificial neural networks (ANN) [68], Bayesian
networks [29,67], and random forest [12,69]. Puton et al. [8] have attempted a meta-predictor of
RNA-binding residues based on three of the highest ranked sequence-based primary predictors.
This meta-predictor outperforms most other predictors. The template-based approach is another
algorithm to predict structure of protein–RNA complex when a template structure is available. This
method recognizes the putative RBPs by structurally aligning the query protein to RBPs with known
structures. SPARKS X [15] is a program which predicts structure based on template-based structure.
Similarly, TIM-align [70] is a structural alignment program.

2.5. Evaluation and Performance of Various Predictors

2.5.1. Performance Measures

The parameters commonly used to assess RNA-binding sites and RBP prediction performance
include sensitivity, accuracy, strength, specificity, F-measure, precision, the Matthews correlation
coefficient (MCC), and area under the receiver operating characteristic curve (AUC), these parameters
are detailed listed in Table 3.

For the formula presented in Table 3, TP represents true positives which are correctly predicted
RNA-binding residues; FP indicates false positives which are mistakenly predicted RNA-binding
residues; TN denotes true negatives which are correctly predicted non-RNA-binding residues;
and FN means false negatives which are wrongly predicted non-RNA-binding residues. Due
to the imbalance between positive sample and negative sample, the MCC is regarded as proper
measurement to evaluate the overall performance. “MCC = 0” means completely random prediction,
and “MCC = 1” indicates perfect prediction. Higher value of MCC (between 0 and 1) represents better
prediction accuracy. Another widely used measurement is the receiver operating characteristic (ROC)
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curve, especially in the comparison of several predictors. The x-axis of ROC curve represents the true
positive rate and the y-axis denotes the false positive rate. The larger the area under the curve (AUC),
the better the method.

2.5.2. Comparison of Various Prediction Methods

The prediction results of existing methods for RNA-binding sites and RBP predictions are
summarized in Table 4. The accuracy of most predictions is approximately 60%–80% and the
specificity and sensitivity of these methods range widely. Each method has its own specialty
because of the various datasets, input features, and algorithms. Three main datasets are listed in
Table 4 including RB75, RB172, and RB344. Several original studies [8,28,71] compared several
predictors independently based on the unified dataset and their results are summarized in this
manuscript. The MCC is always considered an unbiased measurement and has been calculated
in most methods, which helps significantly when comparing the performance among these
methods. Subsequently, a meta-predictor that combines three predictors has been developed and
has satisfactory performance [8].

2.5.3. Collection of Web Servers of RBPs and RNA-Binding Site Predictors

Many researchers provide web servers when they develop novel methods to predict
RNA-binding sites and RBPs. Several protein–RNA complex docking programs are also available.
We collected the URLs which are divided into sequence- and structure-based predictors and docking
methods (Table 2). We have tested every web server and labeled them with “˝” or “X” if the web
server is available or not, respectively, and noted if the approach is aimed at predicting binding
sites or RBPs. Actually, web servers could provide easy-to-use tools to the community. Users could
understand the algorithm and conveniently obtain prediction results using web servers. Meanwhile,
developers could continually modify their methods with users’ feedback.

3. Conclusions and Future Perspectives

Due to the significant biological roles of several RNA types, RNA-binding site prediction has
become more and more important in the area of protein functional site prediction. Prediction accuracy
has improved significantly during the past decades and a number of web servers are available to
experimental scientists. Nevertheless, the current predictors require further research to improve their
effectiveness due to shortcomings.

Three outstanding issues face efforts to predict RNA-binding sites and RBPs. The first important
issue is how to distinguish DNA-binding sites from RNA-binding sites. Generally, the prediction
approaches that use templates are more effective than those using machine learning methods
for distinguishing RBPs from DNA-binding proteins. Conversely, for those RBPs that could not
detect successfully using template-based methods, several machine learning methods can detect
RNA-binding residues. Therefore, combining the strengths of two approaches has the potential to
obtain better performance of RNA-binding site and RBP prediction. The second important issue is
that which vectors contribute more and which ones offer less to the mature predictor in machine
learning methods remains unclear. It is certain that selection of novel and effective features could be
one of the most important concepts in RBPs and RNA-binding site prediction. The third issue is that
all existing protein–RNA docking approaches do not take into account conformational changes that
may occur in the combination process of protein and RNA molecules. The ability to model the 3D
RNA structure using several RNA folding simulations [72–74] and accommodating those methods to
refold RNA fragments to simulate protein–RNA interaction and optimize minimum energy would be
useful [75–79]. Rother et al. [80] successfully combined RNA and protein 3D structures into a unified
modeling method. Moreover, further comparison studies are required to adequately evaluate the
advantages and disadvantages of various methods.
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Table 2. A general selection of Web servers of RNA-binding sites and protein prediction and protein–RNA complex docking.

Methods URLs References Available Seq/Struc/Docking Sites/Protein

PRIPU http://admis.fudan.edu.cn/projects/pripu.htm Cheng et al. (2015) [27] ˝

seq

site
RNABindRPlus http://einstein.cs.iastate.edu/RNABindRPlus/ Walia et al. (2014) [58] ˝ site
CatRAPID omics http://s.tartaglialab.com/catrapid/omics Agostini et al. (2013) [81] ˝ site
SRCPred http://tardis.nibio.go.jp/netasa/srcpred Fernandez et al. (2011) [29] ˝ site
SPOT http://sparks.informatics.iupui.edu Zhao et al. (2011) [15] X protein
PRBR http://www.cbi.seu.edu.cn/PRBR/ Ma et al. (2011) [12] ˝ site
RNAPred http://www.imtech.res.in/raghava/rnapred/ Kumar et al. (2011) [60] ˝ protein
RPISeq http://pridb.gdcb.iastate.edu/RPISeq/ Muppirala et al. (2011) [82] ˝ site
BindN+ http://bioinfo.ggc.org/bindn+/ Wang et al. (2010) [11] ˝ site
NAPS http://prediction.bioengr.uic.edu/ Carson et al. (2010) [81] X site
PiRaNhA http://bioinformatics.sussex.ac.uk/PIRANHA/ Murakami et al. (2010) [10] ˝ site
PRNA http://www.sysbio.ac.cn/datatools.asp Liu et al. (2010) [56] X site
RNA http://mcgill.3322.org/RNA/ Li et al. (2010) [55] X site
RISP http://grc.seu.edu.cn/RISP Tong et al. (2008) [54] X site
PRINTR http://210.42.106.80/printr/ Wang et al. (2008) [53] X site
PPRInt http://www.imtech.res.in/raghava/pprint/ Kumar et al. (2008) [52] ˝ site
RNABindR http://bindr2.gdcb.iastate.edu/RNABindR/ Terribilini et al. (2007) [32] ˝ site
BindN http://bioinfo.ggc.org/bindn/ Wang and Brown (2006) [9] ˝ site
SVMProt http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi Han et al. (2004) [36] X protein

RBPDetector http://ibi.hzau.edu.cn/rbrdetector Yang et al. (2014) [64] ˝

struc

site
SPOT-Seq-RNA http://sparks-lab.org/server/SPOT-Seq-RNA/ Yang et al. (2014) [65] X protein
DRNA http://sparks.informatics.iupui.edu/yueyang/DFIRE/dRdR-DB-service Zhao et al. (2011) [15] X protein
OPRA Program available upon request from the authors Perez-Cano and Fernandez-Recio (2010) [14] ˝ site
PRIP http://www.qfab.org/PRIP Maetschke et al. (2009) [62] X site
KYG http://cib.cf.ocha.ac.jp/KYG/ Kim et al. (2006) [13] X protein

DARS-RNP and QUASI-RNP http://www.genesilico.pl/RNP/ Tuszynska and Bujnicki (2011) [66] ˝

docking

complex
PatchDock http://bioinfo3d.cs.tau.ac.il/PatchDock/index.html Schneidman-Duhovny et al. (2005) [21] ˝ complex

Haddock http://www.nmr.chem.uu.nl/haddock/;
http://haddock.science.uu.nl/services/HADDOCK Dominguez et al. (2003) [18] ˝ complex

Hex http://hex.loria.fr/; http://hexserver.loria.fr/ Ritchie and Kemp (2000) [20] ˝ complex
FTDock (3D-Dock) http://www.sbg.bio.ic.ac.uk/docking/ Gabb et al. (1997) [22] ˝ complex
GRAMM http://vakser.bioinformatics.ku.edu/main/resources_gramm1.03.php Katchalski-Katzir et al. (1992) [19] ˝ complex

˝: denotes the URL is available now; X: means the URL is not available nowadays; URLs: Abbreviations of UniformResourceLocators.
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Table 3. Evaluation parameters.

Parameter Meaning Expression

Accuracy (ACC) Percentage of correct prediction Accuracy “ TP`TN
TP`TN`FP`FN

a

Sensitivity Percentage of correctly predicted positive Sensitivity “ TP
TP`FN

Specificity Percentage of correctly predicted negative Speci f city “ TN
TN`FP

Strength Mean value of the sum of sensitivity and specificity Strength “ Sensitivity`Speci f city
2

MCC Matthews correlation coefficient MCC “ pTPˆTNq´pFNˆFPq?
pTP`FNqˆpTN`FPqˆpTP`FPqˆpTN`FNq

Precision Positive predictive rate Precision “ TP
TP`FP

F-measure The harmonic mean of sensitivity and specificity F´measure “ 2 ˆ Presion ˆ Sensitivity
Presion`Sensitivity

AUC b Probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one AUC “

řn
i´1 Ti
nT

a TP = True positive number; TN = True negative number; FP = False positive number; FN = False negative number; b In AUC formulation, i takes on values from 1 to n, T is the
total number of positives in the test set, and Ti is the number of positives that score higher than the ith highest scoring negative.
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Table 4. Performance of the state-of-the-art methods for RNA-binding site prediction.

Methods Data Set
Performance

Reference FeatureACC SEN SPE AUC MCC Strength F-Measure Precision

PiRaNhA RB75 - - - 0.822 0.435 - - - [8]

Sequence-based

PPRInt
RB75 - - - 0.779 0.339 - - - [8]

RB172 0.71 - 0.25 0.66 - - [28]
RB344 0.70 0.45 0.82 0.68 0.28 - 0.49 0.53 [26]

BindN
RB75 - - - 0.733 0.297 - - - [8]

RB172 0.75 - - - 0.23 0.64 - - [28]

BindN+
RB75 - - - 0.821 0.397 - - - [8]

RB172 0.79 - - - 0.34 0.71 - - [28]
RB344 0.72 0.32 0.89 0.68 0.26 - 0.41 0.56 [26]

RNABindR RB75 - - - 0.708 0.317 - - - [8]
RNABindR v2.0 RB172 0.66 - - - 0.27 0.69 - - [28]

PRBR RB75 - - - N/A a 0.294 - - - [8]

NAPS
RB75 - - - 0.679 0.215 - - - [8]

RB172 0.66 - - - 0.17 0.61 - - [28]
RNAProB RB172 0.82 - - - 0.22 0.60 - - [28]

KYG * RB75 - - - N/A 0.382 - - - [8]

Structure-based
DRNA *

RB75 - - - N/A 0.382 - - - [8]
RB344 0.75 0.21 0.94 N/A 0.22 - 0.31 0.54 [26]

OPRA * RB75 - - - N/A 0.296 - - - [8]
Ren’s method RB344 0.68 0.48 0.76 0.68 0.26 - 0.48 0.48 [26,83]

Meta-predictor b RB75 - - - 0.835 0.460 - - - [8,34]
a N/A—not available; MCC—Matthews Correlation Coefficient; AUC—area under curve; SEN—sensitivity; SPE—specificity; b Meta-predictor developed based on top three
sequence-based methods according to authors benchmark (PiRaNhA, PPRInt and BindN+); * The meta-predictor is composed of those methods labeled with asterisk.
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