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ABSTRACT 

The association of the receptor binding domain (RBD) of SARS-CoV-2 viral spike with human 

angiotensin converting enzyme (hACE2) represents the first required step for viral entry. Amino 

acid changes in the RBD have been implicated with increased infectivity and potential for immune 

evasion. Reliably predicting the effect of amino acid changes in the ability of the RBD to interact 

more strongly with the hACE2 receptor can help assess the public health implications and the 

potential for spillover and adaptation into other animals. Here, we introduce a two-step framework 

that first relies on 48 independent 4-ns molecular dynamics (MD) trajectories of RBD-hACE2 

variants to collect binding energy terms decomposed into Coulombic, covalent, van der Waals, 

lipophilic, generalized Born electrostatic solvation, hydrogen-bonding, π-π packing and self-

contact correction terms. The second step implements a neural network to classify and 

quantitatively predict binding affinity using the decomposed energy terms as descriptors. The 

computational base achieves an accuracy of 82.2% in terms of correctly classifying single amino-

acid substitution variants of the RBD as worsening or improving binding affinity for hACE2 and 

a correlation coefficient r of 0.69 between predicted and experimentally calculated binding 
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affinities. Both metrics are calculated using a 5-fold cross validation test. Our method thus sets up 

a framework for effectively screening binding affinity change with unknown single and multiple 

amino-acid changes. This can be a very valuable tool to predict host adaptation and zoonotic 

spillover of current and future SARS-CoV-2 variants.  

Keywords: SARS CoV-2, Human ACE2, Binding Affinity, MM-GBSA, Neural Network 

 

Introduction 

 
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major global challenge to 

public health and has caused unprecedented losses to the global economy1 and ecology2. Multiple 

vaccines have received emergency use authorization (Pfizer, Moderna and J&J) and additional 

vaccines are under Phase-3 clinical trials (AstraZeneca, Janssen and Novavax) in the United States. 

However, several new variants of the wild-type (WT) virus (i.e., isolate Wuhan-Hu-1, GenBank: 

MN908947) have emerged in United Kingdom4 (B.1.1.7 lineage), South Africa5 (B.1.351 lineage), 

and Brazil6 (P.1 lineage) with increasing prevalence worldwide.7 A few non-synonymous 

mutations leading to amino-acid changes in the spike protein of these variants are associated with 

enhanced infectivity. The enhanced infectivity of the variants is possibly through increased binding 

affinity of the receptor binding domain (RBD) of the spike protein with the human angiotensin 

converting enzyme-2 (hACE2) receptor8 and through changes in the conformational dynamics of 

the spike protein.9 Although a recent preliminary report suggests that the current vaccines can still 

effectively protect people from SARS-CoV-2 variants10, another report showed that plasma from 

recipients of Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines was significantly 

less effective in neutralizing SARS-CoV-2 variants encoding E484K or N501Y or the 

K417N:E484K:N501Y combination.11 In addition, a significant decrease in neutralizing titers 

against the B.1.351 but not the B.1.1.7 UK variant, with plasma from mRNA-1273 vaccinated 

humans and non-human primates has been observed.12 Hence, continued surveillance and methods 

to accurately predict affinity gains of the RBD-hACE2 binding event due to amino acid changes 

in the RBD are extremely important. 

 

SARS-CoV-2 is an enveloped virus with a single-stranded RNA genome of approximately 30 kb 

size13. The mutation rates of RNA viruses upon replication are generally higher than DNA viruses, 

which could be as high as 10−4 to 10−3 per nucleotide incorporated 14 SARS-CoV-2 has a mutation 

rate of on average 7.23 mutations per sample15 which is significantly lower than HIV and 

Influenza-A viruses.1617 The simultaneous incorporation of multiple (i.e., 15-20) amino-acid 

changes in a few emerging strains such as ΔFVI (Danish mink), B.1.1.7 (UK), B.1.1.54 (SA) are a 
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cause of concern as it suggests further adaptation of the virus and fitness gains in humans and other 

animals.18,19,20 Several of these variants involve amino acid changes in the spike protein suspected 

to increase transmissibility21, alter infectivity22,23 and/or escape neutralizing antibodies.22,24 The 

viral spike protein binding to the hACE2 protein is the first and crucial step in viral entry.25–31 The 

spike protein makes contact with hACE2 using 16 residues of the 223 amino acid long receptor 

binding domain (RBD) forming multiple polar and hydrophobic interactions.32 The binding 

strength between RBD and hACE2 thus directly affects infection dynamics and potentially disease 

progression. Starr et al.33 exhaustively assessed the impact of single amino acid changes in the 

RBD of the SARS-CoV-2 quantifying the effects on RBD expression and hACE2 binding. It was 

revealed that most amino acid changes (i.e., 84.5%) are detrimental for RBD expression and 

hACE2 binding, around 7.5% of mutations are neutral but about 8% enhance hACE2 binding. The 

corresponding amino acid changes in RBD that lead to enhancements in binding with hACE2 can 

potentially become additive in their contribution to receptor affinity. Even though the RBD 

accounts for only 2% of the amino acid changes observed in the entire spike protein34, it is the 

target for more than 90% of the neutralization antibodies generated by humoral response35. 

Therefore, RBD is the most susceptible target to antigenic escape by amino acid changes. 

Consequently, amino acid changes in RBD that can increase binding affinity with hACE2 and/or 

adversely affect antibody neutralization have been extensively mapped by high-throughput 

mutational studies.36,37 For example, the amino acid change Y453F in the RBD present in the ΔFVI 
(Danish mink) variant increases the binding affinity to hACE2 by four fold38 while also managing 

to partially evade the monoclonal antibody REGN10933 present in the Regeneron antibody 

cocktail.39 These studies highlight the importance of monitoring single and multiple amino acid 

changes in the spike RBD variants and their potential for increased binding affinity with ACE2 

and/or immune escape. It is important to note that binding of the viral RBD with the hACE2 

receptor is a necessary step but is not sufficient to cause a productive viral infection. Proteolytic 

cleavage of S1/S2 and S2’ sites is also needed to expose the fusion peptide enabling membrane 

fusion followed by viral entry at the surface or upon endocytosis.40 Furthermore, the host cellular 

environment must be permissive to viral RNA genome replication, translation to proteins and 

assembly into new virions.41 

Computational methods can help assess the mechanistic role of the amino acid changes occurring 

in circulating viral variants and also predict potentially problematic amino acid changes that have 

not been identified so far. In a recent study, Chowdhury et al.32 biophysically characterized the 

binding interactions of human ACE2 with SARS-CoV-2 and SARS-CoV, uncovering the 

molecular details associated with the increased infectivity of CoV-2, relative to CoV. In another 

effort, Mohammad et al.42 calculated that the D614G variant has a higher computational binding 

interaction energy with furin. This was later experimentally corroborated revealing that the D614G 

change both increases RBD accessibility to binding with hACE243 and enhances the efficiency of 
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furin cleavage.44 Zhou et al.24 performed molecular dynamics (MD) simulations and molecular 

mechanics/Poisson-Boltzmann surface area (MM-PBSA) analysis on the N439K variant 

suggesting a higher binding affinity to hACE2 and resistance to the antibody REGN10987. These 

findings were supported by experimental evidence for the N439K variant escaping several 

neutralizing antibodies including REGN1098724. Several studies focus on testing the effect of one 

or several key single mutations, but systematic methods to predict and analyze a wider multi-

mutational landscape are still lacking. It is worth noting that Chen45 et al. used an algebraic 

topology-based machine learning model to quantify the binding free energy changes of RBD from 

several existing CoV-2 variants. However, the performance of the method used was tested on the 

general SKEMPI-2.046 dataset and not on a SARS-CoV-2 specific dataset.  

Several computational approaches have been developed to predict the effect of amino-acid 

substitutions on protein-protein binding affinity. Some of them directly use energies from 

molecular-mechanics based empirical force-fields like FoldX47 and Rosetta48,49 or energies from 

molecular mechanics – generalized Born surface area (MM-GBSA) analysis of ensembles 

obtained from MD simulations50. Other methods such as SAAMBE51 and BindProfX52, use a 

combination of physical energies and residue-level structural properties or sequence-based 

conservation profiles, respectively. Purely statistical potentials like BeAtMuSiC53 and Contact 

potentials54 have also been explored. Updating the weights of energy terms using experimentally 

determined Gbind  defined as the change in the free energy of binding upon amino-acid changes 

(i.e., Gbind = Gvariant- GWT) has been shown to improve the prediction performance55,56 of 

molecular mechanics-based force-fields such as Rosetta49. The recently introduced machine 

learning (ML) based method TopNetTree achieves a better correlation coefficient over several 

existing methods on two benchmark datasets AB-Bind and SKEMPI.57 In spite of the existence of 

many different Gbind prediction methods, as reviewed recently58, performance is not always 

robust on unseen datasets not part of training data. The major limiting factor contributing to test 

set prediction inaccuracies is the paucity of experimental datasets (on Gbind) with good coverage 

of both types and locations of amino acid changes.58 

In this work, we first tested the predictive power of both parameterized force fields (i.e., 

Rosetta49,59) and detailed MM-GBSA60–62 analysis of MD simulation trajectories with explicit 

water molecules treatment 63,64 (see Table 1) in reproducing experimental RBD-hACE2 binding 

affinity data reported by Starr et al.33 Predictions using the MM-GBSA binding energies provided 

only partial agreement with experimental data (i.e., r = 0.33). Therefore, we next used experimental 

RBD-hACE2 binding energy terms to train a neural network (NN) regression model (NN_MM-

GBSA) using the decomposed MM-GBSA energy terms as features and the experimental 

dissociation constants (KD,app) ratio between mutated variants and the wild-type as the regression 

target. Figure 3 pictorially illustrates the computational pipeline employed for building the model.  
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Agreement between experiment and the NN_MM-GBSA model predictions were significantly 

better than raw MM-GBSA energies reaching a correlation coefficient of r = 0.69 and an accuracy 

of 82.24% in recovering of the effect of amino-acid changes (i.e., in classifying as improving or 

worsening the binding affinity). The NN_MM-GBSA model also provided good predictions on 

binding affinities of the RBD from currently circulating SARS-CoV-2 variants (see Table 2). The 

achieved accuracy of prediction makes this model a useful tool for the computational assessment 

of current/emerging CoV-2 variants. The MM-GBSA energies and the NN_MM-GBSA model are 

available in Github at https://github.com/maranasgroup/NN_MM-GBSA_CoV2.  

 
Results 

Dataset preparation 

The three-dimensional coordinates of the SARS-CoV-2 receptor binding domain in complex with 

human ACE2 were obtained from PDB entry 6LZG65. There exist 20 RBD residues contacting 

directly with hACE2 and making strong interactions at the binding interface.33 This gives a total 

of 380 possible single amino-acid variants by changing each one of the 20 RBD residues into the 

remaining 19 amino-acids. Of these, we chose all 27 variants with an increased binding affinity 

and 54 variants with lower binding affinity compared to the WT. The dataset was balanced by 

adding another 27 variants that exhibited binding enhancement though not in direct contact with 

hACE2 (see Supp. Table 1 for details). The selected 108 variants formed the training dataset in 

this study (see Figure 1). All RBD variants in the dataset were computationally modeled using 

Rosetta48,49 and analyzed for changes in binding affinity with hACE2 compared to the WT RBD. 

Experimental data on variant binding affinities were obtained from the deep mutagenesis study by 

Starr et. al.33 The study reported apparent dissociation constant KD,app ratios for all possible variants 

with single-amino acid changes at every RBD position. A KD,app ratio (i.e., KD,app,WT/KD,app,variant)  

for a variant greater than one implies stronger binding compared to WT, whereas a value less than 

one implies weaker binding (see also Figure 1C). KD,app ratios can be related to changes in the free 

energy of binding (i.e., Gbind) as (KD,app,variant)/(KD,app,WT) = exp(-Gbind/RT). This enables 

direct comparison of experimental measurements with estimates in changes of free energy of 

binding from MM-GBSA and other computational methods (see Methods for details).  

 

Binding affinity change prediction for variants using MM-GBSA values from MD simulations 

For each RBD variant, we first performed MD simulation of the hACE2-RBD complex followed 

by MM-GBSA analysis on frames derived from the simulation to calculate binding energies.  For 

each variant, 48 independent initial configurations of the complex are generated by Monte Carlo 

minimization66 (see Methods). Starting from each configuration, a 4ns unconstrained MD 
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simulation was carried out which generated a total of 192ns of MD trajectory for each variant. We 

used a sequence of short simulations, starting from several independent configurations instead of 

one long simulation trajectory - as it led to faster convergence, as also reported previously.67  3D 

coordinates of the complex were extracted from each trajectory upon removing the solvent 

molecules after every 0.1ns, generating 1,920 different frames for each variant. MM-GBSA 

energies were calculated for all frames (see Methods) and subsequently averaged in 240 bins 

chosen randomly to obtain an ensemble of eight binding energy predictions for each variant. The 

median value of the ensemble of eight predictions was then chosen as the predicted binding energy 

Gvariant of the variant. The binding energy change for each variant Gbind is then obtained by 

subtracting the binding energy of the WT RBD-hACE2 complex GWT. A negative Gbind value 

(corresponds to KD,app ratio > 1) indicates improved binding affinity with hACE2, whereas a 

positive Gbind value (corresponding to KD,app ratio < 1) implies lower binding affinity. 

 

Figure 1. (A) The crystal structure of complex formed between RBD and hACE2 complex. The 
ACE2 protein is shown as a surface representation in blue and the RBD is shown in magenta. (B) 
Residues of the RBD variants that are in direct contact with hACE2 are depicted as cyan spheres.  
Residues that are not in direct contact are orange. (C) Histogram showing experimental d,app ratios 
for all 108 RBD variants in the dataset. The histogram bars in black denote number of variants in 
the training set with increasing binding affinity compared to WT (d,app ratio>1.0) and the bars in 
gray indicate the variant counts with decreasing binding affinity (d,app ratio < 1.0). 
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Using this computational workflow, we calculated the Gbind for the balanced dataset of 108 

RBD variants. We score classification predictions using the percent recovery of correct variant 

classification (%VC) in terms of the direction of change in the binding affinity compared to WT. 

Note that a balanced training set was maintained, so as to alleviate the risk of biased predictions 

due to having more variants with worsening or improving binding affinities. We score quantitative 

binding affinity prediction using the Pearson correlation coefficient r (see Methods) between 

predicted and experimental Gbind values. We find that (see also Table 1) Rosetta slightly 

outperforms MM-GBSA in both prediction of the direction of change (i.e., %VC) and r value. This 

could be because of the scaling of the energy function within MM-GBSA not being in line with 

values obtained from experimental measurements leading to some outliers having very large 

predicted values (see Figure 2), causing a lower r value (i.e., r=0.33) than Rosetta (i.e., 0.47). In 

addition to the energy function from Rosetta49, three other computational servers were tested for 

the prediction; mCSM-PPI268 utilizing graph-based signatures, the random forest model 

MutaBind269 trained with Molecular Mechanics energies70 and evolutionary scores71, and 

SAAMBE-3d72 which uses a machine learning model trained on structural features. Using 

MutaBind2 and mCSM-PPI2, the performance in both %VC and r-value was worse than that of 

MM-GBSA and Rosetta. The predictions from SAAMBE-3d had a good correlation value r but 

were very poor in %VC (=0.53), almost the same as random prediction. This may be due to the 

fact that Rosetta and MM-GBSA attain a higher fidelity in the description of the underlying 

biophysics by using a detailed fully atomistic description of interactions and hence are better at 

distinguishing improving vs. worsening variants. Note that, since the numerical values Gbind for 

variants improving the binding affinity are quite small (maximum of ~ -0.3 kcal/mol) compared to 

those worsening the binding affinity (maximum of ~ +2.5kcal/mol), both metrics need to be 

simultaneously high to indicate robust prediction. Nevertheless, prediction metrics %VC and r 

calculated for MM-GBSA (or Rosetta) do not attain values that reflect reliable quantitative 

prediction. We next focused on improving prediction fidelity. This was accomplished by not 

merely using various energy terms in an additive fashion to assemble the overall binding energy, 

but instead by relying on a neural network to construct a nonlinear reassortment of these energy 

terms. 
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Table 1. Comparison of prediction performance of Rosetta and MM-GBSA with the regression 

models trained on MM-GBSA energies. *The standard deviation obtained for the five repetitions 

of the five-fold cross validation and training is shown within the parentheses. 

 

 

Figure 2. Gbind prediction performance of MM-GBSA binding energies on 108 RBD variants. 
Dotted horizontal and vertical lines are drawn for reference at experimental and predicted Gbind 
= 0. Shown in blue are variants for which the effect on binding affinity (sign of Gbind) is 
predicted correctly compared to the experimental value. Those predicted incorrectly are shown in 
red.  

Method 
Correlation 

coefficient (r) 

% Variant correct 

recovery (VC) 

Rosetta 0.47 68.52 

MM-GBSA 0.33 61.11 

NN_ MM-GBSA* 0.69 (0.03) 82.24 (1.98) 

Linear_regression_MM-GBSA* 0.53 (0.17) 59.43 (7.50) 

NN_Rosetta* 0.56 (0.08) 74.03 (2.75) 
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Neural network regression model trained on MM-GBSA energies and experimental Kd,app ratios 

A neural network (NN) regression model with a single input and single output layer was built, 

targeting quantitative prediction of the Kd,app values for the 108 RBD variants. The NN had four 

fully connected hidden layers with 144 nodes in each layer (see Methods for details). The MM-

GBSA ensemble of energies obtained from the MD trajectories of each variant was fed as input 

features. Each variant entry in the training set contains all 18 MM-GBSA energy terms (see 

Methods for description of terms) replicated for all eight sets of the ensemble. After passing 

through the hidden and output layers, each of the eight sets of energies outputs a single predicted 

value for Kd,app. The model was trained to minimize the mean sum of squared error between the 

predicted Kd,app and experimental Kd,app values (see Methods for details). When making a prediction, 

each of the eight sets of energies is fed into the trained model to get a single Kd,app prediction and 

the final prediction value is recovered by taking the median of predictions from all eight ensembles. 

The overall computational workflow is summarized in Figure 3.  

During training and assessment of the model, a five-fold cross validation procedure was followed. 

During each cross-validation cycle, the 108 variants are randomly assigned to five groupings of 

approximately equal size. Four of these subsets are used as the training sets whereas the fifth 

becomes the testing set. This approach was chosen so that the testing set used to assess the 

prediction performance of the NN model is never used to train the predicting NN model. This 5-

fold cross-validation was repeated 5 times using random assignments for the testing set. This led 

to the construction of 5x5 = 25 independently trained NN models with an average value of r=0.69 

(obtained across the 25 models) and a standard deviation of only 0.03 implying both robust and 

accurate prediction (see Figure 4). Notably, the correlation coefficient of prediction improved by 

more than 2-fold compared to the MM-GBSA method (r=0.33) indicating that a higher order 

nonlinear structure, relevant to Gbind prediction embedded in the energy terms, was captured by 

the NN model. Correct variant classification (i.e., %VC) was also improved from 64% to 82% (see 

also Table 1). 
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Figure 3. Schematic representation of the workflow for building NN_MM-GBSA model. (A) MD 

simulations were performed for each single point amino acid substitution variant in explicit solvent 

followed by MM-GBSA analysis to calculate the decomposed components of binding energies. 

(B) MM-GBSA binding energy components were fed as inputs to the Neural network with the 

experimental Kd,app ratios as the regression target. The model is trained using five cycles of the 

five-fold cross validation procedure.  
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Figure 4. KD,app ratios predicted by NN_MM-GBSA vs. experimental ratios obtained using five 
cycles of five-fold cross-validation study on the 108 RBD variants. An average correlation 
coefficient of r=0.69 (std. dev.=0.03) and average %VC of 82% (std. dev. = 0.02) were achieved. 
The Mean Squared Error was 0.20 (std. dev. = 0.02). The solid diagonal line y=x and the dotted 
horizontal and vertical lines at experimental and predicted KD,app ratio = 1 are drawn for reference. 
Shown in blue are variants that were correctly classified as improving (or worsening) binding 
affinity with hACE2 and in red are the ones that were misclassified. 

 

As a methodological check, we also explored whether the nonlinear nature of the NN model is 

needed to reach the gains in prediction or whether a linear regression model could simply re-weight 

the energy terms in a linear fashion and achieve similar performance. We found that a linear 

regression model improved the correlation coefficient r from 0.33 to 0.53 in comparison with the 

MM-GBSA prediction method but lowered %VC from 61% to 59%. This implies that the higher-

order nonlinear re-assortment of energy terms is required for reaching improved prediction fidelity. 

As a follow up, we also explored if the energy terms from Rosetta49,59 could be used instead of the 
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ones from MM-GBSA to construct a NN model of equivalent predictive ability. Note that the 

Rosetta energy function captures solvation effects implicitly without an explicit treatment of water 

molecules. We found that the gains in r and %VC for a NN model trained on the Rosetta energy 

terms were less than those seen when trained on MM-GBSA energies (i.e., r = 0.57, %VC=74.63). 

Both these analyses suggest that (1) explicit water treatment in MD simulations is important for 

correctly describing water-mediated hydrogen bonding and other electrostatic contacts at the 

interface while also enabling the sampling of a larger conformational landscape, which is 

necessary for capturing binding affinity changes due to nonlocal structural changes,73 and (2) the 

higher-order nonlinear regression afforded by a NN_MM-GBSA model are required to reach high 

prediction performance.  

As a further demonstration that the NN_MM-GBSA model captures variant-specific information 

and does not simply carry-out numerical fitting, we performed a data scrambling test. Specifically, 

we re-assigned the variant definition (i.e., corresponding amino-acid change) to randomly chosen 

input energy terms, thereby destroying any variant-specific correspondence with the input features. 

We gradually increased the fraction of data scrambled and re-evaluated NN_MM-GBSA model 

performance. We found that as the fraction of scrambled data increases, the performance of the 

NN_MM-GBSA model declines. The %VC drops from the original 82.24% to 49.74% (almost 

completely random). This test reaffirms that the NN_MM-GBSA model indeed captured variant-

specific information.  

 

NN_MM-GBSA model prediction of KD,app ratios of circulating SARS-CoV-2 strains 

Several amino-acid changes have been identified in the spike protein of several of the currently 

circulating SARS-CoV-2 variants.74 Some of the underlying single amino acid mutations were part 

of our balanced training set (i.e., N501Y, Y453F) whereas others (i.e., K417T, K417N, E484K, 

S477N, L452R,S494P) were not. The predicted KD,app ratios along with experimental values (when 

available) and lineage names of variants that contain the corresponding amino acid changes are 

tabulated in Table 2. In all cases, amino acid changes were correctly classified as improving or 

worsening (i.e., %VC=100) with a good quantitative agreement (see Table 2).  Notably, variant 

B.1.351 has the amino acid change N501Y first seen in B.1.1.7 along with additional changes 

E484K and K417N in the spike. The E484K change has been shown to be responsible for evasion 

of neutralization by several antibodies75,76 whereas the N501Y change has been associated with 

increased binding affinity to hACE233 and increased transmission.77 Both amino acid changes were 

correctly classified by NN_MM-GBSA as improving binding affinity (see Table 2). In Table 2, 

we also include predictions for multiple simultaneous amino acid changes present in some 

circulating variants, alas experimental values are not available to this date which prevents any 

direct comparison. Nevertheless, significantly higher binding affinities were predicted for all tested 
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double and triple amino acid variants present in currently circulating isolates (i.e., KD,app ratios 

greater than 1.26 in all four cases). In addition, we included novel predicted variants 

V503W+E406F and V503W+Y505W, which we arrived at by maximizing binding affinity based 

on an exhaustive evaluation using the less accurate but more computationally tractable Rosetta 

energy function.49 Upon re-scoring using NN_MM-GBSA, we recovered  high KD,app ratios (i.e., 

1.28 and 1.23, see Table 2). It is also worth noting that the single amino acid changes E406F and 

V503W by themselves cause a decline in binding affinity (experimental KD,app ratio of 0.13 and 

0.81) but when applied in combination lead to binding energy gains. This is probably due to a 

cooperative hydrophobic effect formed at the binding interface.  

Table 2. Predictions of KD,app ratios for single amino-acid changes found in circulating strains of 

SARS-CoV-2 and for two novel variants predicted to have increased binding affinity for hACE2.  

* single amino-acid changes part of the training data 

# amino-acid change detected in some sequences of lineage but not all 

Amino acid change(s) 
SARS-CoV-2 

variant lineage78 

Experimental 

KD,app ratio 

NN_MM-GBSA  

KD,app ratio 

K417T P.16 0.55 0.15 

K417N B.1.3515 0.35 0.13 

L452R B.1.42979 1.05 1.19 

Y453F* B.1.1.29880 1.78 1.40 

S477N B.1.52681# 1.15 1.24 

E484K 
B.1.3515, P.16, 

B.1.1.74# 
1.15 1.32 

S494P B.1.1.74# 1.00 1.03 

N501Y* 
B.1.3515, B.1.1.74, 

P.16 
1.74 1.37 

E484K+N501Y P.16,  B.1.3515 – 1.36 

E484K+S477N B.1.52681# – 1.26 

E484K+N501Y+K417T P.16 – 1.36 

E484K+N501Y+K417N B.1.3515 – 1.35 

V503W+E406F De novo – 1.35 

V503W+Y505W* De novo – 1.29 
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Discussion 

NN_MM-GBSA is a two-step procedure that uses the energy terms calculated for SARS-CoV-2 

RBD variants from MM-GBSA to train a neural network model for predicting the qualitative and 

quantitative effects of amino acid changes in the RBD of the spike protein on the binding affinity 

with hACE2. Using a balanced training set of 108 variants, the method achieves a Pearson 

correlation coefficient of 0.69 between predicted and experimental values for the KD,app ratios. In 

addition, the recovery of the correct effect of an amino acid change (i.e., improving or worsening 

binding) was 82%. We find that prediction is quite robust in terms of selection of training/testing 

sets with a standard deviation for the prediction or r of only 0.03. Notably, Starr et. al33 

exhaustively assessed a total of ~4,000 variants for their binding affinity whereas, in this study, 

we used only a small fraction of the dataset (108 variants). As we continued to add additional 

members to the training dataset of 108 variants, no clear improving (or worsening) trendline was 

observed. Clearly, prediction fidelity is better for amino acid changes in positions that include at 

least one variant in the balanced training dataset. We plan to continue expanding upon the list; 

however, most of the remaining variants involve single amino acid changes far away from the 

RBD-hACE2 binding interface and thus contribute progressively less to binding affinity. The true 

value of NN_MM-GBSA is not the assessment of variants with single amino acid changes, but the 

surveillance for multiple amino acid change variants. We predicted the change in binding affinity 

upon the amino acid changes E484K+N501Y+K417N present in B1.351 and 

E484K+N501Y+K417T present in P.1. We found that N_MM-GBSA predicts for both, a 

significantly increased affinity for hACE2 (see Table 2) suggesting that the effect of amino-acid 

changes E484K and N501Y dominate the effect of K417N or K417T which are both known to 

decrease the binding affinity by themselves (see Table2). 

In addition, we explored the possibility of double amino acid variants with even higher gains in 

binding affinity. Two such candidates (V503W+E406F and V503W+Y505W) were identified 

through exhaustive enumeration, using the Rosetta energy scoring function.49 For both of them, 

method NN_MM-GBSA confirmed high KD,app ratios. These variants introduce large hydrophobic 

amino acids at the interface to enhance binding affinity with hACE2. The importance of the 

hydrophobic effect in protein-protein binding has been long recognized.82 Specifically, it has also 

been shown that the RBD-hACE2 interface is dominated by networks of hydrophobic contacts 

forming strong anchors for binding.83 

A drawback of NN_MM-GBSA is that it requires a priori MD simulation of the variant under 
evaluation and collection of all energy terms using MM-GBSA analysis. This is computationally 
costly as a single calculation requires on average a total of 48 GPU-hours and 3 CPU-hours. 
Ideally, one could simply use existing energy terms generated from the balanced training set of 
108 variants to make predictions for novel variants. However, this would require training a neural 
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network model with more than just energy terms as descriptors. The use of sequence and/or 
structural features could provide a tractable path forward in this direction.  
 
In principle, NN_MM-GBSA can also be used to assess infection potential for other non-human 
hosts by SARS-CoV-2 by assessing the binding energies of the spike RBD with the animal ACE2 
receptors. The structures of non-human ACE2 are generally unavailable (except for bats84 and 
felines85) therefore, the first step would require homology modeling of the ACE2 receptor for the 
examined species. Efforts along this direction have been carried out for livestock and companion 
animals32 and assessments for high-risk animals are urgently needed. Assuming that training of 
NN_MM-GBSA using hACE2 data is robust, it could in principle be used to prospectively assess, 
the relative affinity of the RBD of circulating variants for various animal ACE2s. Crucially, this 
may provide the first indication that the viral variants have been established in non-human animal 
reservoir population(s). These variants can include both those already circulating and ones de novo 
predicted.    
 
 
Methods 

Rosetta calculations for independent structure generation 

The 3D coordinates of SARS-CoV-2 viral spike RBD in complex with hACE2 were extracted 

from the crystal structure with PDB-id 6LZG.65 The obtained WT model was first pre-processed 

by removing all solvent molecules and all non-amino acid residues. For each of the 108 RBD 

variants with single point amino acid changes, 3D coordinates were generated using 

Rosettascripts86. First, the PackRotamers mover was used to build the variants with amino-acid 

changes and repack the rotamers. Then, for each variant, 48 independent configurations for MD 

simulations were generated using the Relax66 energy minimization protocol.  

 

Molecular dynamics simulations and MM-GBSA analysis 

For each variant, the 3D coordinates of 48 independent configurations obtained using Rosetta (as 

described above) were prepared using protein preparation wizard87 protocol of Maestro in 

Schrödinger suite (v2019.4). Each configuration was then solvated with water using the tip3p64 

model in an orthorhombic box with 10 Å buffer distance in each dimension. The residual charges 

were neutralized by adding Na+ and Cl− ions at a salt concentration of 0.15 M.  The solvated 

systems were minimized and pre-equilibrated using the default relaxation protocol of Desmond88 

followed by a 4-ns production run using the amber99sb-ildn63 force field at 300 K and 1 atm. The 

NPT ensemble with periodic boundary conditions using particle mesh Ewald89 for long-range 

interactions. A time step of 2.0 fs was used and a cutoff distance of 9.0 Å was chosen for non-

bonded interactions.  
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For each variant, the 4-ns trajectory for each of the 48 configurations was sampled at an interval 

of 0.1 ns, generating 1920 snapshots in total. For each snapshot, the Prime/MM-GBSA analysis62 

was performed using thermal_mmgbsa.py script from the Schrödinger suite. The MM-GBSA 

analysis produces the binding energy and its constituent eight individual energy terms i.e., 

Coulomb energy, Covalent binding energy, van der Waals energy, Lipophilic energy, Generalized 

Born electrostatic solvation energy, Prime energy, Hydrogen-bonding correction, π-π packing 

correction, and Self-contact correction. Another set of values for these nine terms have also been 

calculated by not accounting for receptor and ligand conformational changes needed to form the 

complex. Due to a high degree of variation in the energies, we averaged data from 240 snapshots 

to produce a single set of averaged energy terms in the dataset. Thus, a total of 1920 snapshots 

generate eight sets of averaged energy terms for each variant. In total, these 18 energy values were 

utilized as the input features for NN construction.  

 

Neural network for MM-GBSA energies (NN_MM-GBSA) 

A. Dataset Generation: MM-GBSA analysis was used to generate 18 energy components (as 

described above) which are fed as the input features for the NN_MM-GBSA model. Each input 

energy term across the whole data set was scaled independently to have zero mean and a variance 

of one. The output target was set to the experimental apparent dissociation constant KD,app ratios, 

(KD,app)variant/(KD,app)WT. The experimental data for the 108 RBD variants (see Supp. Table 1 for list) 

was obtained from Starr et. al.33  

B. Model Architecture: The neural network has a single input layer, a single output layer and four 

fully connected hidden layers with 144 nodes per layer, forming 18-(144-144-144-144)-1 structure. 

The rectified linear unit was used as the activation function for all of the hidden layers and the 

dropout regularization method was applied to hidden layers, with a dropout rate of 0.5 for the first 

and last hidden layers, and 0.75 for the rest.  

C. Model Training: The model was trained through backpropagation to minimize the mean squared 

error between predicted KD,app and target KD,app values. Adam90 optimizer was used to perform the 

backpropagation with a learning rate of 0.001 and weight decay of 0.005. The training was 

performed for 2,000 epochs including the entire training data in each batch.  

D. Model Evaluation: We used a five-fold cross validation protocol to evaluate the model, by 

splitting the whole dataset into 5 subsets. In one complete evaluation cycle, each of the 5 subsets 

was used as a test set once and the rest constituted the training set and a total of 5 such cycles were 

performed. Two metrics were employed to quantify the performance of NN_MM-GBSA model 

predictions: % correct variant classification (%VC), and the Pearson correlation coefficient 

(r). %VC is the percentage of instances in which a variant is classified correctly as increasing or 
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decreasing the binding affinity compared to WT. The Pearson’s correlation coefficient is defined 

as: 𝑟 = ∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)√∑(𝑥𝑖 − �̅�)2 ∑(𝑦𝑖 − �̅�)2 

where xi and yi are the target and prediction for the ith sample, and �̅� and �̅� are the mean value for 

all xi targets and yi predictions.  

E. Model Predictions: The NN_MM-GBSA model predictions are based on a single model trained 

using 100% of the training data. When making the prediction for a variant, the ensemble of eight 

sets of MM-GBSA energies are collected and each set is used to make a single prediction for KD,app 

using the model. The median of eight predictions is the final predictor of the KD,app of the variant. 

F. Implementation: All codes were developed in Python using the PyTorch library. 

 

Rosetta calculations for Gbind  prediction 

The complexes for 108 RBD variants were subject to Relax66 with harmonic constraints to prevent 

the structure from deviating significantly from the crystal structure. During Relax, rotamers of 

amino acid residues within 8 Å of the mutated amino acid were only allowed to repack (local 

packing). All default parameters were used for Relax with the ref2015 energy function.49. At the 

end of Relax, a gradient minimization is performed using lbfgs_armijo algorithm for 2000 steps 

after which the relevant metrics of binding were calculated using InterfaceAnalyzer.91 The binding 

energy, Gvariant of each variant is calculated as the average of dG_separated scores obtained from 

30 independent Relax simulations. For each variant, a WT binding energy, GWT is calculated 

using the same protocol by making a dummy amino acid change (change amino acid to itself). 

Finally, the change in binding energy Gbind is calculated as Gbind = Gvariant - GWT.  
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