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Computational prediction 
of the molecular mechanism 
of statin group of drugs 
against SARS‑CoV‑2 pathogenesis
Dipanjan Ghosh1,6, Debabrata Ghosh Dastidar2,6, Kamalesh Roy3,6, Arnab Ghosh4, 
Debanjan Mukhopadhyay4, Nilabja Sikdar5*, Nidhan K. Biswas4, Gopal Chakrabarti1* & 
Amlan Das4*

Recently published clinical data from COVID‑19 patients indicated that statin therapy is associated 
with a better clinical outcome and a significant reduction in the risk of mortality. In this study by 
computational analysis, we have aimed to predict the possible mechanism of the statin group of 
drugs by which they can inhibit SARS‑CoV‑2 pathogenesis. Blind docking of the critical structural and 
functional proteins of SARS‑CoV‑2 like RNA‑dependent RNA polymerase, M‑protease of 3‑CL‑Pro, 
Helicase, and the Spike proteins ( wild type and mutants from different VOCs) were performed using 
the Schrodinger docking tool. We observed that fluvastatin and pitavastatin showed fair, binding 
affinities to RNA polymerase and 3‑CL‑Pro, whereas fluvastatin showed the strongest binding affinity 
to the helicase. Fluvastatin also showed the highest affinity for the  SpikeDelta and a fair docking score 
for other spike variants. Additionally, molecular dynamics simulation confirmed the formation of a 
stable drug‑protein complex between Fluvastatin and target proteins. Thus our study shows that of all 
the statins, fluvastatin can bind to multiple target proteins of SARS‑CoV‑2, including the spike‑mutant 
proteins. This property might contribute to the potent antiviral efficacy of this drug.

The COVID-19 pandemic caused by SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2, a novel 
coronavirus strain) has posed a severe threat to humanity. SARS-CoV-2, also referred to as 2019 novel coro-
navirus (2019-nCoV) or human coronavirus 2019 (hCoV-19)1, is a positive-sense single-stranded RNA virus 
responsible for the highly contagious severe acute respiratory syndrome (SARS) in  humans2. By the first week 
of January 2022, over 304 million confirmed cases and over 5.4 million deaths had been reported  globally3. The 
30 Kb long single-stranded SARS-CoV-2 genome consists of seven genes oriented in the following order: ORF1a, 
ORF1b, S, OEF3, E, M, and N from 5’ to 3’ direction. The viral mRNA encodes 29 structural and nonstructural 
proteins (nsps), including ORF 1a/b polyprotein, spike (S) glycoprotein, envelope (E), membrane (M), and the 
nucleocapsid (N)  protein4. The ORFs 1a and 1b code for the proteases 3Cl-Pro (also known as Mpro or the Main 
protease), and PL-Pro respectively, that further cleave the polypeptide into 16 nonstructural proteins. These struc-
tural proteins play pivotal roles in the entry and assembly of the virus particles in the host  cells6,7. The replication/
transcription machinery of the virus is mediated by two enzymes, namely the RNA-dependent R.N.A. polymerase 
(RdRp) or nsp12 and helicase or nsp13. While RdRP mediates the viral replication, the helicase catalyzes the 
unwinding of double-stranded RNA formed during replication and allows the next round of viral  replication8,9. 
Most of these structural and nonstructural proteins of SARS-COV-2 share highly conserved functional domains 
with its predecessor strain SARS-CoV-25 and may be targeted with the existing or novel antiviral  agents6.

Genomic analysis of the available SARS-CoV-2 sequences across the globe revealed that the viral genome had 
acquired a specific mutation in S protein, which facilitated its entry and infectivity in host cells. Those variants 
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were found to possess the D614G mutation, i.e., the replacement of the aspartate (D) with glycine (G) at the 614th 
amino acid of S protein, and became predominant across the globe, outcompeting the wild type  strain7. Also, it 
was further revealed that the D614G mutation enhanced the infectivity of the virus in the host  cells8,9. With the 
progression of pandemic, SARS-CoV-2 acquired additional mutations in S protein on the background of D614G 
mutation in different geographical regions and classified as B.1.1.7or Alpha, B.1.351or Beta, P.1 or Gamma and 
B.1.617 or Delta variant. Due to their higher transmissibility, mortality, and immune-escape properties, these 
variants are known as the variant of concerns (VOCs, Table 1).

The Alpha variant was first detected in England in September 2020, and by February 2021, it accounted for 
nearly 95% of SARS-CoV-2 transmission in  England10. The  SpikeAlpha protein consists of nine mutations, includ-
ing two deletions and seven amino acid substitutions (four in S1 and three in S2) such as Δ69–70HV and Δ144Y 
deletions; N501Y, D614G, A570D, P681H, T716I, S982A, and  D1118H11. The Beta variant was first detected in 
South Africa in October 2020, and by January 2021, it had spread to several other countries of Africa and Europe, 
Australia, and  Asia12. Compared to the wild-type virus, the Beta variant consisted of nine defining mutations 
in the spike protein in addition to D614G, namely A701V, D215G, D80A, E484K, K417N, N501Y, ΔL242–244 
deletions, R246I, and  L18F13. The Gamma variant was first reported in March 2020 in  Brazil14. The Gamma vari-
ant consists of multiple spike protein mutations, including K417T, E484K, and N501Y in the RBD region, L18F, 
T20N, P26S, D138Y, and R190S in the NTD region, D614G and H655Y at C terminus in S1 subunit, and V1176F 
and T1027I in S2  subunit15. The biologically important mutations in  SGamma include the N501Y, E484K, and 
K417T. In late 2020, a new variant was detected in Maharashtra, India, and was named Delta variant or B.1.617. It 
consists of three sub-lineages: B.1.617.1, B.1.617.2, and B.1.617.3, of which the B.1.617.1 and B.1.617.2 were first 
detected in India in December 2020, whereas the B.1.617.3 sub-lineage was first reported in India in February 
 202116. Further studies revealed that B.1.617.2 is responsible for higher risk of transmissibility and hospitaliza-
tion than the other sub-lineages17. The Spike Delta(B.1.617.2) consists of characteristic mutations such as T19R, 
G142D, L452R, T478K, D614G, P681R, D950N, and del157/158 (Outbreak.org, accessed on 20th October 2021).

The first three variants possess the mutation in RBD of S protein, characterized by the replacement of aspara-
gine (N) with tyrosine (Y) at position 501 of RBD, on the background of D614G  mutation18,19. The N501Y 
mutation has been reported to enhance the binding of viral S protein to the host ACE2 receptors and reduce the 
efficacy of the neutralizing antibodies targeting the  RBD20,21. During the interaction of the neutralizing antibodies 
with RBD, the E484 residue plays an important role by forming hydrogen bonds and salt‐bridge interactions. The 
E484K mutation inhibits the formation of H‐bond and salt‐bridge interaction between the antibody and RBD 
and results in the reduced effectiveness of the neutralizing  antibodies22. The Beta and Gamma variants shared 
three common mutations in their RBD, K417N/T, E484K, and N501Y, which may change their antigenic profile 
and reduce the efficacy of the neutralizing antibodies. Similarly, the P681H mutation (furin cleavage site) in the 
Alpha variant is located proximal to the spike antigenic sites and may adversely affect the neutralization efficiency 
of the  antibodies22. The Delta -B.1.617.2 lineage possesses the signature mutations L452R, D614G, and P681R in 
the spike protein. The L452R mutation has been associated with reduced neutralization efficacy by antibody or 
vaccine, while P681R has been associated with enhanced  transmissibility23,24. Thus these accumulating variations 
had enhanced the immune escape potential of new SARS-CoV-2 variants.

Since the prevailing vaccines were designed against the wild-type SARS-CoV-2 discovered in 2019, concerns 
have been raised about whether these vaccines will be effective against the new VOCs.The growing concern 
is that some of these emerging mutations reside in the antigenic supersite in the NTD and the RBM on RBD, 
which are the potential targets for neutralizing antibodies. A recent study indicated that B.1.1.7 is resistant to 
neutralization by most of the monoclonal antibodies targeting the N-terminal domain (NTD) of S-epitopes and 
also partially resistant to a few RBD-targeting antibodies. However, convalescent plasma or vaccine sera had no 
significant effect on the neutralizing efficacy against the Alpha variant. The B.1.351or Beta variant also showed 
increased resistance to neutralization by most of the monoclonal antibodies targeting NTD and RBM on RBD 
of spike  proteins25. The vaccine trials conducted in South Africa for the AstraZeneca, Novavax, and Johnson & 
Johnson’s Janssen vaccines revealed lower vaccine efficacy in places where B.1.351 is  dominant26. Other studies 
also reported a lower vaccine efficacy rate for  Moderna27,  Pfizer28, and  BNT162b229 against the Beta variant. 
Neutralizing efficiency of the vaccines against the Delta variant indicated a mixed response so far. It was reported 
that two doses of the BNT162b2 vaccine had given protection from the Delta (B.1.617.2)  infection30. A recent 
study also revealed that the BNT162b2 vaccine was more effective than the ChAdOx1nCoV-19 against the Delta 
 variant31. Thus the available reports suggest that the commercially available vaccines had a mixed spectrum of 
efficacy against the VOCs.

Table 1.  SARS-CoV-2 variants of concerns: defining mutations in the spike protein.

VOC Country of Origin Characteristic Spike mutations Biological relevance

Alpha (B.1.1.7) England del69/70, del144/145, N501Y, A570D, D614G, P681H, T716I
S982A, D1118H

Increased transmissibility, hospitalization risk, and minimal effect 
on vaccine efficacy

Beta (B.1.351) South Africa D80 A, D215G, 241/243del, K417N, E484K, N501Y, D614G, A701V Increased transmissibility, hospitalization risk, mortality, immune 
escape property and might affect the vaccine efficacy

Gamma (P.1) Brazil L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, 
H655Y, T1027I, V1176F

Increased transmissibility, hospitalization risk, and minimal effect 
on vaccine efficacy

Delta (B.1.617.2) India T19R, G142D, L452R, T478K, D614G, P681R, D950N, del157/158 Increased transmissibility, hospitalization risk, mortality, immune 
escape property and might affect the vaccine efficacy
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Hence the search for novel drug candidates which can target both the wild type as well as mutant proteins 
warrants investigation on utmost priority. Presently there are no well-defined effective therapies against COVID-
19. Till December 2021, the only medicine prescribed by the doctors is dexamethasone, which has been shown 
to reduce 28-day mortality in COVID-1932. Although Remdesivir, a novel nucleotide analog, initially showed 
some promising results in lowering the oxygen requirement of hospitalized COVID-19patients33, later WHO has 
recommended against the use of  remdesivir34. Very recently, FDA authorized Pfizer’s Paxlovid (nirmatrelvir and 
ritonavir tablets, co-packaged for oral use) for the treatment of mild-to-moderate COVID-19  patients35. Also, a 
plethora of randomized trials are going on to investigate the possible therapeutic remedies against COVID-19, but 
no conclusive outcome has emerged to date. By molecular docking and dynamics simulation approaches, several 
drug candidates were proposed that can target the essential proteins of SARS-CoV-2 like helicase, M-protease, 
and RdRP, to name a few. Compounds like cepharanthine, lumacaftor, cordycepin, pritelivir, etc., were found 
to target the helicase  protein36,37. Similarly, several compounds showed good affinity towards the M-protease, 
including the natural compounds such as salvianolic acid A,  curcumin38, the antivirals such as TMC-310911, 
and  ritonavir39,  terpenes40, and Rutin and flavone  analogs41, to mention a few.

The beneficial effects of the statin group of drugs are well documented. The statins have shown a promising 
therapeutic role against various autoimmune inflammatory induced disorders such as multiple sclerosis, systemic 
lupus erythematosus, rheumatoid arthritis, etc.42. They also possess anti-hyperlipidemic and cardioprotective 
 properties43,44. Moreover, statins have also been effective against several viral infections such as Avian influenza, 
Zika virus, hepatitis C virus, H1N1 pandemic, and the Ebola outbreak in West  Africa45–49. In an interesting case 
study published in August 2020, a positive association between statin usage and reduced mortality of COVID-19 
patients was first  reported50. It was observed that the antecedent use of statin in hospitalized COVID-19 patients 
is associated with the lowering of mortality. At a similar timeframe, another retrospective case–control study 
with the COVID-19 patients hospitalized at Hubei province, China, reported that the overall mortality risk 
had significantly reduced in the patients with in-hospital use of statins, mainly  atorvastatin51. In a retrospective 
single-center study, Daniels et al. published that statin use before hospitalization was associated with a sub-
stantially lower risk of COVID-severity and was also associated with a faster  recovery52. Another multi-centric 
retrospective cohort study on the COVID-19 positive old population living in Belgiumrevealed a statistically 
significant association between statin usage and reduced COVID-19-severity53. In a recent report, Gerold et al. 
demonstrated the direct effect of statins on coronavirus infection in ex vivo conditions using the human lung 
 cells54. They observed that among all the statins, fluvastatin significantly reduced the entry of SARS-CoV-2 into 
the human respiratory cells by modulating the host gene  expressions54. Interestingly, they also observed that 
fluvastatin treatment significantly decreased SARS-CoV-2 genome copy numbers. But none of those mentioned 
above studies had demonstrated the direct effect of statins on SARS-CoV-2 target proteins. Hence the mechanism 
by which statins may inhibit viral pathogenesis remains inconclusive. In the present study by in silico molecular 
docking and molecular dynamics simulation analysis of the interactions of the statin group of drugs with the 
essential structural and functional proteins of SARS-CoV-2, we have aimed to predict a possible mechanism by 
which the statins may inhibit SARS-CoV-2 infection.

Materials and methods
Selection of target proteins of SARS‑CoV‑2 and its sequence homology with other corona‑
viruses. As discussed earlier, the spike (S)-protein, RNA dependent RNA polymerase (RdRp), 3-Chymo-
trypsin-like protease (3CL-Pro)or the main protease and helicase are the critical proteins that regulate the 
various stages of SARS-CoV-2 infection, including the entry and replication of the viral genome in the host 
 cells5,8,50,51,55,56. Hence for this study, the crystalline structures of RdRp (PDB ID: 7BV2), 3CL-Pro (PDB ID: 
6LU7), and helicase (PDB ID: 6ZSL)were obtained from the RCSC Protein Data Bank (https:// www. rcsb. org).

The FASTA sequences of the target proteins related to SARS-CoV and coronaviruses from other species were 
derived from the UniProt database (https:// www. unipr ot. org/) for the sequence homology analysis. Multiple 
sequence alignment studies were performed with Clustal Omega (https:// www. ebi. ac. uk/ Tools/ msa/ clust alo/) 
to get the sequence homology data and generate the phylogenetic tree.

Determination of the mutational landscape of SARS‑CoV‑2 genome. A total of 5,053,231 SARS-
CoV-2 genome sequences deposited to GISAID until November 2021 were obtained and processed for down-
stream analysis. Sequences with an inadequate length (< 25,000 nt) and duplicated entries were excluded from 
the dataset. Sequences were mapped against the SARS-CoV-2 reference sequence (Wuhan/WH01/2019) using 
the NextAlign aligner tool (https:// github. com/ nexts train/ nextc lade). To predict the time-dependent emergence 
of a specific mutation, we performed a phylodynamic analysis of global subsamples of SARS-CoV-2 sequences 
(N = 3525) using the next train/ncov pipeline (https:// github. com/ nexts train/ ncov). Entropy for each position 
on SARS-CoV-2 Spike protein, helicase, RdRp, and main protease was calculated using a method encoded in the 
nextstrain/ncov pipeline (https:// github. com/ nexts train/ ncov).

Homology modeling, energy minimization, and validation of wild type and spike mutants. The 
sequence of SARS-CoV-2 spike protein was downloaded from the NCBI (https:// www. ncbi. nlm. nih. gov/) pro-
tein database (Accession No: YP_009724390). Mutations were collected from the website, https:// outbr eak. info/ 
situa tion- repor ts, accessed in October 2021. The template sequence was identified via alignment of the available 
PDB sequences using the BLASTp program (NCBI). All the sequences, including the wild type and mutants, 
were modeled using the Swiss Model  Server57. Predicted structures were subjected to analysis in SWISS-MODEL 
for QMEAN Z-score calculation which includes cumulative Z-score of Cβ, All atoms, Solvation, and Torsion 
values. The templates for each mutated sequence were identified through searching on PDB using the BLASTp 

https://www.rcsb.org
https://www.uniprot.org/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://github.com/nextstrain/nextclade
https://github.com/nextstrain/ncov
https://github.com/nextstrain/ncov
https://www.ncbi.nlm.nih.gov/
https://outbreak.info/situation-reports
https://outbreak.info/situation-reports
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program provided by NCBI blast for all proteins. Due to the unavailability of the crystal structure of the region of 
interest, we have taken EM structure as a template for each different mutation based on query coverage, highest 
GMQE score, and percent (%) identity. The predictions were finally validated by PROCHECK. The summation 
of the number of residues in favored regions and allowed areas was considered for percent (%) quality assessment 
using the Ramachandran plot in PROCHECK (Table 2). For each of the models, a short molecular dynamics 
simulation of 25 ns of equilibrium was performed using Desmond simulation package v6.2 of Schrödinger LLC.

Determination of topology and structural alterations of wild type and mutant spike pro‑
teins. After modeling the wild-type and mutant spike protein, we evaluated the effects of the point mutations 
on different structural parameters, such as topology, folding dynamics, and stability. To determine the protein 
topology of the spike protein, we have used PredictProtein web-server (https:// predi ctpro tein. org/) and use the 
default setting therein. For further details about the secondary structure, we also used the SOPMA prediction 
web-server (https:// npsa- prabi. ibcp. fr/ cgi- bin/ npsa_ autom at. pl? page=/ NPSA/ npsa_ sopma. html). For isoelec-
tric pI, aliphatic index, and protein instability index value determination, we have used https:// web. expasy. org/ 
protp aram/.

Protein motifs were scanned using the webserver https:// prosi te. expasy. org/ scanp rosite/. Protein folding rate 
was measured using the FOLD-RATE web-server (https:// www. iitm. ac. in/ bioin fo/ fold- rate/)58.

The tertiary structure of the protein was determined using the  RoseTTAFold59. RoseTTAFold uses a machine 
learning-based method and includes a three-track network to process sequence, the distance between atoms, and 
coordinate information to predict the protein structure. For our study, we used the FASTA files of amino acid 
sequences of spike proteins (WT and variants) as input and then assigned in the server. The confidence score lies 

Table 2.  Modelling, energy minimization, and structure validation of wild type and mutant spike proteins.

Protein Model Structure 
Quality

Ramachandran Plot

Corona virus spike 
protein (Wild 

type) (Accession 
number: 

YP_009724390) 
Template: 7CN8 

Molprobity 1.5 
QMEAN: 0.72 

Cβ:- 0..88 
All atom :- 1.71 
Solvation :- 1.03 

Torsion:- 1.39 >94 %  highly favoured 

Spike Alpha

Molprobity  1.25 
QMEAN: - 0.76 

Cβ:- 1.00 
All atom :-  0.29 
Solvation :- 0.70 
Torsion:-  0.92 

>94 %  highly favoured 

Spike Beta

Molprobity  1.25 
QMEAN:  0.76 

Cβ:- 0.22 
All atom :- 0.22 

Solvation :-  0.71 
Torsion:-  1.40 

>94 % highly  
favoured

Spike Gamma

Molprobity  1.13 
QMEAN: -  0.76 

Cβ:-  0.53 
All atom   :- 0.31 
Solvation :- 0.60 
Torsion  :- 1.11 

>94 %  highly favoured

Spike Delta

Molprobity  1.21 
QMEAN:  0.76 

Cβ:-    0.51 
All atom :-  0.26 
Solvation :-  0.54 

Torsion:-  1.25 
>94 % highly favoured 

https://predictprotein.org/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://prosite.expasy.org/scanprosite/
https://www.iitm.ac.in/bioinfo/fold-rate/
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between 0–1, which corresponds to a local superposition-free score to compare protein structures. Structures 
with the highest score (> 0.6) were considered for analysis.

Screening of ligand molecules using Schrödinger suite. Preparation of the ligand molecules. Three-
dimensional structures of nine statin groups of drugs (Atorvastatin, Cerivastatin, Fluvastatin, Lovastatin, Mevas-
tatin, Pitavastatin, Pravastatin, Rosuvastatin, and Simvastatin) were obtained from PubChem database (https:// 
pubch em. ncbi. nlm. nih. gov) (Fig. 1). The physicochemical properties of stains are listed in Table S1.To make the 
statins suitable for docking, we performed the following steps such as salt removal, the addition of H-atoms, and 
deprotonation using the LigPrep v4.7 module of the Schrodinger suite. Epik v4.7 module was used for charge 
neutralization of the drug candidates for attaining the biological relevant pH (pH 7.0 ± 0.2). The high-energy 
tautomeric states were excluded to retain up to four stereoisomers, and generation of only one stereoisomer per 
ligand was allowed. The best drug candidate(s) for different target proteins was predicted by the virtual screening 
workflow module of  Maestro60.

Preparation of the target proteins. The target proteins obtained from the PDB database or modeled in other plat-
forms required further processing for being used for the docking analysis. The non-standard residues(residues 
other than amino acids) were first removed from the target proteins using DS client, and the resulting protein 
structures were processed using the ‘protein preparation wizard’ of Maestro,  Schrodinger61. The target proteins 
were processed by the addition of H-atoms, assigning the bond order using the CCD (Cambridge Crystallo-
graphic Datacenter) database, and introducing the missing disulfide linkages. The structures were further opti-
mized for H-bond assignment at pH 7.0 using the PROPKA function. It was followed by a restrained energy 
minimization module by applying the OPLS3e force field to converge heavy atoms to an RMSD value of 0.30 Å61.

Grid generation. The grid generation is a very crucial step for the analysis of drug-target protein interaction. In 
this process, a 3-D boundary for the ligand-binding site was generated in the target protein using Glide, version 

Figure 1.  2D structure of the statin molecules.

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov


6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6241  | https://doi.org/10.1038/s41598-022-09845-y

www.nature.com/scientificreports/

8.2 of Maestro,  Schrodinger62. The top-ranked potential binding sites were identified by keeping at least 15 points 
per site for the generation of the standard grid. The ‘receptor grid generation module’ was used to generate grids 
of 20 Å size across the binding site.

Molecular docking. The molecular docking for screening of ligands (statins) was performed with the Glide 
Virtual Screening Workflow (VSW). It consisted of flexible docking in three successive modes, namely, the high 
throughput virtual screening (Glide HTVS), the standard precision (Glide SP), and the extra precision (Glide 
XP)63. The scaling factor was set to 0.80, and the partial charge cutoff was 0.15. At the end of Glide HTVS, 50% 
of compounds were retained with all possible states. They were subjected to docking with Glide SP mode with 
retention of 50% of the best compounds with a good scoring state. Finally, Glide XP docking was performed with 
these compounds with 100% retention to find the best scoring state. The parameters such as Glide score, Glide 
energy, Glide emodel were noted. Post docking binding-site analysis and generation of graphical representations 
were done with Maestro 12.5.139, Discovery Studio Client, version 16.10 (Accelrys Software Inc. San Diego)64 
and VMD. (Visual Molecular Dynamics)65,66 software.

Determination of MM‑GBSA score. The binding energies of the statins with the target proteins were 
estimated as the molecular mechanical-generalized Born surface area (MM-GBSA) score, using the Prime MM-
GBSA module of Schrodinger. The VSGB solvation model (Variable-dielectric generalized Born model)67 and 
OPLS3e force field were used in the process. The protein was kept rigid, while the ligand was considered flexible. 
The binding energy was calculated using the following equation:

Molecular dynamics simulations. Molecular dynamics (MD) simulations provided an insight into 
dynamic perturbations within the complex and interactions of ligand, lipid, and water molecules. All molecular 
dynamics simulations were done with the academic version of Desmond simulation package v6.2 of Schrödinger 
 LLC68. Dual Intel Xeon Gold 6248-40 Core-80 thread processor with 384  GB RAM and Dual NVidia Tesla 
V100 GPU was used to run Desmond. The Protein–ligand complex was first solvated in an orthorhombic box 
using the Simple Point Charge model (SPC water model) of water that extends up to 10 Å from the  protein69. 
The system was neutralized with 0.15 M NaCl. Periodic boundary conditions were applied to the system in the 
NPT (constant particle number, pressure, and temperature) ensemble using a Nose–Hoover chain thermostat 
with a relaxation time of 1.0  ps70. Martyna − Tuckerman − Klein with Isotropic coupling style was used as the 
barostat system with a relaxation time of 2.0  ps71. The temperature was set to 300 K, the pressure was maintained 
at 1.01325 bar, and the pH was maintained at 7.00 throughout the simulation process. The OPLS_20059 force 
field parameters were  used72. The particle mesh Ewald method was used to calculate the long-range electrostatic 
 interactions73. The r-RESPA (reversible reference system propagator algorithms) integrator with an integration 
time of 2 fs was used for the  analysis74.

The system was initially set for a 100 ps run (5000 steps) using a hybrid method of the steepest descent and 
LBFGS (Limited memory Broyden-Fletcher-Goldfarb-Shanno) algorithm. It was followed by 25-ns equilibration 
with NVT (constant particle number, volume, and temperature) setting. During equilibration, the ligand was 
restrained while the protein was allowed to relax. Restraints were removed for subsequent production runs at 
300 K and 1.01325 bar with an integration time step of 2 fs. Five hundred frames were collected at intervals of 
400 ps throughout the 200 ns production run. The ligand–protein interactions were analyzed using the Simula-
tion Interaction Diagram tool implemented in the Desmond MD package. The Protein RMSD, ligand RMSD, 
and the Root Mean Square Fluctuation (RMSF) were monitored throughout the simulation period to study the 
changes in structural conformation of the protein–ligand complex. RMSD and RMSF were calculated using the 
following equations:

where  tref is the reference time,  ri is the position of residue i, r’i is the position of atoms in the residue i, after 
superposition on the reference where frame x is recorded at time  tx, and the angle brackets indicate that the 
average of the square distance is taken over the selection of atoms in the residue.

Solvent Accessible Surface Area (SASA) and Polar Surface Area (PSA) of ligand molecule was also monitored 
throughout the simulation period.

Results
Evolutionary relationship of therapeutically targeted SARS‑CoV‑2 proteins with other viral 
strains. The evolutionary conservancy is a critical feature of a gene or protein which guides it to act as a 
potential drug target. Hence the determination of interspecies evolutionary distance is necessary to predict the 
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effectiveness of the candidate protein to become a potential drug target. In this study, we investigated the inter-
species divergence of four selected target proteins of SARS-CoV-2, namely the spike protein, RdRp, helicase, 
and main protease among the Coronavirinae family members (Fig. S1). Protein sequence (FASTA) alignment of 
SARS-CoV-2 proteins with other coronavirus species from the bat, civet, pangolin, including SARS-CoV-2 were 
performed using P-BLAST. The analysis showed high sequence similarity for RdRp (> 95%), helicase (> 99%), 
and main protease (> 95%) proteins (Fig.  S1). SARS-CoV-2 spike (S) protein showed maximum sequence 
homology with pangolin coronavirus (92.43%) and over 76% homology with coronaviruses from other species.

Mutational landscape of the SARS‑CoV‑2 genome to detect the emergence of VOCs. We have 
analyzed 5,053,231 SARS-CoV-2 genome sequences deposited to the GISAID database till November 2021. 
By phylodynamic time tree analysis, we further determined the lineage diversity of SARS-CoV-2 variants over 
time (Fig. 2A). We have detected nonsynonymous single nucleotide substitutions in 4111 amino acid positions 
of ~ 30 Kb viral genome. The amino acid diversity as estimated by entropy calculation was measured over the 
genome (Fig. 2B). Among these mutations, 66.8% belonged to ORF1ab, 12.9% to Spike and 5% belonged to 
N-protein, and the rest belonged to other viral proteins. Phylodynamic time tree analysis showed 31 amino acid 
positions [9, 6, and 5 positions of Spike, ORF1a and N-protein and 11 positions of ORF1b, ORF3a, ORF7a/b, 
ORF8, and ORF9b] on the SARS-CoV-2 genome to possess entropy over 0.5. Most diversity was observed for 

Figure 2.  (A) Radial phylogenetic time tree based on 3525 SARS-CoV-2 RNA sequences that comprise major 
lineages of SARS-CoV-2 such as, Alpha, Beta, Gamma, and Delta. The radial phylogenetic time tree, with 
concentric circles showing the dates of sample collection; earlier dates of sample collection are closer to the 
center. (B) Lineage-defining Spike protein mutations for SARS-CoV-2 variant of concerns (VOCs) that are 
most prevalent worldwide, determined from the SARS-CoV-2 sequences and metadata submitted in GISAID 
(https:// www. gisaid. org/), using the Nextstrain ncov pipeline (https:// github. com/ nexts train/ ncov). (C) Relative 
frequencies of SARS-CoV-2 VOCs over months. The Delta SARS-CoV-2 lineage outcompeted all other variants.

https://www.gisaid.org/
https://github.com/nextstrain/ncov
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amino acid position 203 (entropy: 0.97) of the N-protein and 681 (0.89), 452 (0.72), and 157 (0.71) amino acid 
positions on Spike protein. The spike D614G mutation became predominant (~ 70%) since March  202075, and till 
December 2020, a few other Spike protein mutations such as P681H, N501Y in the backbone of D614G started 
gaining high prevalence. Previous studies have already shown the functional impact of spike D614G and N501Y 
mutations that provided a selective advantage to these mutations in viral entry, either through the interaction of 
ACE2 or by S1-S2  cleavage75–78. Moreover, the N501Y mutation in S protein is present in B.1.1.7 variant (Alpha, 
first reported from the UK), B.1.351 variant (Beta, first reported from South African variant), and P.1 variant 
(Gamma, first reported from the BrazilF) and exhibited stronger interaction with the host ACE-2  receptor49. 
During April 2021, after emergence, the Delta variant with characteristic Spike mutations such as T19R, E156G, 
157–158 deletion, L452R, T478K, P681R, and D950N within the D614G backbone started outcompeting the 
other SARS-CoV-2 variants (Fig. 2C). It gradually became the most frequent SARS-CoV-2 lineage worldwide 
(Fig. S2). The Spike protein’s amino acid positions that possess the highest entropy, i.e., 681, 452, and 157, all of 
them belong to the Delta variant of SARS-CoV-2.

Homology modeling, refinement, and structure validation of wild type and mutant S pro‑
teins. The template sequence for modeling the wild type and spike mutants was identified by PDB alignment 
using the BLASTp program. The BLAST search against the PDB database provided homology sequences against 
several structures. Due to the unavailability of the crystal structure of the region of interest, we have taken EM 
structure as a template for each different mutation based on query coverage, highest GMQE score, and percent 
(%) identity. The GMQE score is generated by the target-template alignment of the modeled protein in SWISS-
MODEL, and the value is expressed as a number between zero and one. Higher GMQE scores indicate increased 
structural reliability. The GMQE score for the modeled protein was found to be 0.98, which indicates good 
model accuracy. We prepared five sequence files by changing the amino acid in the specified region, i.e. wild type 
(no alteration), and four VOCs, namely alpha, beta, gamma, and delta with defined spike mutations (Table 1). 
These sequences were modeled against the template obtained in SWISS-MODEL based on GMQE and identity 
(Table 2). After the model refinement, each structure was validated through the generation of the Ramachandran 
plot using the PROCHECK tool (Table 2). Ramachandran plot confirmed that most of the amino acids of the 
modeled structures lie in the allowed region (> 90%), which indicates the stability of the structures (Table 2).

Effect of point mutations on the structure, topology, and stability of the spike protein. Com-
parative analysis of protein topology and secondary structure between wild type and different variants of spike 
protein (alpha, beta, gamma, and delta) was done using PredictProtein and ProtParam. Our analysis confirms 
no significant structural changes in the spike protein among different variants compared to the wild-type pro-
tein. However, local conformational changes had occurred due to the insertion or deletion of post-translational 
modification sites in the spike mutants (Table 3). The percentages of helices, extended strand, and coiled-coil 
formation vary between the mutant and wild-type proteins. Interestingly these variations did not cause any sig-
nificant changes in the solvent accessibility (buried/exposed/intermediate) of the spike protein (Table 3). Other 

Table 3.  Effect of the point mutations on the topology, structure and conformation of the wild-type and 
mutant spike proteins.

Using PredictProtein server

Protein topology WT Alpha Beta Gamma Delta

Signal peptide AA 1–13 AA 1–12 AA 1–12 AA 1–14 AA 1–13

Extracellular AA 14–874 and 1239–1273 AA 13–869 and 1237–1269 AA 13–871 and 1239–1271 AA 15–874 and 1239–1273 AA 14–872 and 1239–1271

Transmembrane helix AA 875–888 and 1214–1238 AA 870–882 and 1212–1236 AA 872–888 and 1214–1238 AA 875–888 and 1214–1238 AA 873–885 and 1214–1238

Cytoplasmic AA 890–1213 AA 883–1211 AA 886–1213 AA 889–1213 AA 886–1213

Disordered region AA 807–809 AA 803–808 AA 805–809 AA 807–811 AA 805–810

Secondary structure composition

Helix 17.67% 19.15% 18.65% 18.93% 17.94%

Strand 28.28% 26.64% 27.22% 26.32% 25.49%

Others 54.05% 54.22% 54.13% 54.75% 56.57%

Solvent accessibility

Buried 60.09% 60.20% 61.05% 60.33% 60.58%

Exposed 31.34% 30.73% 29.74% 30.40% 30.68%

Intermediate 8.56% 9.06% 9.21% 9.27% 8.73%

Using ProtParam server

Protein information

Isoelectric pI 6.24 6.35 6.64 6.39 6.94

Protein instability index 33.01 (stable) 32.80 (stable) 33.17 (stable) 32.71 (stable) 32.81 (stable)

Aliphatic index 84.67 85.02 84.42 84.45 84.5

Folding rate (fold rate) The folding rate, 
ln(kf) = −11/s

The folding rate, 
ln(kf) = 3.52/sec

The folding rate, 
ln(kf) = −8.46/s

The folding rate, 
ln(kf) = −3.9/s

The folding rate, 
ln(kf) = −7.03/s
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parameters like iso-electric pH and the aliphatic index remained similar between different variants. The instabil-
ity index shows that all the variants have identical overall stability compared to the wild-type protein (Table 3).

Although we did not observe any significant structural changes, analysis of motifs on spike protein revealed 
differential patterns (Fig. 3A, Table 3). We were able to identify 22 N-glycosylation motifs which recognize 
Asn as a central amino acid in the wild type, alpha and beta variants, whereas, in gamma, two more glycosyla-
tion motifs were generated at amino acid residue 20–23 and 188–191 due to the mutations T20N and R190S 
respectively (Fig. 3A, Table 3). In the delta variant, due to the mutation T19R, the glycosylation motif at amino 
acid residue 17–20 is absent (Fig. 3A, Table 3). Another critical motif, the protein kinase C phosphorylation 
site, was observed 13 times in wild-type and alpha variants, while in beta variant, a new site has been generated 
at 1035–1037 (Fig. 3A, Table 3). On the other hand, in the gamma and delta variants, the sites at 415–417 and 
19–21 are absent due to the mutations at K417T (gamma) and T19R(delta), respectively. The phosphorylation 
motif casein kinase II (CK2) is present 14 times in the wild, beta, and delta variants, while in alpha, one site is 
absent at 982–985 due to the mutation S982A. In the gamma variant, one additional site is generated at 417–420 
due to mutation K417T (Fig. 3A, Table 3). Two other vital motifs were also identified in spike proteins that were 
present in wild-type as well as in all the variants. These are the cAMP-cGMP-dependent protein phosphoryla-
tion site and cell attachment site at the RBD potion of spike protein (Fig. 3A, Table 3). Apart from the different 
phosphorylation sites, the N-Myristylation site, which acts as an essential post-translational modification, was 
also identified in spike protein. In wild-type protein 25, such N-Myristylation sites were identified, while in the 
alpha variant, two additional sites were evolved at residues 140–145 and 610–615 due to mutations (Fig. 3A, 
Table 3). In the beta variant, three more sites were evolved at residues 215–220, 411–416, and 610–615, while due 
to the mutation A701V, the site between 700–705 is absent (Fig. 3A, Table 3). In gamma and delta variants, the 
site at 610–615 is evolved, while in gamma, another new site at 210–215, and in the delta at 140–145 has evolved 
due to different mutations (Fig. 3A, Table 3).

Changes in protein-folding rate in wild-type and mutant proteins were observed by using FOLD-RATE soft-
ware. The protein-folding rate is usually inversely proportional to the time that a given protein needs to collapse 
into its stable tertiary structure. We observed that wild-type spike protein has a fast-folding rate (ln Kf −11  s−1), 
while for the alpha mutant, it becomes 3.52  s−1 due to the mutations. On the other hand, beta, gamma, and delta 
variants have ln Kfvalues of −8.46, −3.9, and −7.03  s−1, respectively (Table 3).

We further determined the structural changes in the wild-type and mutant spike proteins using the structure-
prediction tool  RoseTTAFold59. The Structural comparison between wild-type and different variants of spike 
proteins revealed a striking difference in their tertiary structure (Fig. 3B). The closed-loop structure in wild-type 
spike protein is not present in the variants. In alpha, beta, and delta variants, the C-terminal portion appeared 
like a protruding hanging end (orange color), whereas in gamma, it is folded in between the rest of the structure 
(Fig. 3B). The beta and gamma variants also formed a groove between the N-terminal domain and RBD (Purple 
and blue color, respectively), which is absent in alpha and delta variants (Fig. 3B). Thus the results indicated that 
the mutations in the spike protein had induced substantial conformational change in the spike protein.

Figure 3.  (A) Prediction of different post-translational sites in wild-type and mutant spike proteins. (B) 
Prediction of the tertiary structure of wild-type and mutant spike proteins using RoseTTAFold tool.
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Molecular docking of the target proteins with statins. RNA dependent RNA polymerase (RdRp). The 
cryo-EM structure of SARS-CoV-2 RdRp bound to the drug remdesivir at nsp12 was first deduced by Yin. et al. 
in  202079, where they reported the existence of the complex either in the apo form or in a complex with the 
primer RNA (PDB ID: 7BV2). The structural features of RdRp revealed that the polymerase domain consisted 
of a ‘finger’ domain (amino acid residues: 398–581, 628–687), a ‘palm’ domain (amino acid residues: 582–627, 
688–815), and a ‘thumb’ domain (amino acid residues: 816–919) and also an additional nidovirus-unique N-
terminal extension (amino acid residues: 1–397)80. As per the PDBsum record, 7BV2 has seven beta-sheets, 
forty-six α-helices, fifty-eight beta-turns, and two gamma-turns.7BV2 comprises six active sites such as AC1, 
AC2, AC3, AC4, AC5, and AC6, respectively, of which AC3 and AC6 constitute the remdesivir binding site.

Molecular docking of 7BV2 with the statin molecules revealed that only fluvastatin, pitavastatin, pravastatin, 
rosuvastatin, and simvastatin qualified with a docking score while the other statin molecules did not qualify the 
screening (Table 4). Among those statins, fluvastatin and pitavastatin were the best candidate molecules with 
higher binding affinities (Fig. 4, Figs. S3 and S4, Table 4). In contrast, the other statin molecules did not exhibit 
strong binding (Table 4). The 3D structures of Rdp-ligand complexes and their binding sites are shown in Fig. 3 
and Figs. S3 and S4(A,B). Both the molecules bind at the remdesivir binding site of the enzyme. The glide score, 
emodel score,and energy values for fluvastatin were −7.44, −60.23, and −57.076 kcal/mol(Table 4), and the 
corresponding values for pitavastatin were −7.5, −62.341, and −58.654 (kcal/mol),respectively (Table 4).The 
MMGBSA score for fluvastatin and pitavastatin were −32.13 and −49.96 kcal/mol, respectively. In our study, we 
observed that the glide score, emodel score, glide energy, and MMGBSA scores for remdesivir (positive control) 
were −7.312, −56.672, −71.38, and −33.38 kcal/mol, respectively (Table 4).

The binding pockets for fluvastatin and pitavastatin were further analyzed using the Discovery Studio client. 
The fluvastatin binding pocket was found to be hydrophilic in nature (Fig. S3C) due to the presence of hydrophilic 
amino acids like ASN 496, ARG 569, ASN 497, SER 501, THR 565, ASN 543, and SER 561. Since, except arginine, 
all other hydrophilic amino acids are uncharged, the binding pocket is nearly neutral (Fig. S3D). The presence 
of both the H-bond donor residues (ASN 496 and ARG 569) and H-bond acceptor residues (GLY 683)has made 
this site favorable for the formation of H-bond with the ligand (fluvastatin). These residues, present in 32nd 
and 47th β-turn, formed conventional H-bonds with the carboxyl and hydroxyl groups of fluvastatin (Fig. 4B). 
Moreover, the alkyl group of fluvastatin had hydrophobic interactions with the VAL 557 residue(Fig. 4B). All 
these interactions are favorable for forming a stable fluvastatin-RdRP complex.

The calculated LogP and pKavalues of fluvastatin and pitavastatin are similar (LogP: 4.85 and 4.8; pKa: 4.5 
and 4.3) (Table S1). Hence the binding pocket for pitavastatin showed similar properties to the fluvastatin-
binding pocket. The presence of uncharged polar amino acids like SER 501, ASN 543, ASN 497, THR 565, and 
positively charged basic amino acids like ARG 569, LYS 500, and ARG 555contribute to the hydrophilicity of 
the pitavastatin binding pocket. In contrast, the presence of uncharged nonpolar amino acids like VAL 557, 
ILE 562, VAL 560, VAL 557, ALA 512, ALA 558, and ALA 502 contribute to the hydrophobicity of the binding 
pocket (Fig. S4C). The presence of basic amino acids imparts a slight basic character to the binding pocket of 
pitavastatin to RdRp (Fig. S4D). The carboxylic acid group and hydroxyl groups of pitavastatin form H-bonds 

Table 4.  Docking analysis of the statins against target proteins of SARS-CoV2, except the spike protein.

target protein PDB ID
Selected 
ligands Glide score

Glide energy 
(kcal/mol)

Glide emodel 
(kcal/mol)

MMGBSA 
(kcal/mol)

Centre of binding location

X Y Z

RdRp 7BV2

Fluvastatin −7.44 −57.08 −60.23 −32.13 84.51 100.41 109.24

Pitavastatin −7.5 −58.65 −62.34 −49.96 85.11 100.70 109.73

Pravastatin −6.03 −38.82 −47.42 −12.98 – – –

Rosuvastatin −5.93 −39.29 −44.43 −23.38 – – –

Simvastatin −4.59 −27.09 −29.21 −27.84 – – –

Remdesivir −8.0 −44.84 −54.61 −33.38 98.54 87.45 101.57

3CL-Pro 6LU7

Fluvastatin −7.34 −48.62 −61.75 −43.54 −10.37 15.56 68.24

Pitavastatin −7.12 −45.78 −57.56 −31.67 −11.48 13.49 69.05

Cerivastatin −5.2 −36.36 −46.71 −28.20 – – –

Atorvastatin −4.9 −50.73 −58.99 −48.21 – – –

Rosuvastatin −4.1 −29.65 −34.64 −21.80 – – –

Simvastatin −3.5 −26.18 −27.54 −34.47 – – –

Ml188 −6.38 −47.05 −67.01 −39.93 −9.39 16.16 68.62

Helicase 6ZSL

Fluvastatin −11.33 −58.72 −66.51 −34.70 −20.68 33.63 −25.84

Pravastatin −7.61 −48.41 −55.67 −33.00 −10.10 28.20 −51.15

Atorvastatin −6.0 −35.89 −46.18 −44.46 – – –

Pitavastatin −6.0 −39.26 −56.94 −29.26 – – –

Cerivastatin −5.7 −40.33 −52.88 −33.34 – – –

Rosuvastatin −4.8 −32.94 −33.07 −35.89 – – –

Lumacaftor −7.18 −44.03 −59.88 −29.02 −20.89 31.41 −26.40
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with the β-turn (32nd and 33rd) and 27th helical region of the protein. SER 501 and VAL 560 act as H-bond 
acceptors, whereas ARG 569 is H-bond act as the donor (Fig. 4D). The negatively charged O-atom (formed due 
to ionization of – COOH group) formed salt-bridge with ARG 569. The π-electron cloud of the fluorophenyl 
group interacted with alkyl groups (–CH3) of VAL 557, located in the 14th β strand of D sheet, and formed π-alkyl 
bond. The electron cloud of the quinoline ring contributed to interaction with GLY 683 residue, located in the 
35th β strand of the D sheet. All these interactions contribute to a stable interaction of pitavastatin with RdRp.

Thus the results indicate that both Fluvastatin and Pitavastatin have a strong binding affinity towards RdRP 
and bind at the remdesivir binding pocket of the enzyme, and these two statins may inhibit enzyme activity.

3CL‑Pro or M‑protease. As per the PDBsum record, 3CL-Pro (306 amino acid long, PDB ID: 6LU7) has a single 
chain consisting of two beta-sheets, ten helices, twenty-six beta-turns, and three gamma turns. A previous report 
by Jin. et al. (2020) demonstrated that the enzyme consists of an active site to which the inhibitors can bind and 
inhibit the enzyme  activity81. The inhibition site comprised of the amino acids such as HIS 41, MET 49, TYR 54, 
PHE140, LEU 141, ASN 142, GLU 166, HIS 163, MET 165, MET 165, LEU 167, HIS 172, PHE 185, and GLN 192 
and the natural compounds lime Ebselen, Disulfiram, Tideglusib, Carmofur, Shikonin and PX-12 were reported 
to bind at that  site81. Recently, it was reported that pitavastatin and fluvastatin could bind to 3-CL-Pro with the 
binding energy of – 8.2 and – 7.7 kcal/mol82, but the report lacks detailed docking analysis and dynamics studies 
to support the prediction.

Molecular docking of the statins with 6LU7 revealed that Fluvastatin and pitavastatin are the best ligands 
to bind at the active site (site of inhibition). In contrast, the other statin molecules did not exhibit strong 
binding(Table 4, Fig. 5). The detailed analysis of ligand–protein complexes is represented in Fig. 5A,B and 
Fig. S5 (for fluvastatin) and Fig. 5C,D and Fig. S6 (for pitavastatin). The values of glide score, emodel, and glide 
energy for Fluvastatin were −7.338, −61.748, and −48.617 (kcal/mol), respectively, whereas the same for pitavas-
tatin were −7.119, −57.563, and −45.785(kcal/mol), respectively (Table 4). The MMGBSA score for fluvastatin 
and pitavastatin were −43.54 and −31.67 kcal/mol, respectively. In our study, we observed that the glide score, 

Figure 4.  Molecular docking study of fluvastatin and pitavastatin to RdRp. (A,C) 3D diagram of fluvastatin-
RdRp complex and pitavastatin-RdRp complex, respectively. (B,D) 2D diagram for representation of 
interactions of ligand molecule with the amino acid residues at the binding site; (B) fluvastatin-RdRp complex 
and (D) pitavastatin-RdRp complex. All 3D images were generated using the VMD (visual molecular dynamics) 
software (version 1.9.3) and 2D images were generated by the graphical user interface Maestro, Schrödinger 
(https:// www. schro dinger. com/ produ cts/ maest ro).

https://www.schrodinger.com/products/maestro
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emodel score, glide energy, and MMGBSA scores for ML188 (positive control) were −6.38–47.05–67.01, and 
−39.93 kcal/mol, respectively (Table 4). Thus the results indicated the strong affinity of fluvastatin and pitavas-
tatin towards the enzyme.

Characterization of the binding cavity of Fluvastatin revealed that it is partly hydrophilic (Fig. S5C, Blue 
color). The binding cavity is comprised of the residues like THR 25, THR 26, TYR 54, ASP 187, and GLN 189, 
which impart a polar (hydrophilic) character to the binding pocket(Fig. S5C). As per ionizibility, the binding site 
mainly was neutral due to the presence of the residues like THR 26, HIS 41, TYR 54, and CYS 145 (fade white 
color, Fig. S5D), while only GLU 166 was acidic (slightly brown in color, Fig. S5D). The presence of H-donor 
amino acid residues (THR 26, HIS 41, TYR 54, and CYS 145) and H-acceptor amino acid residue (GLU 166) 
results in H-bond formation with fluvastatin. Additionally, the fluorine atom of fluorophenyl  (C6H5F-) group 
of fluvastatin was involved in chemical interaction with ASP 187 residue, present in 2nd ɣ-turn of the protein, 
while the O-atoms of polyhydroxy groups (-OH) interacts with the HIS 41 residue, present in 2nd helices. 
Moreover, the alkyl group of fluvastatin had hydrophobic interactions with CYS 145 and HIS 163, present on 
the 12th β strand of β sheet and 17th β turn, respectively (Fig. 5B). All these interactions contributed to a stable 
fluvastatin-3CL-Pro complex.

Due to the similar LogP values (Table S1), the binding pocket for pitavastatin is similar to that of fluvasta-
tin. The binding site of pitavastatin was slightly basic due to the occurrence of the basic amino acid residues 
like HIS 41, HIS 163, HIS 164, HIS 141, and ARG 188(Fig. S6D). HIS 41 acts as H-donor while GLU 166 and 
ARG 188 act asH-acceptor and participate in the formation of conventional H-bond with hydroxyl groups of 
pitavastatin(Fig. S6E). The electron cloud of the fluorophenyl group of pitavastatin contributed to π–π stacked 
interaction with LEU 141, present in the 16th β turn of the protein (Fig. 5D). All these interactions contribute 
to the formation of a stable pitavastatin—3CL-Pro complex. The compound ML188 was taken as the positive 
 control83 (Table 4).

Figure 5.  Molecular docking study of Fluvastatin and pitavastatin to 3-CL-Pro. (A,C) 3D diagram of 
fluvastatin-3-CL-Pro complex and pitavastatin-3-CL-Pro complex, respectively. (B,D) 2D diagram for 
representation of interactions of ligand molecule with the amino acid residues at the binding site; (B) 
fluvastatin-RdRp complex and (D) pitavastatin-RdRp complex. All 3D images were generated using the VMD 
(visual molecular dynamics) software (version 1.9.3) and 2D images were generated by the graphical user 
interface Maestro, Schrödinger (https:// www. schro dinger. com/ produ cts/ maest ro).

https://www.schrodinger.com/products/maestro
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Helicase. Helicase (Nsp13) is a multi-functional protein that consists of the N-terminal Zn-binding domain 
(ZBD) and the helicase domain (Hel). The N-terminal region consists of twenty-six cysteine residues that form 
the  Zn2+ binding domain, whereas the helicase domain comprises a conserved motif at the C-terminus84. Heli-
case requires ATP hydrolysis for its action, and the residues such as SER 310, LYS 288, and GLU 375 constitute 
the ATP-binding site or the active  site85. The crystal structure of the SARS-CoV-2 helicase (resolution 1.94 Å) 
was reported by Newman et al. (PDB ID: 6ZSL) (https:// www. rcsb. org/ struc ture/ 6ZSL). As per the PDBsum 
record, helicase consists of nine beta-sheets, thirty-four beta-strands, twenty-three helices, forty-four beta turns, 
and three gamma-turns.

Molecular docking of 6ZSL with the statins revealed that fluvastatin exhibited the strongest binding affinity 
with the glide score, emodel, and glide energy values of −11.333, −66.511, and −58.72 (kcal/mol), respectively 
(Table 4). The MMGBSA score for fluvastatin was −34.7 kcal/mol. In our study, we observed that the glide score, 
emodel score, glide energy, and MMGBSA scores for Lumacaftor (positive control) were −7.18, −44.03, −59.88, 
and −29.02 kcal/mol, respectively (Table 4). Thus the results indicated the strong affinity of fluvastatin towards 
the helicase.

The 3D structure of the fluvastatin-helicase complex is shown in Fig. 6A,B, while the major 2D interactions are 
shown in Fig. 6C. Further characterization of the fluvastatin-binding site on helicase revealed that the hydrophilic 
residues (GLY 265, THR 286, GLY 287, LYS 288, HIS 290, SER 310, ARG 443, GLN 527, ASP 374, GLU 375, 
and SER 539) outnumbered the hydrophobic residues (PRO 283, PRO 284, ALA 312, ALA 313, and ALA 316), 
to make the pocket preferentially hydrophilic (Fig. 6D–F). The pH profile of the binding cavity indicated that 
the region having ASP 374 and GLU 375 residues is acidic, whereas that having ARG 443, LYS 288, and HIS 
290 are basic (Fig. 6D). The ionized form (negatively charged) of fluvastatin was in proper pose to form two 
salt bridges between the –COO− group and basic amino acids LYS 288 of 8th helices, ARG 443of 41st β-turn. 
The binding cavity is rich with both the H-bond donor and acceptor residues which facilitate the formation of 
multiple H-bonds with Fluvastatin (Fig. 6E). The negatively charged O-atom of −COO− group of Fluvastatin 
formed H-bond with GLY 285, whereas the carbonyl O-atom formed H-bond with GLY 287, and LYS 288. The 
LYS 288 residue formed an additional H-bond with the −OH group attached to the aliphatic chain. Moreover, 
ten hydrophobic interactions, such as alkyl-alkyl, pi-alkyl, pi-sigma, amide-pi stacked, were observed between 
the π electron-rich aromatic rings of fluvastatin and the surrounding residues like GLY 538, ALA 312, ALA 
313, and ALA 316. All these interactions had synergistic effects to make helicase the preferable target protein 
for fluvastatin. Interestingly, the previous study had revealed that the ATP binding site of helicase is comprised 
of amino acid residues like K288, E375, Q404, R443, and  R56736. Our study observed that fluvastatin binds to 
helicase in a similar region, and the residues like LYS 288 and ARG 443 play important roles in this interaction 
(Fig. 6B and Fig. S7). Hence it may be concluded that fluvastatin may interfere with the ATP binding site of 
helicase and inhibit the enzyme’s activity.

Wild type and mutant spike proteins from VOCs. Spike protein is one of the essential proteins required for the 
entry of SARS-CoV2 into the host cell. The viral entry is mediated by the interaction of the RBD (receptor bind-
ing domain) of the S1 subunit of spike with the ACE2 receptor of the host cell membranes. The structural insights 
of the different conformational states of the S-protein and S1(RBD)-ACE2 complex have been  reported86. Fur-
ther S1- subunit is composed of four domains, namely the N-terminal domain (NTD), RBD, and two C-terminal 
domains (CTDs), CTD-1, and CTD-287. In our modeled S-proteins (wild type S protein and the mutants), the 
amino acids 14 to 685 constitute the S1 region, while the residues 686 to 1273 comprise the S2 site, which cor-
roborates with the published  report88. As mentioned earlier, new lineages of SARS-CoV-2 had emerged with 
higher transmissibility and immune-escape properties, which are known as the VOCs. The signature mutations 
of the SARS‐CoV‐2 VOCs such as B.1.1.7 (alpha), B.1.351 (beta), P.1(gamma), and B.1.617.2 (delta) are enlisted 
in Table 1. The concerned mutations for each VOC were introduced in the wild-type S-protein, and the mutant 
S-proteins were modeled accordingly. We performed blind docking of all the nine statin molecules against the 
wild-type and mutant S-proteins, using the Schrödinger suite.

Wild type spike protein  (Spikewild‑type). Molecular docking of all statin molecules against  Spikewild‑type protein 
reveals that pitavastatin has the strongest binding affinity for the target protein, with a docking score of −8.9 kcal/
mol, followed by fluvastatin and atorvastatin (docking scores −8.2 and −8 kcal/mol, respectively) (Table 5). We 
observed that all the three statins bind at the hind region (joining site of NTD and RBD site) of  Spikewild‑type pro-
tein in a similar fashion (Fig. 7A–F). The docking score, glide energy, and MMGBSA score of the pitavastatin-
SpikeWild complex are −8.937, −48.589, and −52.37 kcal/mol, respectively (Table 5, Fig. 7A,B).The binding site 
analysis of the pitavastatin-  Spikewild‑type complex revealed that the carboxyl (C=O) and carbonyl (C–O) groups 
of pitavastatin interact with the positively charged amino acid ARG 1014 to form electrostatic salt-bridge inter-
action. The hydroxyl group (OH−) of the pitavastatin interacts with GLN 954 and 1010 amino acids resulting 
in the formation of H-bond. Further, The π-electrons of the fluorophenyl group  (C6H5F-) and tri-cyclic ring of 
pitavastatin interact with the hydrophobic amino acid residues (ALA 958 and TYR 313) via π-alkyl interactions. 
The π-amide interaction occurs between the π-electrons of the fluorophenyl group (C6H5F-) and GLN 957 
amino acid (Fig. 7B).

The docking score, glide energy, and MMGBSA score of the fluvastatin−Spikewild−type complex are −8.194, 
−46.84, and −29.07 kcal/mol, respectively (Table 5, Fig. 7C,D). It was observed that the carbonyl group (C–O) of 
fluvastatin interacts with LYS 964 and ASN 960 residues to form salt-bridge and H bonds, respectively. Further, 
the π-electrons of the indole and fluorophenyl groups interact with ILE 312 and ALA 958 amino acid residues, 
respectively. In addition, hydrophobic interaction (π-alkyl) occurred between the C-atom of the methyl group 
(-CH3) of fluvastatin and the benzene ring of TYR 313 amino acid residue (Fig. 7D).

https://www.rcsb.org/structure/6ZSL
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Figure 6.  Molecular docking study of fluvastatin to helicase. (A) 3D diagram of ligand–protein complex (chain 
A and Chain B). (B) 3D diagram of Fluvastatin bound helicase complex (chain B only). (C) 2D diagram for 
representation of interactions of Fluvastatin with the amino acid residues at the binding site. (D–F) Mapping of 
binding site cavity according to ionizability, H-bond donor–acceptor residue, and hydrophobicity, respectively, 
using Discovery Studio Visualizer software, v21.1.0.20298 (https:// disco ver. 3ds. com/ disco very- studio- visua lizer- 
downl oad). All 3D images were generated using the VMD (Visual Molecular Dynamics) software (version 1.9.3) 
and 2D images were generated by the graphical user interface Maestro, Schrödinger (https:// www. schro dinger. 
com/ produ cts/ maest ro).

https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
https://www.schrodinger.com/products/maestro
https://www.schrodinger.com/products/maestro
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Similarly, atorvastatin was bound at the hind region (joining site of NTD and RBD site) in  Spikewild‑type pro-
tein with docking score, glide energy, and MMGBSA scores of −8.02, −61.81, and −34.76 kcal/mol, respectively 
(Table 5, Fig. 7E,F). The morphological analysis of the binding site of the atorvastatin-Spikewild‑type complex 
reveals the following major interactions stabilizing the complex. The carboxyl group (C=O) of atorvastatin forms 
H-bonding with GLN 965, the hydroxyl groups (−OH) form the same with GLN 314 and THR 1006, while one 
hydrophobic (alkyl) bond was formed between the methyl (−CH3) group and ALA 958 residue. Moreover, The 
π-electrons of the phenyl group (C6H5−) interact with ILE 312 to form π-alkyl interactions and GLN 314 to 
form π-donor H bond. The GLN 613 residue also interacts with two H atoms of atorvastatin to form two carbon-
hydrogen (C–H) bonds(Fig. 7F).

SpikeAlpha protein. Molecular docking of all statins against the  SpikeAlpha protein of SARS-CoV-2 indicates that 
pitavastatin has the strongest binding affinity for the target protein (Fig. 7G,H, Table 5). The docking score, 
glide energy, and MMGBSA of pitavastatin against SpikeAlpha protein is −7.56, −38.716, and −42.64 kcal/mol, 
respectively. The morphological study of the binding site cavity of pitavastatin indicated the following interac-
tions with the target protein (Fig. 7H). The ARG 567 was found to interact with the carboxyl group (C=O), 
and the hydroxyl group (-OH)of pitavastatin to form an electrostatic salt-bridge and a conventional H-bond, 
respectively. The F-atom of the fluorophenyl group (C6H5F–) forms an H-bond with the GLN 564 residue. 
Further, the π-electron cloud of the quinoline ring interacts with THR 549 to form a π-donor H-bond, while 
the π-electron cloud of fluorophenyl group (C6H5F–) interacts with the alkyl group  (CH3–) of VAL 576 amino 
acid residue to form π-alkyl interaction. We further observed that the binding site and location of pitavastatin 
were also altered in Spike Alpha, compared to the wild-type S protein. For the pitavastatin-SpikeWildcomplex, the 
binding cavity comprises the residues such as THR302, GLN314, TYR313, ILE312, GLY667, ASN953, GLN954, 
GLN957, ALA958, ASN 960, THR961, GLN613, LEU849, GLN 1010, and ARG1014 residues (Fig. 7B). How-
ever, for pitavastatin -SpikeAlpha‑ complex, the binding site is comprised of the residues such as PHE 541, PHE 
543, LEU 546, THR547, GLY548, THR549, GLN564, PHE565, ARG567, ASP571, THR572, THR573, VAL576, 

Table 5.  Docking analysis of the statins against wild-type and mutant Spike protein.

Target protein Selected ligands Glide score Glide energy (kcal/mol) Glide emodel (kcal/mol) MMGBSA (kcal/mol)

SpikeWild

Pitavastatin −8.95 −48.59 −65.88 −52.37

Fluvastatin −8.20 −46.84 −62.40 −29.07

Atorvastatin −8.02 −61.81 −85.90 −34.76

Cerivastatin −6.84 −48.53 −61.22 −36.05

Pravastatin −6.62 −42.40 −57.70 −21.28

Rosuavastain −5.67 −36.06 −44.06 −36.32

Mevastatin −3.20 −28.83 −31.61 −25.16

SpikeAlpha

Pitavastatin −7.57 −38.72 −53.11 −42.64

Atorvastatin −7.14 −59.96 −89.00 −26.67

Fluvastatin −6.95 −33.45 −48.14 −41.13

Pravastatin −6.69 −40.94 −47.89 −48.29

Rosuavastatin −6.45 −44.28 −62.72 −9.27

Cerivastatin −4.50 −37.26 −42.73 −22.33

SpikeBeta

Atorvastatin −7.46 −51.02 −70.21 −45.35

Cerivastatin −6.82 −44.34 −56.99 −36.07

Pravastatin −6.54 −33.02 −33.71 −25.55

Pitavastatin −6.29 −42.35 −60.33 −21.45

Fluvastatin −6.05 −38.58 −57.97 −14.97

Rosuavastatin −5.32 −40.94 −52.97 −33.86

Lovastatin −5.29 −42.11 52.07 −49.00

Mevastatin −4.95 −42.25 −52.97 −50.49

SpikeDelta

Fluvastatin −10.76 −43.71 −50.93 −26.84

Rosuavastatin −9.26 −53.41 −62.58 −33.21

Pitavastatin −7.19 −47.05 −61.88 −36.70

SpikeGamma

Pitavastatin −9.58 −44.46 −60.18 −47.18

Rosuavastatin −9.23 −36.86 −45.57 −42.22

Fluvastatin −8.37 −35.23 −48.50 −33.99

Atorvastatin −7.88 −49.44 −73.26 −55.21

Pravastatin −6.26 −39.52 −45.76 −37.07

Simvastatin −5.86 −42.85 −56.28 −48.99

Cerivastatin −5.78 −31.22 −44.49 −27.78

Lovastatin −3.75 −36.56 −41.60 −37.12
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and ILE587 residues (Fig. 7H). Also, pitavastatin was found to bind at the CTD-1 (C-terminal Domain-1) region 
of  SpikeAlphaprotein, whereas it was found attached at the hind-region of the  SpikeWild protein. This difference in 
the binding pattern of pitavastatin to mutant and wild-type S-protein may be due to the conformational change 
of the protein structure induced by the defined mutations.

SpikeBeta protein. Molecular docking of the statin molecules against  SpikeBetaprotein reveals that atorvastatin 
has the strongest binding affinity for the target protein (Fig. 8A,B, Table 5). The docking score, glide energy, 
and MMGBSA of atorvastatin against  SpikeBeta protein are −7.454, −51.024, and −45.35, respectively (Table 5). 
Binding site analysis of the atorvastatin-SpikeBeta complex shows that the carbonyl group (C–O), carboxyl group 
(C=O), and the hydroxyl group (–OH) of  atorvasta5tin interacts with ARG 273 to from a salt-bridge, ARG 
319 and GLN 628 to form H-bonds, and PRO 272 to create another H-bond, respectively. Also, the F-atom of 
the fluorophenyl group  (C6H5F–) interacts with ASP 627 amino acid residue to form halogen interaction. The 
π-electrons of the fluorophenyl group  (C6H5F–), pyrrole ring, and phenyl ring  (C6H–) interact with ALA 292 
amino acid to form π-alkyl interactions. The methyl group of atorvastatin interacts with CYS 291 amino acid 
residue to form alkyl interactions. In addition, π–π stacking interaction also occurred between HIS 625 amino 
acid residue and π-electrons of the benzene ring. All these interactions stabilize the atorvastatin-SpikeBeta com-
plex (Fig. 8B).

We also observed that the atorvastatin binding site is not similar for  SpikeBeta and  SpikeWildcomplexes. 
Although atorvastatin was bound at the hind region of  SpikeBeta and  SpikeWildcomplexes (Figs. 7E and 8A), the 
binding cavity of the drug has been altered for two proteins (Figs. 7F and 8B). The binding pocket of atorvastatin 
on  SpikeBeta protein comprised of the residues like GLN 271, PRO 272, ARG 273, THR 274, CYS 291, ALA 292, 
GLU 298, THR 302, THR 315, SER 316, ASN 317, ARG 319, GLN 321, GLN 628, ASP 627, and HIS 625 (Seq. 
ID. 271–274, 291–92, 298, 302, 315–21, 625,627, 628). But for Spikewild‑type, the binding site was composed 
of the residues, such as ILE312, TYR313, GLN 314, ASN 317, PHE592, LEU849, SER 596, GLY 594, GLN 954, 
LEU 611, GLN613, ILE670, GLN 965, GLN 957, ALA 958, GLN954, SER1003, THR 1006, TYR1007, THR 961, 
GLN 1010, and ARG 1014 (Seq. ID. 302, 312–314, 613, 667, 953–961, 849, 1010 and 1014). The residues such 

Figure 7.  Molecular docking study of pitavastatin, Fluvastatin, and atorvastatin to  SpikeWT and  SpikeAlpha, 
respectively. (A,C,E) 3D diagram of pitavastatin  SpikeWT complex, fluvastatin  SpikeWT complex, and atorvastatin 
 SpikeWT complex, respectively. (B,D,F) 2D diagram for representation of interactions of pitavastatin, Fluvastatin, 
and atorvastatin molecules with the amino acid residues at the binding site of  SpikeWT. (G,H) 3D diagram of 
pitavastatin–SpikeAlpha complex and 2D diagram for representation of interactions of pitavastatin, Fluvastatin, 
and atorvastatin molecules with the amino acid residues at the binding site of  SpikeAlpha. All 3D images were 
generated using the VMD (visual molecular dynamics) software (version 1.9.3) and 2D images were generated 
by the graphical user interface Maestro, Schrödinger (https:// www. schro dinger. com/ produ cts/ maest ro).

https://www.schrodinger.com/products/maestro
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as Proline (PRO), arginine (ARG), cystine (CYS), histidine (HIS) were present only in the atorvastatin-SpikeBeta 
complex but not in the  SpikeWild-atorvastatin complex.

Interestingly, we also observed that fluvastatin binds at the RBD region of the  SpikeBeta (Fig. 8C,D), with a 
docking score of −6.05 kcal/mol and MMGBSA score of −15 kcal/mol, respectively. Some significant interac-
tions that stabilize the fluvastatin-  pikeBeta-complex include the hydrogen bonds, halogen, and hydrophobic 
interactions. The carbonyl group (C–O) of the statin forms H-bond with ASN 437, while the hydroxyl groups 
(OH−) make two H-bonds with SER 375 and TYR 508 residues, respectively. The fluorophenyl group  (C6H5F–) 
of fluvastatin interacted with ASP 198 and PHE 377 by halogen interactions. Moreover, hydrophobic interactions 
also occurred due to π-electrons of indole-ring and ALA 372 and ILE 233 residues.

The binding location of fluvastatin was different for  SpikeBeta and  Spikewild‑type proteins. Fluvastatin binds 
to the hind region of the  SpikeWild (Fig. 7C,D), but it binds at the RBD (Receptor Binding Domain) region of 
 SpikeBetaprotein (Fig. 8C,D). The amino acid residues such as THR 108, THR 114, GLN 115, THR 167, ASP 198, 
GLY 199, GLY 232, ILE 233, ASN 234, ALA 372, PHE374, SER 375, THR 376, PHE 377, ASN 437, VAL 503, 
GLY 504, GLN 506, and TYR 508 are present at the binding cavity of  SpikeBeta–fluvastatin complex (Fig. 8D). 
Whereas the residues like THR 302, ILE312, TYR 313, GLN314, THR 315, SER316, LEU 849, GLN 954, GLN957, 
ALA958, ASN960, THR 961, LYS 964, and GLN613 constitute the binding site of Fluvastatin-Spikewild‑type com-
plex (Fig. 7D).

SpikeGamma protein. Docking analysis revealed that pitavastatin has the highest docking score among all 
statins for the  SpikeGamma protein. The docking score, glide energy, and MMGBSA scores of pitavastatin against 
 SpikeGamma protein are −9.574, −44.458, and −47.18  kcal/mol, respectively (Fig. 8E,F, Table  5). The morpho-
logical analysis of the binding site of pitavastatin on  SpikeGamma reveals the following interactions that stabilize 
the complex (Fig. 8F). The carboxyl group (C=O–) of the pitavastatin forms an electrostatic salt-bridge with 
LYS 187, carbonyl group (C–O–) makes two conventional H-bonds with ASN 188 and HIS 207, and the two 
hydroxyl groups (OH-) forms the same with LEU 176. Additionally, the π-electron cloud of the fluorophenyl 
group  (C6H5F-) interacts with PHE 175 amino acid residue to form π–π t-shape hydrophobic interactions. Simi-

Figure 8.  Molecular docking study of atorvastatin and Fluvastatin to  SpikeBeta (A–D) and pitavastatin and 
fluvastatin to  SpikeDelta (E–H), respectively. (A,C) 3D diagram of atorvastatin-SpikeBeta complex, fluvastatin 
 SpikeBeta complex, respectively. (B,D) 2D diagram for representation of interactions of atorvastatin and 
fluvastatin molecules with the amino acid residues at the binding site of  SpikeBeta, respectively. (E,F) 3D 
diagram of pitavastatin-  SpikeGamma complex and a 2D diagram for representation of interactions of pitavastatin, 
Fluvastatin, and atorvastatin molecules with the amino acid residues at the binding site of  SpikeGamma. , 
respectively. (G,H) 3D diagram of pitavastatin-  SpikeDelta complex and 2D diagram for representation of 
interactions of pitavastatin, Fluvastatin, and atorvastatin molecules with the amino acid residues at the binding 
site of  SpikeDelta. , respectively. All 3D images were generated using the VMD (visual molecular dynamics) 
software (version 1.9.3) and 2D images were generated by the graphical user interface Maestro, Schrödinger 
(https:// www. schro dinger. com/ produ cts/ maest ro).

https://www.schrodinger.com/products/maestro
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larly, the π-electrons of the quinoline ring interact with LEU 226 amino acid residue to create π-alkyl interac-
tions (Fig. 8F).

The binding site and location of pitavastatin were also altered for  SpikeGammaand  Spikewild‑type proteins. Pitavas-
tatin was bound to the NTD of the  SpikeGammaprotein while it interacted with the hind region of the  Spikewild‑type 
protein (Fig. 8A,E). The binding site of the pitavastatin-SpikeGammacomplex was comprised of residues like SER 
98, ASN99, TRP 104, ASN 121, VAL 126, GLN 173, PRO 174, PHE 175, LEU 176, MET 177, ASP 178, ASN 
188, LYS 187, ASN 188, PHE 192, SER 205, LYS 206, and HIS 207 (Fig. 8F). In contrast, the binding site of the 
pitavastatin-Spikewild‑type complex consisted of the residues such as THR302, GLN314, TYR313, ILE312, GLY667, 
ASN 953, GLN954, GLN957, ALA958, ASN 960, THR961, GLN613, LEU849, GLN 1010, and ARG1014 (Fig. 7B).

SpikeDelta protein. Among all the statin molecules, fluvastatin showed the highest docking score against 
 SpikeDelta-protein. The docking score and MMGBSA score of fluvastatin against  SpikeDelta protein were −10.762, 
−43.705, and −26.84 kcal/mol, respectively (Fig. 8G,H, Table 5). Analysis of the binding site of fluvastatin on 
 SpikeDelta-protein revealed that the carbonyl group (–C–O–) of fluvastatin interacts with ARG 1014 amino acid 
residue to form salt-bridge interactions. Also, the hydroxyl group (–OH) of fluvastatin interacts with ASN 950, 
GLN 954, and GLN 1010 amino acid residues to form H-bonds. In addition, the carbon-hydrogen bond (C–H) 
has also formed between ASN 950 and H-atom of alpha carbon (C–α). The other notable interactions included 
the alkyl interactions between methyl group (–CH3) of fluvastatin and ILE 664 and LYS 310, the π-amide inter-
actions between the π-electrons of indole ring and GLY 946, the π-anion interaction between ASP 663 (polar) 
and π-electrons of the benzene ring of the drug, and the π-sulfur interactions between the fluorophenyl ring 
 (C6H5F–) and CYS 662 residue. The π-electron orbital of fluorophenyl ring also formed π-alkyl interaction with 
LYS 947 and PRO 665 amino acid residues. All these interactions stabilize the Fluvastatin-SpikeDelta-complex 
(Fig. 8H).

The binding location and cavity of fluvastatin were different for  SpikeDelta protein compared to the  SpikeWild. 
Fluvastatin was bound at the S2 region of  SpikeDeltaprotein, while it binds at the hind region of  SpikeWild protein 
(Figs. 7C, 8G). The binding cavity of the  SpikeDelta–fluvastatin complex is comprised of the residues like LYS 310, 
GLY311, CYS662, ASP 663, ILE 664, PRO 665, SER 943, GLY 946, LYS 947, ASN 950, GLN 954, GLN 1010, and 
ARG 1014 amino acid residues are present at the binding pocket of (Fig. 8H). Similarly, the amino acids such as 
THR 302, ILE312, TYR 313, GLN314, THR 315, SER316, LEU 849, GLN 954, GLN957, ALA958, ASN960, THR 
961, LYS 964, and GLN613 constituted the binding cavity of  SpikeWild–fluvastatin complex (Fig. 7D).

Molecular dynamics simulation of fluvastain‑target protein complexes
To determine the conformational changes of the target proteins that interact with fluvastatin, we performed MD 
simulations for 200 ns using Desmond simulation package v6.2 of Schrödinger LLC. The Protein RMSD and 
ligand RMSD were monitored throughout the simulation period to study the changes in structural conformation 
of the protein–ligand complex. The Root Mean Square Fluctuation (RMSF) was determined to characterize any 
local changes along the protein chain due to the binding of fluvastatin. The amino acid residues interacting with 
the ligand are marked with green-colored vertical bars. Moreover, the interactions between amino acid residues 
and fluvastatin were monitored throughout the simulation period and represented as ’Simulation Interaction 
Diagram’. The ’Interactions Fraction’ on Y-axis indicates the fraction of simulation time the specific interaction 
(H-bond, Hydrophobic contact, Ionic interaction, and Water Bridge) was maintained. Values over 1.0 are possible 
as some protein residue may make multiple contacts of the same subtype with the ligand.

Helicase–fluvastatin complex. The RMSD value of Helicase in Helicase–fluvastatin complex was 
2.79 ± 0.48 Å, whereas RMSD of fluvastatin was 3.07 ± 0.44 (Fig. 9A). The RMSD values got stabilized around 
the mean values indicating the convergence of simulation. Thus, the complex was stable throughout the study 
period of 200 ns. As per the RMSF plot, the fluctuations in amino acid residues interacting with fluvastatin 
(marked with green-colored vertical bars) were the minimum (Fig. 9B). This signifies the stable interaction of 
fluvastatin with helicase at the binding site throughout the simulation period. Further analysis revealed that 
the ALA316, ARG443, and ARG567 had the most favorable interactions with fluvastatin throughout the 200 ns 
period of simulation (Fig. 9C). Interestingly, these residues are the components of the fluvastatin binding site 
(Fig. 6). The radius of gyration (equivalent to the moment of inertia) of docked fluvastatin was nearly constant 
(4.29 ± 0.08 Å). All this evidence confirmed the stability of the helicase–fluvastatin complex (Table 6).

Mpro–fluvastatin complex. The RMSD value of the Mpro protein in the Mpro–fluvastatin complex was 
2.18 ± 0.33 Å, whereas the RMSD of fluvastatin was 6.95 ± 1.35 (Fig. 9D). The RMSD values got stabilized around 
the mean values indicating the convergence of simulation. Thus, the complex was stable throughout the study 
period of 200 ns. As per the RMSF plot (Fig. 9E), the fluctuations in amino acid residues interacting with flu-
vastatin (marked with green-colored vertical bars) were the minimum. This signifies the stable interaction of 
fluvastatin with the protease at the binding site throughout the simulation period. The details of the interactions 
involved are elaborated in Fig. 9F. The residues such as THR26, SER46, and THR45 had the most favorable 
interaction with Fluvastatin throughout the simulation period. These amino acids are the components of the 
fluvastatin binding site (Fig. 4). The radius of gyration (equivalent to the moment of inertia) of docked fluvasta-
tin was nearly constant (4.21 ± 0.14 Å). Thus the results confirmed the stability of the Mpro–fluvastatin complex 
(Table 6).

RdRp–fluvastatin complex. The RMSD value of RdRp in the RdRp–fluvastatin complex was 1.84 ± 0.25 Å, 
whereas RMSD of fluvastatin was 1.79 ± 0.55 (Fig. 10A). The RMSD values got stabilized around the mean values 
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indicating the convergence of simulation. Thus, the complex was stable throughout the study period of 200 ns. 
As per the RMSF plot (Fig. 10B), the fluctuations in amino acid residues interacting with fluvastatin (marked 
with green-colored vertical bars) were the minimum, which signifies a stable interaction of fluvastatin with heli-
case. Also, the residues LYS500, ARG569, and GLY683 showed the most favorable interaction with fluvastatin 
(Fig. 10C) and constituted the Fluvastatin binding site in RdRp (Fig. 4). The radius of gyration (equivalent to the 
moment of inertia) of docked fluvastatin was nearly constant (4.18 ± 0.16 Å), which confirmed the stability of 
the RdRp–fluvastatin complex (Table 6).

SpikeWT–fluvastatin complex. The RMSD value of SpikeWT in SpikeWT–fluvastatin complex was 
7.2 ± 1.21 Å, whereas RMSD of fluvastatin was 6.09 ± 2.02 (Fig. 10D). The RMSD values got stabilized around 
the mean values indicating the convergence of simulation. The fluctuations in amino acid residues interacting 
with fluvastatin (marked with green-colored vertical bars) were minimum (Fig. 10E). Also, the residues ASN 
960, and LYS964 (present at the binding cavity) are the amino acid residues with which fluvastatin had the most 
favorable interactions throughout the 200 ns period of simulation (Fig. 10F). The radius of gyration (equivalent 
to the moment of inertia) of docked fluvastatin was nearly constant (4.33 ± 0.14 Å) (Table 6).

Figure 9.  Molecular dynamic simulations of Helicase–fluvastatin complex (A–C) and Mpro–fluvastatin 
complex (D–F), respectively. (A–C) RMSD, RMSF, and protein–ligand interactions of helicase–fluvastatin 
complex, respectively. (D–F) RMSD, RMSF, and protein–ligand interactions of Mpro–fluvastatin complex, 
respectively.

Table 6.  Molecular dynamics analysis of fluvastatin-target protein complex.

Complex name
The radius of gyration 
(Å) of ligand SASA (Å)2 of ligand PSA (Å)2 of ligand

RMSD

Protein C-α (Å)
Ligand with respect to 
protein (Å)

Mpro–fluvastatin 4.21 ± 0.14 222.82 ± 36.04 165.84 ± 7.84 2.18 ± 0.33 6.95 ± 1.35

RDRP–fluvastatin 4.18 ± 0.16 148.15 ± 30.48 156.3 ± 7.55 1.84 ± 0.25 1.79 ± 0.55

Helicase–fluvastatin 4.29 ± 0.08 130.69 ± 50.70 165.01 ± 7.11 2.79 ± 0.48 3.07 ± 0.44

SpikeWild–fluvastatin 4.33 ± 0.14 144.13 ± 40.29 166 ± 7.96 7.2 ± 1.21 6.09 ± 2.02

SpikeAlpha–fluvastatin 4.43 ± 0.23 274.68 ± 28.69 164.37 ± 8.47 7.05 ± 1.88 5.77 ± 1.56

SpikeBeta–fluvastatin 4.42 ± 0.12 191.11 ± 38.16 159.35 ± 6.51 4.9 ± 0.72 3.58 ± 1.15

SpikeGamma–fluvastatin 4.29 ± 0.14 328.84 ± 63.95 164.3 ± 6.92 4.24 ± 0.71 8.79 ± 2.87

SpikeDelta–fluvastatin 4.59 ± 0.11 181.25 ± 29.40 160.18 ± 11.61 5.36 ± 1.4 3.13 ± 1.07
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SpikeAlpha–fluvastatin complex. The RMSD value of  SpikeAlpha in  SpikeAlpha–fluvastatin complex was 
7.05 ± 1.88 Å, whereas RMSD of fluvastatin was 5.77 ± 1.56 (Fig. 11A). The RMSD values got stabilized around 
the mean values indicating the convergence of simulation and stability of the complex throughout the study 
period of 200  ns. As per the RMSF plot (Fig.  11B), the fluctuations in amino acid residues interacting with 
fluvastatin (marked with green-colored vertical bars) were minimal, and also ARG 563 (present at the binding 
cavity) showed the most favorable interaction with Fluvastatin (Fig. 11C). The radius of gyration (equivalent to 
the moment of inertia) of docked fluvastatin was nearly constant (4.43 ± 0.23 Å). All the evidence thus confirmed 
the stability of the  SpikeAlpha–fluvastatin complex(Table 6).

SpikeBeta–fluvastatin complex. The RMSD value of the protein was 4.9 ± 0.72 Å, whereas that of fluv-
astatin was 3.58 ± 1.15 (Fig. 11D). The RMSD values got stabilized around the mean values indicating the con-
vergence of simulation, indicating the stability of the complex throughout the simulation period. The RMSF for 
amino acid residues interacting with fluvastatin (marked with green-colored vertical bars) was also minimum 
(Fig. 11E). This signifies the stable interaction of fluvastatin with  SpikeBetaat the binding site throughout the 
simulation period. Fluvastatin formed water bridges with GLU132 and sustained hydrophobic interactions with 
PHE374 (Fig. 11F), which constituted the fluvastatin binding site (Fig. 8D). The radius of gyration (equivalent to 
the moment of inertia) of docked fluvastatin was nearly constant (4.42 ± 0.12 Å). Thus the results confirmed the 
stability  oftheSpikeBeta–fluvastatin complex (Table 6).

SpikeGamma–fluvastatin complex. The RMSD value of  SpikeGamma was 4.24 ± 0.71 Å, while that of fluvas-
tatin was 8.79 ± 2.87 (Fig. 12A). Although the values rose initially, on the course of the simulation, the RMSD 
values stabilized and converged, indicating the stability of the complex. As per the RMSF plot, minimal fluctua-
tions were recorded for the amino acid residues interacting with fluvastatin (marked with green-colored vertical 
bars) (Fig. 12B). Fluvastatin showed the most favorable interactions (H-bond, hydrophobic interactions, and 
water bridges) with PHE855 and ASN 978 present at the fluvastatin binding site (Fig. 12C). The radius of gyra-
tion (equivalent to the moment of inertia) of docked fluvastatin was nearly constant (4.29 ± 0.14 Å). The results 
thus indicate the stability of the  SpikeGamma–fluvastatin complex (Table 6).

SpikeDelta–fluvastatin complex. The RMSD value of  SpikeDelta in  SpikeDelta –fluvastatin complex was 
5.36 ± 1.4 Å, while that of the ligand was 3.13 ± 1.07 (Fig. 12D). The RMSF plot indicated minimal fluctuations 
in amino acids that interacted with fluvastatin (marked with green-colored vertical bars) (Fig. 12E). The details 
of the interactions involved have been elaborated in Fig. 12F and Table 6. The ARG1012 and LYS308 residues 
shared the most favorable interactions with fluvastatin (Fig.  12F). The radius of gyration (equivalent to the 

Figure 10.  Molecular dynamic simulations of RdRp–fluvastatin complex (A–C) and  SpikeWT–fluvastatin 
complex (D–F), respectively. (A–C) RMSD, RMSF, and protein–ligand interactions of RdRp–fluvastatin 
complex, respectively. (D–F) RMSD, RMSF, and protein–ligand interactions of  SpikeWT–fluvastatin complex, 
respectively.
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Figure 11.  Molecular dynamic simulations of  SpikeAlpha–fluvastatin complex (A–C) and  SpikeBeta–fluvastatin 
complex (D–F), respectively. (A–C) RMSD, RMSF, and protein–ligand interactions of  SpikeAlpha–fluvastatin 
complex, respectively. (D–F) RMSD, RMSF, and protein–ligand interactions of  SpikeBeta–fluvastatin complex, 
respectively.

Figure 12.  Molecular dynamic simulations of  SpikeGamma–fluvastatin complex (A–C) and  SpikeDelta–fluvastatin 
complex (D–F), respectively. (A–C) RMSD, RMSF, and protein–ligand interactions of  SpikeGamma–fluvastatin 
complex, respectively. (D–F) RMSD, RMSF, and protein–ligand interactions of  SpikeDelta–fluvastatin complex, 
respectively.
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moment of inertia) of docked fluvastatin was nearly constant (4.59 ± 0.11 Å). All this evidence confirmed the 
stability of the  SpikeDelta–fluvastatin complex (Table 6).

Discussions
Several case–control studies showed a positive association between statin usage and reduced mortality of COVID-
19 patients hospitalized with this  disease8,18,89. Also, it was hypothesized that since statins can up-regulate ACE2 
 expression90, they may prevent coronavirus infection. The direct effect of statins on SARS-CoV-2 was first dem-
onstrated by Gerold et al.54. They observed that selected statins, especially fluvastatin, significantly reduced the 
entry of SARS-CoV-2 into the human respiratory cells and genome copy numbers of SARS-CoV-2 in the infected 
 cells54. But the mechanism by which statins can inhibit the SARS-Cov-2 progression is not well understood.

As most of the countries are facing the second or third wave of the pandemic, various vaccines have been 
commercialized for the people to confer protection against SARS-Cov-2. But, the emergence of VOCs acquiring 
unique mutations in essential viral genes had raised concern about the effectiveness of the vaccines against these 
novel variants. In a very recent study, it was reported that the neutralizing antibodies from the individuals, those 
who received one or two doses of either BNT162b2 or mRNA-1273 vaccines, showed limited efficacy against 
the pseudoviruses representing the globally predominant  VOCs91. This observation was supported by other 
reports revealing the limited effectiveness of the mRNA vaccines or convalescent plasma against the circulating 
 variants92,93. Although there are parallel efforts to improve vaccine efficiency against these variants, there is also 
the necessity of antiviral medications that can target these variants, harboring the concerned mutations.

In our study, nine statin molecules were screened against four selected target proteins of SARS-CoV2 and 
the mutated S proteins observed in the VOCs, by in silico molecular docking and molecular dynamics study. 
As per the molecular docking studies, the details of the best-selected candidate drug molecules are tabulated in 
Tables 4 and 5. The fluvastatin exhibited good binding affinity to all the selected target proteins. It binds with the 
active site of RdRp (remdesivir binding site), 3CL-Pro (inhibition site), and helicase (ATP binding site). Along 
with fluvastatin, pitavastatin had shown an equivalent binding affinity for RdRp, and 3-CL-Pro (Table 4). But of 
all the target proteins, the interaction of fluvastatin with helicase was the best, as a docking score of −11.3 kcal/
mol was observed. Analysis of the binding site revealed that fluvastatin binds to the ATP-binding site of helicase. 
Since helicase plays a pivotal role in the replication of the viral genome, binding of fluvastatin might interfere 
with the activity of the enzyme resulting in inhibition of the viral replication. This finding might justify the 
inhibitory effect of fluvastatin on SARS-CoV-2 infection, reported by Gerold et al.94. The Fluvastatin-binding 
site of helicase consisted of a repetitive unit of proline and alanine (PRO 283, PRO 284, ALA 312, ALA 313, and 
ALA 316), which contributed to ten hydrophobic interactions with the ligand, resulting in the formation of the 
most stable complex among all the target proteins.

The docking analysis of the statins with the wild-type S-protein and modeled S-mutants demonstrated an 
interesting trend. Pitavastatin showed maximum binding affinity to Spike wild-type,  SpikeAlpha, and  SpikeGamma 
proteins, while Fluvastatin had the maximum affinity for  SpikeDeltaprotein. Interestingly, fluvastatin had fair 
docking scores for all the S-mutants and showed affinity to bind at the RBD region. Also, the binding location, 
and the binding cavity of the statins, were altered for the S-mutants, compared to S-wild-type. The analysis of the 
structural motifs of the S-wild type and the mutants revealed that several posttranslational modifications sites 
such as the N-glycosylation site and phosphorylation sites emerged or disappeared due to the accumulation of 
the spike mutations. This may lead to conformational changes in the protein structure, leading to the alteration 
of binding sites of the statins in the spike-mutants. Alterations in the conformation of the wild-type and mutant 
spike proteins were also confirmed by the RoseTTAFold server. Further, the MD-simulation studies also indicated 
that fluvastatin might form stable complexes with the target proteins, including the S-mutants.

Chemical homology, thermodynamic parameters, polarity, and favorable interactions may lead to multiple 
target sites for a single drug  molecule95,96. Analysis of the binding sites of fluvastatin in all the target proteins 
(Table S2), revealed that amino acids like threonine, serine, asparagine, arginine, lysine, and aspartic acid residues 
were common. Pitavastatin having similar chemical properties like fluvastatin (logP and pKa values) exhibited 
strong biding affinities to RdRp, 3-CL-Pro, and S-mutants (Fig. 13).

Conclusion
Although the major limitation of this work is that it is based on a computational prediction without any labora-
tory validation, such studies are significant for the research groups performing wet-lab experiments intending 
to identify novel antiviral compounds. The most encouraging result obtained from our study is that fluvastatin 
emerged as the best drug candidate from the blind docking studies with all the nine statin molecules, which 
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corroborates with the recently published functional  study54,94. Thus our research will help to predict the molecular 
mechanism by which this drug inhibits SARS-CoV-2 pathogenesis.

Received: 5 August 2021; Accepted: 23 March 2022

Figure 13.  Schematic diagram of the interaction of fluvastatin with the SARS-CoV-2 target proteins. The 2D 
image of fluvastatin was drawn by ChemSketch, Advanced Chemistry Development, Inc. software (https:// www. 
acdla bs. com/ resou rces/ freew are/ chems ketch/) and the schematic diagram of COVID-19 virus were drawn by 
INKSCAPE (version 1.1), an open-source graphics-design software (https:// inksc ape. org/), used as background. 
The 3D representation of the protein–ligand complexes were obtained by VMD (visual molecular dynamics) 
software (version 1.9.3) (https:// www. ks. uiuc. edu/ Resea rch/ vmd/).

https://www.acdlabs.com/resources/freeware/chemsketch/
https://www.acdlabs.com/resources/freeware/chemsketch/
https://inkscape.org/
https://www.ks.uiuc.edu/Research/vmd/
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