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Abstract

Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as
transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of
conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding
specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical
model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally.
We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of
predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder
of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are
differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously
unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL
effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by
TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in
rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of
these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL
effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL
effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is
implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line
program.
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Introduction

The DNA-binding domain of transcription activator-like (TAL)

effectors is unique in its modular DNA-specificity. Natural TAL

effectors are potent virulence proteins from plant-pathogenic

Xanthomonas bacteria that are injected into eukaryotic host cells

where they function as transcription factors [1]. Specific DNA-

binding of TAL effectors is mediated by highly conserved tandem

repeats composed of usually 34 amino acids. Each repeat

recognizes one base pair in a contiguous, non-overlapping fashion.

DNA-specificity is determined by two amino acids per repeat at

position 12 and 13, termed repeat-variable diresidues (RVDs)

[2,3]. Structures of TAL effector-DNA complexes showed that

amino acid 13 interacts with the sense strand DNA base whereas

amino acid 12 stabilizes the repeat arrangement [4,5]. Individual

RVDs have specificities for individual DNA bases or combinations

thereof [2,3]. Different RVDs contribute differently to the

transcriptional activation by TAL effectors [6]. Typically, natural

TAL effector target sites are directly preceded by the nucleotide T,

while some target sites also have a C or an A at that position

[2,3,7–10]. The modular repeat architecture allows a rearrange-

ment of TAL effector repeats to easily generate any desired DNA-

specificity. Accordingly, TAL effectors were adopted as a preferred

biotechnology tool for targeted DNA binding [11–13]. Fusion of

the TAL effector repeat domain with nuclease, activator, and

repressor domains yielded highly specific mutagens, gene switches,

and repressors, respectively [11–21]. Decoding the DNA specific-

ity of TAL effectors also opens the possibility to identify virulence

targets of natural TAL effectors in host plants including valuable

crops. The computational prediction of TAL effector target sites in

host genomes is a key step to provide candidates for subsequent

experimental validation.

The recognition of signals in nucleic acid sequences, such as

transcription factor binding sites, splice sites, or translation

initiation sites, is one of the major fields of computational biology

since the seminal work of Berg and von Hippel [22]. Berg and

von Hippel propose a statistical-mechanical model where each

base pair contributes independently to the total binding affinity of

a DNA-binding protein. The same independence assumption is

imposed by Stormo et al. [23], who use a scoring matrix learned

by the perceptron algorithm for predicting translation initiation

sites, and Staden [24], who estimates the entries of a position
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weight matrix as relative frequencies of nucleotides in a training

data set.

Berg and von Hippel already note that the independence

assumptions of position weight matrices are most likely not

satisfied. First order Markov models or weight array matrix models

[25,26] address this issue and additionally model dependencies

between neighboring positions of binding sites. Dependencies

between neighboring positions are also taken into account by a

special profile hidden Markov model proposed by Salama and

Stekel [27] for predicting transcription factor binding sites. Higher

order Markov models, which capture dependencies on a larger

number of adjacent positions, are employed by Grau et al. [28] for

the prediction of transcription factor binding sites and by

Yakhnenko et al. [29] for predicting subcellular localization signals.

Dependencies between non-adjacent binding site positions are

represented by Bayesian networks [30], Bayesian trees [31,32],

permuted Markov models [33], and Markov random fields [34].

All models capturing dependencies to other binding site positions

share the disadvantage that the number of parameters increases

exponentially with the number of positions considered. This

problem is addressed by variable order Bayesian networks [35],

variable length permuted Markov models [36], and hybrid-order

models [37], which locally adapt the number of positions

considered.

In principle, all of these models could also be employed for the

prediction of TAL effector target sites, where a direct application

would require to learn distinct parameters for the target sites of

each TAL effector. However, the number of validated target sites

of individual TAL effector is currently not sufficient to reliably

estimate the parameters of any of these models. More importantly,

such an approach would render the target site prediction for TAL

effectors with currently unknown targets impossible. The ab-initio

prediction of zinc finger transcription factor binding sites poses

similar problems, which are addressed by an approach Kaplan et

al. [38] specifically designed for that class of transcription factors.

Regarding TAL effectors, this issue is addressed by several

approaches specifically designed for the prediction of TAL effector

target sites, which are outlined in the following.

We give an overview of current tools for the prediction of TAL

effector target sites and TAL effector nuclease target sites in

Table 1. Target Finder of the TALE-NT 2.0 suite [18,39] predicts

target sites of a TAL effector based on its RVD sequence. To this

end, Target Finder represents RVD-dependent binding specific-

ities as probabilities for the individual nucleotides, which are hard-

wired into the code. These probabilities are combined as columns

of a TAL effector-specific position weight matrix (PWM) model,

which is used to scan user-supplied input sequences, promoter-

omes, or genomes for putative target sites. At the 59 end of the

target site, the user may either choose to restrict predictions to

those with a preceding T, or to allow nucleotide C. Target Finder

is available as a web-server and a stand-alone command line

application, where the latter is published under an open-source

license.

Storyteller and TALVEZ are provided as a web-server and

stand-alone application as well. However, the methods behind

both approaches are not published, yet, and are accessible only

on e-mail request. For these reasons, we do not consider

Storyteller and TALVEZ in the remainder of this paper. Paired

Target Finder and idTALE use RVD-dependent binding

specificities to predict target sites of TAL effector nucleases,

which function as homo- or hetero-dimers to specifically cut

genomic DNA. While Paired Target Finder is available as a web-

server and command line application, idTALE is only available

as a web-server and can only be applied to pre-defined input data

sets. Both approaches are applicable to TAL effector nucleases

but not to TAL effectors.

In this paper, we propose a new statistical model for the

prediction of TAL effector target sites, which represents importance

of RVDs and their binding specificity independently. The concept of

importance is related to the efficiency of RVDs reported by

Streubel et al. [6]. However, while efficiency denotes the positive

contribution of specific RVDs to the transcriptional activation by

TAL effectors, importance additionally affects the penalty for

non-matching nucleotides in a target site. We model the

importance of RVDs by a binary hidden variable that represents

interaction or non-interaction of an RVD with the corresponding

nucleotide. Important RVDs are assumed to interact with the

DNA in the majority of cases and, hence, should obtain a high

probability of interaction. In case of interaction of RVD and

nucleotide, binding specificities are represented by probabilities

for the interacting nucleotides that depend on the corresponding

RVD. If an RVD does not interact with the DNA, the

probabilities of nucleotides are determined by the genomic

context. In the proposed model, neither the importance nor

binding specificity of an RVD depends on the position of the

repeat or on other RVDs in the TAL effector. These assumptions

allow for a model with an acceptable number of parameters,

which is independent of the number of repeats in a TAL effector.

In contrast to previous approaches, the parameters of the

proposed model are computationally estimated from known pairs

of TAL effectors and target sites. This allows for a rapid and

automatic adaption of the model parameters as new target sites

are validated. We call the tool using this new approach

TALgetter – TAL effector target site finder. TALgetter is

implemented within the open-source Java library Jstacs [40],

and will be part of the next public release. A web-application of

TALgetter is available at http://galaxy.informatik.uni-halle.de,

and can also be installed in a local Galaxy [41–43] server. In

addition, we provide a command line version of TALgetter at

http://jstacs.de/index.php/TALgetter. Both, the web-applica-

tion and the command line application, also allow a user to

estimate new model parameters from custom training data.

Author Summary

While it had already been discovered that transcription
activator-like (TAL) effectors from Xanthomonas pathogens
act as transcription factors in the host plant, deciphering
the modular code of DNA binding specificity of TAL
effectors in 2009 fascinated the scientific community. This
modular code opens the possibility to identify virulence
targets of natural TAL effectors in host plants including
valuable crops. Knowing these targets deepens our
understanding of the role of TAL effectors in virulence.
At the same time, it is an opportunity to create resistant
plants by destroying TAL effector target sites, indispens-
able for the pathogen, in plant genomes. However,
computational methods are needed to effectively scan
full genomes or promoteromes for putative target sites.
Hence, we propose TALgetter, a new approach for
predicting TAL effector target sites. Using TALgetter, we
predict target sites of Xanthomonas TAL effectors in the
important crop plants rice and sweet orange. Besides
novel putative virulence targets of several TAL effectors,
we also gain new insights into the biology of TAL effector
targeting. The predictions of TALgetter reveal that target
sites are preferentially located in the vicinity of the
transcription start and that many TAL effectors bind to
the TATA-box in the promoters of target genes.

Prediction of TAL Effector Targets
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Hence, users can adapt the parameters of the TALgetter model

to improved sets of validated TAL effector target sites, which are

to be expected in the near future.

The mechanism of transcriptional activation by TAL effectors is

still not fully understood. However, there are indications that the

presence of a suitable TAL effector target site in a promoter is not

always sufficient to induce transcription of the downstream gene

[3,9,44,45]. Likely, other factors, e.g., promoter elements

surrounding the target site, are required for efficient transcrip-

tional activation, too. Since these factors are yet unknown, they

cannot be incorporated into a computational model. Hence, we

propose to currently assist the search for functional target sites by

experimental approaches to measure activation. In this paper, we

use gene expression microarray data of Oryza sativa (rice) and Citrus

sinensis (sweet orange) measured after infection with different

Xanthomonas strains, and gene expression microarray data of

transgenic Arabidopsis thaliana lines endogenously expressing a TAL

effector for this purpose.

The remainder of this paper is structured as follows. In the

section Materials and Methods, we define the proposed statistical

model, and introduce public and in-house gene expression

microarray data sets, as well as sequence data used in our

studies. The Results section is split in several parts. First, we

investigate the capability of our approach to predict known

target sites of different TAL effectors in rice. In a second part,

we compare the prediction accuracy of TALgetter to the Target

Finder of TALE-NT based on gene expression microarray data.

In a third part, we scrutinize the RVD binding specificities and

importances estimated for the proposed model. We then

investigate properties of TAL effector target sites, namely

positional preference and the relationship to core promoter

elements, revealing novel insights into the biology of TAL

effector target sites. Finally, we predict several new putative

TAL effector target sites in Oryza sativa and Citrus sinensis, which

are supported by gene expression data.

Materials and Methods

In this section, we define the statistical model used by

TALgetter, we describe how the parameters of this statistical

model are estimated from training data, and we explain how the

trained model is used to scan genomes, promoteromes or other

input sequences for putative target sites. Subsequently, we describe

the gene expression data obtained from microarray experiments

and sequence data used in the studies of this paper.

Model
The statistical model employed by TALgetter is defined by its

likelihood, which is derived in the following. Let x~x0, . . . ,xL be

an input DNA sequence of length Lz1, where x‘[A represents

the nucleotide at position ‘ of the sequence, and A~fA,C,G,Tg.
Let R~fHD,NG,NN, . . .g be the alphabet of known RVDs, and

let y~y1, . . . ,yL with y‘[R be the RVD sequence of the TAL

effector of interest. For each position ‘[f1, . . . ,Lg, we model the

potential interaction of nucleotide x‘ and RVD y‘, while

nucleotide x0 directly preceding the interacting positions is

modelled independently of the RVD sequence.

We can decompose the likelihood P(xDy,h) of input sequence x

given the sequence of RVDs y and model parameters h as

P(xDy,h)~P(x0Dy,h) P
L

‘~1
P(x‘Dx0, . . . ,x‘{1,y,h): ð1Þ

where P(x‘Dx0, . . . ,x‘{1,y,h) is the probability of nucleotide x‘
given all previous nucleotides, the complete RVD sequence y, and

all model parameters h.

Table 1. Overview of tools for predicting TAL effector (TALE) and TAL effector nuclease (TALEN) target sites.

TALgetter Target Finder Storyteller TALVEZ

Paired Target

Finder idTALE

Prediction of TALE target sites yes yes yes yes no no

Prediction of TALEN target sites no no no no yes yes

Web server yesa yesb yesc yesd yese yesf

Custom input limit (web-server) 100 mb 5 kb unkown unknown 5 kb N/Ag

Stand-alone application yes yes yes yes yes no

Local web server yes no no no no no

Access free free on e-mail request on e-mail request free free

Method published yesh yes [39] no no yes [39] no

Method/Model local mixture model modular PWM unknown unknown modular PWM unknown

Adaptable to new data yes in source code unknown unknown in source code no

Open Source License GPLi ISCj no no ISCj no

ahttp://galaxy.informatik.uni-halle.de.
bhttps://tale-nt.cac.cornell.edu/node/add/talef-off.
chttp://bioinfo-prod.mpl.ird.fr/xantho/tales/.
dhttp://bioinfo.mpl.ird.fr/cgi-bin/talvez/talvez.cgi.
ehttps://tale-nt.cac.cornell.edu/node/add/talef-off-paired.
fhttp://idtale.kaust.edu.sa.
gonly pre-defined data sets;
hthis manuscript;
iGNU General public license;
jInternet Systems Consortium license, only stand-alone application;
doi:10.1371/journal.pcbi.1002962.t001

Prediction of TAL Effector Targets
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Since a strong preference for nucleotide T at position 0

directly preceding the target site at the 59 end has been observed

[2], while nucleotides C and A are accepted in natural targets as

well [9,46], this position is included in the model. We assume

that the nucleotide preference at position 0 does not depend on

the RVD sequence or the specific TAL effector and, hence,

define

P(x0Dy,h) :~P(x0Dh0), ð2Þ

where h0 denotes the parameters of the model at position 0.

As motivated in the introduction, we model binding specificity

and importance of an RVD independently. In addition, we impose

several independence assumptions:

1. If an RVD of a repeat of the TAL-effector interacts with the

DNA, the probability of nucleotide x‘ to occur at position ‘ of

the DNA only depends on the RVD y‘.

2. If that RVD does not interact with the DNA, the probability of

nucleotide x‘ only depends on the genomic context. We define

the context as the previous k nucleotides x‘{k, . . . ,x‘{1.

3. The binding specificity of an RVD is independent of the

position within the target site and independent of the other

RVDs of the TAL effector.

4. The importance of an RVD is independent of the position of its

repeat within the TAL effector and independent of the other

RVDs of the TAL effector.

These assumptions may be formulated as a local mixture model for

each position ‘ reflecting interaction vs. non-interaction of RVD

and DNA by a binary hidden variable U‘ with values D and I ,

respectively. Let PM (U‘~DDr,hM ) be the probability that RVD

r [R interacts with the DNA, and let PM (U‘~I Dr,hM )~1{

PM (U‘~DDr,hM ) be the converse probability that no interaction

occurs. Finally, let PD(aDr,hD) be the probability of nucleotide a

given an interaction of RVD r with the DNA at the corresponding

position, and let PI (aDc,hI ), c[A
k be the probability of nucleotide

a given its context c under the condition that no interaction

occurs. The context c does not extend beyond the 59 end of the

sequence x, and, hence, the context considered may be shortened.

With these definitions, we have

P(x‘Dx1, . . . ,x‘{1,y,h)~PM (U‘~DDy‘,hM ):PD(x‘Dy‘,hD)

zPM (U‘~I Dy‘,hM ):PI (x‘Dx‘{k, . . . ,x‘{1,hI ),
ð3Þ

where hM denotes the parameters of the mixture probabilities, hD
denotes the parameters of the RVD-dependent component, and

hI denotes the parameters of the RVD-independent component,

and h~(hM ,hD,hI ,h0). For all subsequent studies, the order k is

fixed to 2.

Parameter estimation. Given an input data set X of N

independent pairs (xn,yn) of target site sequence and RVD

sequence of the corresponding TAL effector, the likelihood of this

data set is given as

P(X Dh)~ P

N

n~1
P(xnDyn,h): ð4Þ

One commonly used principle for estimating the parameters of

statistical models is the generative maximum likelihood principle.

However, two reasons suggest employing the Bayesian maximum

a-posteriori (MAP) learning principle, which additionally imposes

a prior on the model parameters. First, we have prior knowledge

about binding specificities and importance of binding that are not

fully covered by our training data. Second, our training data

contains only a very limited number of TAL effectors and

corresponding target sites. For this reason, we cannot be certain

that binding events which are not observed in the training data can

never occur in functional target sites. More severely, some rare but

known RVDs are not present in any TAL effector of our training

data. Nonetheless, the model should be able to assign likelihoods to

putative target sites of TAL effectors containing such rare RVDs.

We use independent Dirichlet priors on each sub-set of

parameters defined on a common simplex, which results in a

product-Dirichlet prior on the full set of parameters. We denote

the prior on the parameters h given hyper-parameters a as P(hDa).

Details on the prior and its hyper-parameters can be found in

supplementary Text 16. The posterior probability P(hDX ,a) of the

parameters given data and hyper-parameters is proportional to the

product of likelihood and prior, i.e.,

P(hDX ,a)!P(X Dh):P(hDa): ð5Þ

We estimate the parameters hI of the RVD-independent

component from all annotated promoter sequences of A. thaliana

and O. sativa by the Bayesian maximum a-posteriori principle, and

fix these parameters before estimating the parameters of the

remaining components.

We estimate the optimal parameters hM , hD, and h0 of the

remaining components by the Bayesian maximum a-posteriori

principle as well and obtain

(h�M ,h�D,h
�
0)~ argmax

(hM ,hD,h0)

P(X Dh):P(hDa), ð6Þ

which is optimized numerically by a second-order quasi-Newton

method on the data set X of N pairs (xn,yn) of target and RVD

sequence. For unconstrained numerical optimization, we trans-

form the parameters to the natural parameterization [47,48].

The training data set used in this study comprises known pairs

of TAL effector and target site from [2,3,6,7,9,10,13,20,45,49].

Besides natural target sites, this set also contains artificial target

sites from mutation experiments, which are often highly similar

within one series of experiments. To avoid a bias towards such

artificial sites, we downweight these such that all target sites from

one series of mutation experiments obtain the same weight as one

natural target site. If quantitative data, for instance GUS activity,

are available, these are used to split the weights within a series of

mutation experiments. All pairs of target sites and corresponding

weights are listed in supplementary Table S1 and are also available

in the format required by TALgetter as supplementary Data S1.

The values of all parameters of the TALgetter model as

estimated from these training data are listed in supplementary

Text S1, and we provide a graphical representation in the section

Binding specificities and importance of RVDs.

Predicting target sites. Once the parameters have been

estimated, we predict target sites of a given TAL effector by

scanning input sequences, for instance the promoterome of an

organism, using the trained model. Given the RVD sequence of

length L of the TAL effector of interest, we use a sliding window of

length Lz1 to extract sub-sequences of this length. Each of these

sub-sequences serves as an input to the trained model and the

likelihood given the TAL effector sequence is computed according

Prediction of TAL Effector Targets
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to equations (1) and (3). Subsequently, sub-sequences are ranked

according to their likelihood values.

Since the absolute value of the likelihood directly depends on

the length of the RVD sequence, and, hence, on the width of the

sliding window used for scanning, the obtained likelihood values

are in general not comparable between different TAL effectors. To

overcome this issue, we additionally compute empirical p-values

for the putative target sites based on their likelihood values. To this

end, we generate a data base of random sequences of at least the

total length of all scanned input sequences. We generate these

random data by drawing sequences from a homogeneous Markov

model of order 2 trained on the input sequences. For these random

data, we compute the likelihoods of sub-sequences in the same

manner as for the actual input sequences. We then compute the p-

value of a putative target site by determining the percentile

corresponding to the observed likelihood value on the distribution

of likelihoods obtained for the random data base.

Data
Public Oryza sativa gene expression microarrays. For

assessment and predictions in Oryza sativa (rice), we use publicly

available gene expression data from PLEXdb [50]. Of the

experiments in the data base, we choose those that are obtained

i) for Oryza sativa ssp japonica cv Nipponbare, ii) after infection with

a Xanthomonas strain expressing at least one known TAL effector,

and iii) 24 h post infection (hpi). We restrict our studies to Oryza

sativa ssp japonica, because a well curated and annotated genome is

only available for japonica but not for indica rice.

For finding differentially expressed genes after infection with

Xanthomonas, we download the expression intensities obtained after

RMA [51] normalization. The resulting experiments are listed in

Table 2. The TAL effectors expressed by the Xanthomonas strains

which are used in the studies and their RVD sequences are listed

in supplementary Text S1.

Depending on the experiment, we extract different lists of

differentially expressed genes based on the log-fold change of a

target data set versus a control data set. Specifically, target and

control data sets are infected vs. mock or wildtype vs. mutant. All

considered pairs of data sets are listed in Table 3. In cases where

we compare a wildtype strain to a mock experiment, we expect to

find – besides others – target genes of the TAL effectors expressed

by the wildtype strain to be up-regulated in the gene expression

data of the microarray studies. If we compare wildtype strains to

single or double mutants, we expect to find as differentially

expressed the target genes of those TAL effectors that are not

functional in the mutant.

Although these gene expression data are a valuable source of

information about in vivo effects of Xanthomonas infections, they also

entail drawbacks for a systematic evaluation of TAL effector target

site predictions. First, the observed changes in expression levels

may be the result of a mix of the effects of different TAL effectors

and we cannot distinguish, which of the TAL effectors expressed

by a Xanthomonas strain is responsible for a change in the expression

of a gene. Second, the observed expression levels of plant genes are

not only directly influenced by TAL effectors but may be also

affected by secondary effects due to other type III effectors

secreted simultaneously into the plant cell, or by general plant

responses due to the infection.

For this reason, we additionally design a more controlled

environment for studying the effects of a single TAL effector as

described in the following.

Arabidopsis thaliana gene expression microarrays. We

generate transgenic Arabidopsis thaliana plants to study the effect of

individual TAL effectors on plant gene expression without

secondary effects from the bacterial pathogen [2]. Three

independent transgenic A. thaliana Col-0 lines are generated via

Agrobacterium-mediated transformation that carry the hax2 TAL

effector gene from Arabidopsis-pathogenic Xanthomonas campestris pv.

campestris under control of an ethanol-inducible promoter [2,52].

Generation of three independent lines should compensate for

changes in individual gene expression patterns due to the insertion

of the T-DNAs. We sample leaf tissues of transgenic and non-

transgenic plants from segregating T2 populations 24 hours post

ethanol treatment. Because expression of hax2 in A. thaliana Col-0

results in purple-colored leaves due to anthocyanin accumulation,

the presence or absence of the hax2 transgene can be determined

phenotypically and is verified by PCR analysis [2]. We treat both,

transgenic and non-transgenic plants, with ethanol to compensate

for any general effect of ethanol on A. thaliana gene expression. The

expression levels of A. thaliana genes are measured by Affymetrix

Ath1 microarrays (imaGenes GmbH, Berlin, Germany), RMA

normalized, and fold changes are determined for each of the 3

Table 2. Oryza sativa ssp japonica microarray experiments from PLEXdb used in this paper.

PLEXdb ID GEO ID Xanthomonas straina Experiments #arrays

OS3 GSE16793 Xoo PXO99A , Xoc BSL256 24 hpi, mock 12

OS38 GSE19844 Xoo BAI3, Xoo BAI3DtalC 24 hpi, mock 9

OS66 GSE19844 Xoo PXO99A , Xoo PXO86, Xoo MAFF311018, Xoo PXO99AME1 (D pthXo6, avrXa27), Xoo

PXO99AME2 (D pthXo1)

24 hpi, mock 27

aXoo: X. oryzae pv. oryzae; Xoc: X. oryzae pv. oryzicola.
doi:10.1371/journal.pcbi.1002962.t002

Table 3. Data sets of putative target genes of expressed TAL
effectors obtained from comparative studies (in alphabetical
order).

Name PLEXdb ID Target Control

BAI3 OS38 Xoo BAI3, 24 hpi Xoo BAI3DtalC, 24 hpi

MAFF311018 OS66 Xoo MAFF311018,
24 hpi

mock

PXO86 OS66 Xoo PXO86, 24 hpi mock

PXO99 OS66 Xoo PXO99A , 24 hpi mock

PXO99AME1 OS66 Xoo PXO99A , 24 hpi Xoo PXO99AME1, 24 hpi

PXO99AME2 OS66 Xoo PXO99A , 24 hpi Xoo PXO99AME2, 24 hpi

XOC OS3 Xoc BSL256, 24 hpi mock

XOO OS3 Xoo PXO99A , 24 hpi mock

doi:10.1371/journal.pcbi.1002962.t003
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transgenic lines compared to 3 non-transgenic lines independently.

The final list of differentially expressed genes is then determined as

the intersection of the lists obtained for the three independent

experiments for a given threshold on the log-fold change.

Public Citrus sinensis gene expression microarrays. In

a third study, we predict putative target sites of TAL effectors of

Xanthomonas axonopodis pv. citri (Xac) in Citrus sinensis. The RVD

sequences of the TAL effectors considered are listed in supple-

mentary Text S1.

We obtain gene expression data of C. sinensis of plants infected by

Xac and mock plants 48 h post infection from PLEXdb (PLEXdb

ID: CT2). As for the rice microarrays, we download expression data

normalized by RMA and compute average log-fold changes of

infected (2 replicates) versus mock (2 replicates) plants.

Sequence data. We obtainO. sativa pseudomolecules and gene

annotations from the MSU Rice Genome Annotation Project [53]

at ftp://ftp.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/

o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.

chrs.con and ftp://ftp.plantbiology.msu.edu/pub/data/Eukaryotic_

Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.

dir/all.gff3, respectively. For the benchmark studies, we extract

1000 bp upstream of the start codon for all annotated genes including

splicing variants. For some of the biological studies, we additionally

extract sequences extending from 1000 bp upstream of the annotated

transcription start site to the position directly preceding the start

codon.

We obtain A. thaliana upstream sequences relative to the start codon

from TAIR [54]. TAIR also provides updated gene annotations of the

probe sets of the Affymetrix Ath1 chip for the TAIR10 gene

annotations, which we use throughout our studies for consistency.

We obtain C. sinensis scaffolds and gene annotations from ftp://

ftp.jgi-psf.org/pub/JGI_data/phytozome/v6.0/Csinensis. These

sequence data were produced by the US Department of Energy

Joint Genome Institute http://www.jgi.doe.gov/ in collaboration

with the user community. For all annotated genes, we extract

1000 bp upstream of the start codon for predicting target sites. In

addition, we extract the corresponding transcripts and establish

gene annotations for the microarray probe sets by blasting [55] the

probe sequences to these transcripts, where we allow at most two

mismatches between probe and target sequence.

Results/Discussion

Recovering known target sites
In this section, we examine known TAL effector target sites in

O. sativa, and analyze if these target sites are recovered by

TALgetter. To this end, we consider two settings. In the first

setting, we consider each TAL effector in turn and exclude all

TAL effectors with RVD sequences identical to the TAL effector

considered from the training set in a cross validation-like manner.

For testing, we scan the standard region of 1 kb upstream of the

start codon of all rice genes and rank the predictions of TALgetter

according to the corresponding likelihood. We refer to this setting

as TALgetter CV.

In the second setting, we use the final version of TALgetter,

where we use the complete training data. This version is available

as a web-application and command line program. For testing, we

scan regions from 300 bp upstream the transcription start site

(TSS) to 200 bp downstream the TSS or the start codon,

whichever comes first. This choice will be motivated in the section

Positional preference of target sites. We refer to this setting as TALgetter
final.

The ranks of the known TAL effector target sites achieved in

these two settings are listed in Table 4. For TALgetter CV, we find

the known target sites of Tal1c [3], PthoXo6 [2], PthXo7 [2], and

TalC [9] among the top 10 promoterome-wide predictions of

TALgetter, while the known target site of PthXo1 [2,3] is

predicted at rank 20. For TALgetter final, we find the known

target sites of all these TAL effectors at rank 1 or 2.

For the known target sites of PthXo3 and AvrXa7, the achieved

ranks in both settings are considerably worse. Interestingly, these

two TAL effectors contain atypical, long repeats, which might

influence the overall binding of the TAL effector. Since such

atypical repeats are not specifically modelled by TALgetter, this

might explain the high ranks of the true target sites of PthXo3 and

AvrXa7. However, once the impact of long repeats on TAL

effector binding are understood, these could be implemented in

the modular structure of TALgetter. Notably, the same effect can

also be observed for Target Finder, where the known target sites of

PthXo3 and AvrXa7 obtain ranks 558 and 1543, respectively. We

compare the prediction accuracy of TALgetter and Target Finder

in more detail in the next section.

Comparison to Target Finder
In the first part of this section, we consider public gene

expression microarray data of O. sativa studying the effects of

Xanthomonas infections on the transcriptome. Using these gene

expression data, we determine sets of genes that are up-regulated

upon Xanthomonas infection. Under the assumption that a

considerable subset of these genes is directly up-regulated by

TAL effectors, we compare the number of predicted target sites of

TALgetter and Target Finder that are consistent with the observed

Table 4. Ranks of known TAL effector target sites.

TAL effector Target gene Locus ID Reference TALgetter CV

TALgetter

final

Tal1c/XOCORF_0460 OsHEN1 Os07g06970 [3] 1 1

PthXo6 OsTFX1 Os09g29820 [2] 8 2

PthXo7 OsTFIIac1 Os01g73890 [2] 3 2

TalC Os11N3 Os11g31190 [9] 2 2

PthXo1 OS8N3 Os08g42350 [2,3] 20 1

PthXo3 Os11N3 Os11g31190 [49] 479 240

AvrXa7 Os11N3 Os11g31190 [7] 732 324

Ranks of known TAL effector target sites among the TALgetter predictions in independent cross validation-like experiments (TALgetter CV) and for the final version used
in the web-application and command line program (TALgetter final).
doi:10.1371/journal.pcbi.1002962.t004
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up-regulation. Besides virulence targets, these up-regulated genes

presumably also include collaterally induced genes. When

predicting target sites with TALgetter, we use the TALgetter

CV setting described in the previous section and exclude all TAL

effectors with RVD sequences identical to the current one from

the training set. For Target Finder, we use the publicly available

version (https://boglab.plp.iastate.edu/node/add/talef-off,

https://github.com/njbooher/boglab_talesf) having fixed binding

specificities, which might include knowledge from known target

sites of a TAL effector considered. In the second part, we repeat

this analysis for genes that are up-regulated in A. thaliana plants

that endogenously express the TAL effector Hax2.

Comparison on public O. sativa gene expression

microarrays. We compare the prediction accuracy of TAL-

getter to that of Target Finder of the TALE-NT suite using the

public gene expression microarray data of O. sativa described in

section Data. To this end, we consider for each experiment listed in

Table 3 those genes that are at least two-fold up-regulated 24 h

post infection, corresponding to a threshold of 1 on the log-fold

changes.

For each of the experiments, we obtain the RVD sequences of

the TAL effectors expressed by the Xanthomonas strains used in the

infection (cf. supplementary Text S1). We then use both tools,

TALgetter and Target Finder, to predict target sites of these TAL

effectors in the sequences 1 kb upstream of the start codon of all

annotated O. sativa genes, which is also the standard for

promoterome-wide scans in the Target Finder web-application.

For the following comparisons, we only consider those genes

that are represented by at least one probe set on the Rice 57k

microarray, since we have no knowledge about the regulation of

genes that are not on the chip. For Target Finder, we basically use

the default parameters with two exceptions: First, we switch off the

option to scan the reverse complementary sequence, because

natural TAL effector act as transcriptional activators only if the

activation domain is oriented towards the downstream gene.

Second, we examine the variant of Target Finder filtering for a T

at position 0, and the variant additionally allowing for a C at

position 0 independently.

In Target Finder, better predictions are assigned lower scores,

where the score is basically the negative log-likelihood obtained

from the position weight matrix model. By default, Target Finder

includes all putative target sites into its predictions that yield a

score that is at most 3 times the best possible score for the current

TAL effector. However, the number of predicted target sites varies

greatly between different TAL effectors. For instance, Target

Finder reports only 7 target sites for TAL effector XOO2160_-

MAFF, whereas more than 1.4 million target sites are predicted

for XOCORF_1565 using the default threshold. In contrast,

TALgetter predicts between 6 and 314 target sites for the TAL

effectors considered using the default threshold of 10{6 on the

empirical p-values. Since the total number of O. sativa genes

including splicing variants is only about 66 000, we decide to limit

the number of predictions in the same manner for both tools: For

each TAL effector, we limit the predictions of both tools to the top

10, 20, 50, and 100 predicted target sites, in the following also

referred to as rank cutoff. We then compile the total predictions for a

given experiment as the union of the predicted target sites for all

TAL effectors relevant in this experiment. For instance, Xoo

PXO99A expresses 19 known TAL effectors, of which 16 are

functional [56]. If we limit the predictions to the top 20 target sites

for each TAL effector of Xoo PXO99A, we obtain a total number

of 320 predicted target sites. The number of corresponding target

genes is at most 320, since in rare cases multiple target sites are

predicted in the promoter of one gene. For Xoo PXO99A and a

rank cutoff of 20, we obtain 276, 276, and 273 different target

genes for TALgetter, Target Finder filtering for a T, and Target

Finder filtering for a T or a C at position 0, respectively.

We use as a measure of accuracy the number of genes with

predicted target sites for a specific rank cutoff that are also up-

regulated according to the microarray experiment. Since the

number of up-regulated genes only depends on the threshold on

the log-fold change in the given experiment, this number is

proportional to the recall. Since the number of predicted target

genes is limited by the rank cutoff and almost equal for the

different tools, it is also roughly proportional to the precision.

Hence, we consider it a suitable measure of the overall

performance of a prediction tool.

The results of this evaluation procedure are presented in

Figure 1. In addition, we give a summary of the evaluations in

Figure 2.

First, we compare the prediction accuracy of TALgetter to that

of Target Finder filtering for a T at position 0 (Target Finder T)

using a rank cutoff of 10. We find that for the data sets BAI3,

MAFF311018, PXO86, PXO99, and PXO99AME2, TALgetter

(green bars) predicts more target sites that are present in promoters

of genes which are also transcriptionally induced in the

corresponding microarray studies than Target Finder T (red

bars). For two experiments, namely XOC and XOO, the number

of recovered genes is equal for both tools. Finally, Target Finder T

finds more up-regulated genes than TALgetter for the data set

PXO99AME1. We find the corresponding aggregate values in the

first column of Figure 2. TALgetter yields a larger number of

recovered genes for 5 data sets, the opposite is true for one data

set, and both tools yield an equal performance in two cases.

This picture is similar for the comparison to Target Finder

filtering for a T or a C at position 0 (Target Finder T/C) using the

same rank cutoff. For 4 data sets, namely MAFF311018, PXO86,

PXO99, and XOC, TALgetter recovers more up-regulated genes

than Target Finder T/C. We observe the opposite only for the

data set PXOAME1, while for the remaining three data sets both

tools score equally well.

As can be observed from Figures 1 and 2, this picture is widely

consistent for rank cutoffs 20 and 50, where TALgetter predicts a

greater number of up-regulated genes than Target Finder T in 5

and 6 cases, and a greater number of up-regulated genes than

Target Finder T/C for 3 and 5 data sets, respectively.

For a rank cutoff of 100, which for instance already results in a

total number of 1600 predictions considered for the 16 TAL

effectors of the data set PXO99, TALgetter and Target Finder T

achieve a comparable number of up-regulated genes. In contrast,

Target Finder T/C still finds less up-regulated genes than

TALgetter for 3 out of the 8 data sets, whereas the opposite is

true for none of the data sets.

Summarizing the results on all data sets considered, we may

state that TALgetter shows a slightly improved overall prediction

performance compared to Target Finder using the number of

predicted targets consistent with up-regulation after Xanthomonas

infection as performance measure. This is especially the case for

lower rank cutoffs. We consider this case of the greatest practical

relevance, since often a user needs to scan lists of predictions by

eye, for instance to find putative candidates for experimental

validation.

Since the results of the comparison might be specific to the

threshold on the fold-changes chosen to determine up-regulated

genes, we repeat this analysis for a threshold of 0.5 on the log-fold

change. The outcome of this evaluation is presented in Figure S1

and S2 in analogy to Figure 1 and 2, respectively. Although the set

of genes considered as up-regulated may be contaminated to a
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larger extent by false positives for such a low threshold, we find

that TALgetter still performs better than both variants of Target

Finder. However, the differences between the tools are less

pronounced for a threshold of 0.5.

The relevance of a novel approach for TAL effector target site

prediction also depends on the number of additional targets that

we gain compared to previous approaches. Therefore, we

investigate if the predictions of TALgetter and Target Finder are

largely overlapping or if both approaches rather predict comple-

mentary target sites. We consider the overlap of predicted target

genes between TALgetter and the two variants of Target Finder in

Figure 3 for 4 representative data sets, while the Venn diagrams

for all data sets are given in supplementary Figure S3. As a general

tendency, we find that the number of target genes that are

uniquely predicted by one of the three tools is surprisingly large

compared to the number of target genes that are consistently

predicted by all three approaches. On first sight, this is especially

surprising for the overlap between the two TALgetter variants.

However, it can be explained by the different filter on position 0

combined with a fixed rank cutoff, because, on average, we expect

only half of the predictions of Target Finder T/C to have a T at

that position.

Notably, the Venn diagrams reflect that TALgetter on the one

hand accepts any nucleotide at position 0, resulting in an exclusive

overlap with Target Finder T/C, but on the other hand learned a

strong preference for nucleotide T at that position (cf. section

Binding specificities and importance of RVDs) leading to a greater

overlap with Target Finder T.

For all data sets, the number of target genes exclusively recovered by

TALgetter is equal to or greater than the number of exclusive targets of

each of the Target Finder variants. For instance, TALgetter predicts 41

additional putative TAL effector targets for the data set MAFF311018

that would not have been predicted by any of the Target Finder

variants. In case of PXO99AME2, TALgetter exclusively predicts 4

target genes, whereas only 1 target gene is predicted by Target Finder

but not by TALgetter. From an experimental perspective, these

exclusively predicted targets underline the scientific value of TALgetter,

since these may include virulence targets that would have been missed

using existing approaches.

Comparison on A. thaliana gene expression

microarrays. As an independent validation data set with a

Figure 1. Comparison of TALgetter to Target Finder with a T (Target Finder T), or both T and C (Target Finder T/C) at position 0 on
public gene expression data. We consider as performance measure the number of predicted targets that are supported by up-regulation
according to gene expression data after Xanthomonas infection using a log fold-change of 1. Performance is measured for different rank cutoffs (Top
10, 20, 50, and 100 predictions) on the predictions for each TAL effector.
doi:10.1371/journal.pcbi.1002962.g001

Figure 2. Summary of the evaluations presented in Figure 1.
For each rank cutoff (10, 20, 50, 100), we count the number of data sets
where a prediction program outperforms the other (bars colored
identical to program), or both score equally well (bars colored gray).
doi:10.1371/journal.pcbi.1002962.g002
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reduced number of side-effects of the infection, we consider the

microarray experiment of hax2-transgenic A. thaliana plants

introduced in section Data.

The results of the evaluations on this data set are presented in

Figure 4. In the left panel of Figure 4, we again consider the

number of target genes recovered by TALgetter and the two

Target Finder variants for different rank cutoffs and thresholds of

1 and 0.5 on the log-fold changes. We find that TALgetter yields

an improved prediction performance compared to the Target

Finder variants for most rank cutoffs considered, whereas the

opposite is never the case.

In contrast to the previous microarray data for O. sativa, the

controlled environment of transgenic plants endogenously ex-

pressing a single TAL effector gene (hax2) allows us to distinguish

between target and non-target genes more reliably, since general

effects due to other translocated Xanthomonas effectors or a general

plant response to the infection are eliminated. In addition, the

expression of a single TAL effector allows us to attribute

transcriptional activation to a specific TAL effector.

Hence, we additionally plot a precision-recall curve of the

predictions of the three tools. To this end, we classify all genes with

a log-fold change greater than 1 as targets and all genes with an

absolute log-fold change of less than 0.5 as non-targets. We plot

the precision-recall curves of TALgetter and the two Target

Finder variants using a varying threshold on the prediction scores

in the right panel of Figure 4. We find that for recalls above 0.2,

none of the tools yields an acceptable precision. For a recall of

approximately 0, all tools yield a single correct prediction leading

to a precision of 1.0. For all other recalls, TALgetter is the only

approach that achieves precisions above 0.5 for some of the recall

values, whereas more than half of the predictions of Target Finder

are false positives. This result is an additional indication of the

improved prediction accuracy of TALgetter compared to Target

Finder.

Summarizing the comparison of TALgetter to Target Finder,

the assessment of prediction accuracy presented in this section

demonstrates that TALgetter yields an improved overall predic-

tion performance compared to Target Finder. TALgetter uniquely

predicts many targets that are not predicted by Target Finder,

which diversifies the types of TAL effector target sites that can now

be discovered by computational approaches. We focus on the

binding specificities learned by TALgetter and the properties of

target sites predicted by TALgetter in the following sections.

However, depending on the goal of a study, it might also be

worthwhile to use both, TALgetter and Target Finder, for

predicting putative target sites and to combine the predictions of

both approaches. For instance, the union of the predictions of both

approaches might cover a broader range of target sites, since we

observe a considerable number of unique predictions for all

approaches.

Binding specificities and importance of RVDs
We visualize the binding specificities and importances of the

different RVDs in Figure 5. Considering the nucleotide prefer-

ences at position 0 shown in panel (A) of Figure 5, we find that the

most frequent nucleotide with a probability of 0.829 is T, followed

by C with a probability of 0.100, A with a probability of 0.049,

and G with a probability of 0:022, which is in accordance with

previous findings [2,3,7,8].

Figure 4. Comparison of TALgetter to Target Finder on the gene expression data from transgenic A. thaliana lines. We consider as
performance measures the number of predicted targets consistent with up-regulation in gene expression microarrays for different rank cutoffs and
thresholds of 1 and 0.5 on the log-fold changes (left panel), and the precision-recall (PR) curve (right panel) using a threshold of 1 on the log-fold
changes.
doi:10.1371/journal.pcbi.1002962.g004

Figure 3. Venn diagrams of the predictions of the three programs using a log fold-change of 1 and a rank cutoff of 100.
doi:10.1371/journal.pcbi.1002962.g003
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Turning to the binding specificities of RVDs, we find the highest

specificities for HD (C), NG (T), NH (G), NI (A), and NK (G). This

is in accordance to the experimentally determined DNA-specific-

ities of these RVDs [2,6,13,21,57].

For HD, NG, NH, and NI, we also find a high importance.

Hence, these RVDs are highly specific and mismatches according

to the binding specificities are hardly tolerated. Other RVDs with

a notably high importance are HN, NN, NP, NS, and NT,

although these RVDs are less specific than the other high-

importance RVDs.

As noted in the introduction, the concept of importance of

RVDs is related but not identical to the efficiencies of RVDs as

proposed by Streubel et al. [6], which classifies RVDs as strong,

intermediate, and weak, respectively. TAL effectors with exclusively

weak RVDs can not activate transcription of downstream genes,

even if all binding specificities are matched [6]. Inclusion of three

or more strong RVDs renders the TAL effectors fully functional.

In contrast, more intermediate RVDs (e.g. six) are needed for full

activity. The different efficiencies of RVDs likely reflect different

DNA-binding strength and thereby affect overall TAL effector

affinity to DNA.

The two RVDs classified as strong, namely HD and NN, also

receive the highest importance in the TALgetter model. The

intermediate RVDs NS and NH are assigned a fairly high

importance as well, whereas the remaining intermediate RVDs,

namely NP, HN, and NT, receive a lower importance. The RVDs

NG and NI are assigned an importance comparable to that of the

intermediate RVD NP, although these RVDs are classified as

weak according to their efficiency. This result may be an effect of

the related but different concepts of efficiency and importance,

which we discuss in the following. An RVD with a low efficiency

might prevent transcriptional activation in general, whereas a low

importance has the effect that the binding specificities modeled by

TALgetter for this RVD have a reduced influence on the overall

score. An RVD with high efficiency has a strong positive influence

on the transcriptional activation, whereas the contribution of an

RVD with a high importance to the total score highly depends on

the specificity. Hence, importance affects the penalty that is

imposed if the binding specificity is not fulfilled, i.e., a nucleotide

with a low probability for a specific RVD is present in a target site.

For some RVDs (HN, NN, NS, NT, N*), we observe a

preference for more than one nucleotide, where we recognize

gradually decreasing specificities. The most prominent example of

this class of RVDs is N*, where we find a preference for C with a

probability of 0.693, followed by T 0.272, and very low

probabilities for A and G.

The RVD N* has experimentally been determined to specify for

T and C with preference for T [6]. A preference for T is also

expected, because RVDs are directly followed by a conserved

glycine in the repeat sequence and, hence, N* might exhibit a

binding preference similar to NG [5]. However, N* recognizes T

and C in known TAL effector target sites instead [3], which differs

from the RVD NG. In contrast, H* shows a binding preference

that is similar to HG.

Figure 5 demonstrates that TALgetter correctly estimates the

known specificities of RVDs [2,3,6,13,57]. Only amino acid 13 of

each TAL effector repeat, i.e., the second amino acid of the RVD,

interacts with the DNA base and should therefore be responsible

for the RVD specificity [4,5]. Accordingly, the parameters of

TALgetter reflect that RVDs containing the same amino acid 13

have comparable specificities. Notable exceptions from this rule

are the estimated binding preferences of HA and NA, and HI and

NI, which can be explained by HA, NA, and HI being

underrepresented in the training data set as shown in panel (C)

of Figure 5.

For RVDs NC, YG, HH, IS, SS, NV, and S*, a uniform

preference was estimated by TALgetter, since these RVDs are

neither present in the training data nor do we have prior

knowledge about their binding preference. However, under the

assumption that only amino acid 13 of a repeat defines binding

preference, we can overcome this issue by estimating a common

binding preference for all RVDs with the same 13th amino acid.

In this case, the probability PD(x‘Dy‘,hD) (cf. section Materials and

Methods) does not depend on the full RVD y‘, but only on its

Figure 5. Visualization of the parameters of TALgetter. (A) The nucleotide preferences for position 0 are visualized as a sequence logo. (B) The
binding specificities for the different RVDs are plotted in analogy to sequence logos as well, whereas the probabilities PM (U~DDr, hM ) representing
importance of RVDs are plotted against the RVDs as blue points connected by a black line. (C) Total weight of each RVD in the training data set.
doi:10.1371/journal.pcbi.1002962.g005
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second amino acid. Due to the modular structure of the TALgetter

model, we may still estimate an individual importance for each

RVD. We refer to this variant of TALgetter as TALgetter13.

The parameters estimated with these modifications are visual-

ized in Figure 6. The binding preferences of the most prominent

RVDs, namely HD, HG, NG, NI, NN, NS, and N* [5], remain

highly similar to those estimated conditional on the complete

RVDs (cf. Figure 5). By specification, the differences between HA

and NA, and HI and NI are resolved, and the estimated binding

preference is dominated by the more prominent RVD. For YG,

HH, IS, SS, and S* that were assigned a uniform binding

preference before, we gain binding preferences that are based on

the preferences of the other RVDs with same amino acid 13. The

importance of individual RVDs is only marginally affected by the

modified binding preferences, with a slight decrease of binding

importance for HG and H* and a slight increase for NG, NI, NS,

and N*.

To investigate if the modified binding preferences influence the

prediction accuracy of TALgetter13 compared to TALgetter, we

repeat the assessment of prediction accuracy in complete analogy

to the previous comparison to Target Finder. The results of this

comparison are presented in supplementary Figure S4. We find

that for 9 of the 32 combinations of rank cutoff and data set,

TALgetter13 yields an improved prediction accuracy compared to

TALgetter, whereas for 8 combinations the opposite is the case.

For the remaining 15 combinations, both variants of TALgetter

achieve an identical number of recovered target genes. Since we

do not find an improved prediction accuracy for TALgetter13, we

use TALgetter throughout the subsequent studies. However,

TALgetter13 might be of value if we search for target sites of

TAL effectors containing many rare RVDs. Hence, we include it

as an option into the web-application and the command line

program.

The variable importance of RVDs according to the parameters

learned by TALgetter strengthens the observation that RVDs can

differ in their efficiency and contribution to overall TAL effector

function [6]. Our findings also suggest that the penalty of

mismatching RVD-base combinations to overall TAL-binding

differs for each individual RVD-base combinations, a concept that

is novel.

Positional preference of target sites
In the following, we investigate if TAL effector target sites are

located in a preferred distance to either the start codon or the

transcription start site (TSS) of target genes. To this end, we scan

broader regions of upstream sequences, which span from 1 kb

upstream of the transcription start site to the start codon as

described in section Data, and collect the positions of the top 200

predicted target sites for each TAL effector studied. As in the

previous comparison to Target Finder, we define as positives all

genes that achieve a log-fold change greater than 1 in the

corresponding experiment. We additionally create a set of

negatives by extracting all genes with an absolute log-fold change

of less than 0.5. The sets of positive and negative genes are then

combined with the target site positions collected from the

predictions of TALgetter to obtain positive and negative sets of

target site positions. In the following, we consider the unions of

these sets across all microarray experiments for O. sativa.
We analyze the collected target site positions by conducting a

kernel density estimation with a box kernel and a bandwidth of

100. In Figure 7, we plot the density estimates against the relative

position to the start codon (left) and against the relative position to

the TSS (right), where the density estimates for the positive and

negative set are plotted as a green and red curve, respectively.

Considering the relative position to the start codon, we find a

clear enrichment of positive target sites compared to negative

target sites in a region reaching from the start codon approxi-

mately 300 bp upstream. At regions farther than 400 bp upstream

of the start codon, the density of false positive predictions

according to the microarray experiments is consistently greater

than the density of the true positives.

We also find a pronounced positional preference relative to the

transcription start site as can be observed from the right panel of

Figure 7. A substantial fraction of true positive predictions is

located in a region extending approximately from 300 bp

upstream to 200 bp downstream of the TSS. Again, we find a

greater density of negatives than positives at positions farther than

400 bp upstream of the TSS. For many genes, the distance

between TSS and start codon is at most 200 bp, i.e., many genes

have 59 untranslated regions of at most 200 bp. Hence, for these

genes positions farther than 200 bp downstream of the TSS are

not considered in the predictions and we generally find a low

number of predicted target sites at distances greater than 200 bp.

We repeat this analysis for rank cutoffs of 100 and 500 with

highly similar results (data not shown).

In the following, we investigate whether this strong positional

preference may be exploited to reduce the number of false positive

predictions. To this end, we use TALgetter to predict target sites in

two modified sets of upstream sequences. First, we predict target

sites in the 300 bp upstream sequences relative to the start codon

of all O. sativa genes. Second, we extract for these genes the

Figure 6. Visualization of the parameters of TALgetter with binding specificities determined by amino acid 13. (A) The nucleotide
preferences for position 0 are visualized as a sequence logo. (B) The binding specificities given the different RVDs are plotted in analogy to sequence
logos as well, whereas the probabilities PM (U~DDr,hM ) representing importance of RVDs are plotted against the RVDs as blue points connected by
a black line. As a reference, we include the importance of RVDs using individual binding specificities as light blue points connected by a gray line.
doi:10.1371/journal.pcbi.1002962.g006
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sequences from 300 bp upstream of the TSS to 200 bp

downstream of the TSS or the start codon, whichever comes first.

As for the benchmark study of section Comparison to Target Finder,

we consider rank cutoffs of 10, 20, 50, and 100 on the predictions

for a single TAL effector and join the sets of predictions according

to the set of TAL effectors expressed by the Xanthomonas strain

studied in the corresponding microarray experiment.

In supplementary Figure S6, we present the results of this

analysis in complete analogy to Figure 1. We find that the

restriction of predictions to 300 bp upstream the start codon does

not improve the overall prediction performance. We even observe

a decrease of prediction performance for 11 of the 32 combina-

tions of data set and rank cutoff, while an improvement can only

be found in 10 cases. We find an improvement if we restrict

predictions to the [2300,200]-region around the TSS. Here, we

observe an improvement of prediction performance for 17 of the

32 combinations, whereas performance decreases only in 5 cases.

Hence, we might conclude that true target sites of TAL effectors

are preferentially located at most 300 bp upstream and at most

200 bp downstream of the TSS, and that exploiting this positional

preference for predictions by TALgetter increases the number of

true positive predictions for relevant rank cutoffs. In supplemen-

tary Figure S7, we present and discuss models to explain this

positional preference. Since we expect that the discovered

positional preference is a general characteristic of functional

TAL effector target sites, limiting the search region to the

[2300,200]-region around the TSS should reduce the number of

false-positives of any approach for TAL effector target site

prediction.

In Figure 7, we additionally recognize that the peak of true

positive predictions is not centered at the TSS but approximately

50 bp upstream. Since this peak is located in close vicinity to the

preferred location of core promoter elements like the TATA-box

or the TC-box [58], we scrutinize the relationship of TAL effector

target sites and core promoter elements in the next section.

Relationship to core promoter elements
As a first core promoter element, we consider the canonical

TATA-box with consensus TATAWA [58,59]. Approximately

14% of the O. sativa genes contain a canonical TATA-box in a

preferred distance of 39 to 26 bp upstream of the TSS. Genes

containing a canonical TATA-box often belong to the group of

highly expressed genes [58,60].

We find a canonical TATA-box in the promoters of 1445 of the

10903 unique predicted target genes among the top 200

predictions for all TAL effectors considered. This is in well

accordance to the rate of 14% reported by Bernard et al. [58].

Splitting TATA-related and TATA-less predicted target sites into

positives and negatives as described in the previous section, we find

142 TATA-related predictions among the positives (38.4%),

whereas 288 positive predictions belong to TATA-less genes. For

the set of negative predictions, we find 1303 TATA-related

(12.4%) and 9170 TATA-less predictions. Hence, the TATA-

related predictions are considerably enriched in the set of positive

compared to the negative predictions (odds ratio 3.5). This result is

highly significant yielding a p-value below 2:2|10{16 in a one-

sided Fisher’s exact test, which is the smallest possible p-value due

to computational precision.

However, TATA-containing genes might be generally enriched

in the set of up-regulated genes regardless of TAL effector target

sites. Since genes containing a canonical TATA-box are often

highly expressed, this could be an effect of the required log-fold

change of 1 for experiments 24 hpi. Indeed, the enrichment of

TATA-containing genes among all up-regulated genes is highly

significant (pv2:2|10{16) with an odds ratio of 3.6. Hence, the

enrichment of TATA-containing genes in the set of positive

predictions is not greater than the enrichment of TATA-

containing genes in all up-regulated genes.

Nonetheless, there could be a functional relationship between

transcriptional activation by a subset of TAL effectors and the

presence of a TATA-box. For instance, some TAL effectors might

substitute the TATA binding protein and acquire the transcrip-

tional machinery independently. The latter explanation is

supported by known TAL effector target sites that overlap a

TATA-box including the known target sites of AvrBs3 [2], PthXo3

[49], AvrXa7 [49], and PthXo6 [7]. The TAL effector AvrBs3

shifts the transcription start site of target genes and it has thus been

speculated that TAL effectors might functionally mimic the

TATA-box binding protein [10,46,61]. In contrast, several TAL

effectors which recognize adjacent DNA boxes in an artificial

target promoter primarily directed gene expression from the same

original start site [44]. Therefore, it is likely that additional plant

promoter elements contribute to TAL effector-mediated gene

Figure 7. Positional preference of TAL effector target sites relative to the start codon (left) and the transcription start site (TSS,
right). The estimated density of positions from the positive set is plotted as a green line, while the density of the negatives is plotted in red. The
whiskers indicate the bandwith of the box kernel used to smooth the curves in a kernel density estimation. The green points at the bottom of the
plots represent the distribution of positions from the positive set along the x-axis, where the points are distributed randomly in y-direction to make
individual points distinguishable.
doi:10.1371/journal.pcbi.1002962.g007
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induction. In the following, we investigate if the predictions of

TALgetter support a direct binding of TAL effectors to the

TATA-box.

In the subset of 142 positive target sites in TATA-containing

genes, we find 40 target sites (28%) that overlap the putative

TATA-box. In contrast, only 134 of the 1303 (10%) TATA-

related negative predictions overlap with the TATA-box. This

enrichment is significant, yielding a p-value of 2:6|10{8 in a one-

sided Fisher’s exact test. Only 33 of the 142 positive targets sites

(23%) and 308 of the 1303 negative target sites (24%) are

predictions for one of the 13 TAL effectors having TATAWA in

their binding consensus. Hence, the enrichment of target sites

overlapping the TATA-box can not be explained by an

enrichment of TAL effectors with TATAWA in their binding

consensus among the positive predictions.

Interestingly, 26 of the 40 TATA-overlapping target sites

directly start with the TATA-box, and 12 overlap the TATA-box

with an offset of 2, i.e., start with nucleotides 3 to 6 of the

TATAWA consensus. Of the remaining two predicted target sites,

one overlaps the TATA-box with an offset of 4, and one contains

the TATA-box in the middle of the target site. The large number

of TAL effector target sites overlapping TATA-boxes might entail

an evolutionary advantage for Xanthomonas strains, since mutations

in the TATA-box would lead to a change of the transcriptional

behavior of the downstream gene and, hence, are disadvantageous

for the host plant [49]. In addition, it might help to correctly

position the TAL effector with respect to other promoter elements

neighboring the TATA-box (cf. supplementary Figure S7).

In addition to the canonical TATA-box, we also examine the

enrichment of TATA-variants [58], which are often found in the

promoter sequences of housekeeping genes. Interestingly, we do

not find an enrichment of genes containing TATA-variants (not

including the canonical TATA-box) in the set of positives, where

the corresponding p-value of 0.48 in Fisher’s exact test is far from

significant. Finally, we consider the TC-box [58], i.e., TTCTTC

and variants, located in a similar distance to the TSS as the

TATA-box. In this case, the enrichment of genes containing a TC-

box in their promoters among the positives is not clearly significant

(p = 0.031).

We might suspect that the relationship to core promoter

elements, especially the observed overlap of predicted target sites

with the canonical TATA-box, is the only reason for the positional

preference of TAL effector target sites described in the previous

section. However, if we remove all genes that contain a canonical

TATA-box, a TATA-variant, or a TC-box from the sets of

positive and negative genes, and repeat the kernel density

estimation for the remaining sets, the overall picture remains

unchanged (cf. supplementary Figure S5).

In Figure 8, we finally investigate the relative position of target

sites to the core promoter element in TATA-box containing (left)

and TC-box containing (right) promoters. Considering the set of

genes containing a canonical TATA-box, we find a sharp cluster

of target sites in close vicinity to and often overlapping the TATA-

box, which can be recognized from the individual positions plotted

as green points in the lower part of the plots. This again reflects

that direct binding to the TATA-box might constitute one

potential mode of TAL effector function. The majority of the

remaining target sites is located upstream of the TATA-box. For

the TC-box containing genes, we observe a broader cluster of

target sites around the positions of the TC-box. Similar to the

TATA case – and the set of all target sites – we find the remainder

of target sites preferentially located upstream of the TSS.

In summary, we find an enrichment of genes with a promoter

containing a canonical TATA-box among the predicted TAL

effector targets, but a similar enrichment can be found for all up-

regulated genes. Within the subset of TATA-containing genes, the

number of target sites that overlap the canonical TATA-box is

significantly enriched. The most conclusive explanation of this

observation is a functional relationship between transcriptional

activation by TAL effectors and the TATA-box.

Predicted target sites with likely biological relevance
In the following, we present and discuss a selection of putative

target sites of TAL effectors in rice (O. sativa ssp. japonica) and sweet

orange (C. sinensis). For O. sativa, we use the refined search region

from 300 bp upstream to 200 bp downstream the TSS or the start

codon, whichever comes first (cf. Positional preference of target sites). To
limit false positives, we only study TAL effectors where gene

expression data are available. Promising targets show a low rank in

the TALgetter predictions and a significantly induced gene

expression in microarray studies. Different TAL effectors are

known to target the same or related plant genes which indicates

that these host genes constitute major virulence targets, and that

the pathogen has evolved different TAL effectors to target them

[62]. Therefore, we consider it meaningful, if we predict novel

targets that are either related to known virulence targets or a

Figure 8. Positional preference of TAL effector target sites relative to the TATA-box (left) and TC-box (right). The estimated density of
positions from the positive set is plotted as a green line, while the density of the negatives is plotted in red. The green points at the bottom of the
plots represent the distribution of positions from the positive set along the x-axis, where the points are distributed randomly in y-direction to make
individual points distinguishable.
doi:10.1371/journal.pcbi.1002962.g008
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common target of different TAL effectors. We list a selection of

predicted target sites in Tables 5 and 6, while a complete list is

available as supplementary Table S2.

The first group of targets we consider belongs to the family of

nodulin MtN3 genes, of which several members from A. thaliana

and O. sativa encode functional sucrose/glucose transporters

(SWEETs) [63,64]. Some SWEET genes have been identified as

susceptibility (S) genes whose induction is essential for a successful

bacterial infection [65]. TAL-mediated SWEET gene induction

and the resulting elevated export of sugars from plant cells is

believed to support bacterial proliferation. In pepper, the MtN3-

homolog UPA16 is induced by the TAL effector AvrBs3 [10]. The

O. sativa SWEET gene Os8N3 (Os08g42350) is a known target of

PthXo1 [65], which is predicted by TALgetter on rank 1 and

shows log-fold changes above 1 in three of the microarray

experiments. Similarly, the best prediction for the TAL effector

TalC is the SWEET gene Os11N3 (Os11g31190), a known target

as well [9]. Os11N3 is also a known target of PthXo3 and AvrXa7

[49], however their target sites are predicted on a much higher

rank (cf. section Recovering known target sites).

In addition to these known target sites, we find a novel SWEET

as putative virulence target of Tal7b and Tal8b, which are

identical TAL effectors encoded by a duplicated gene in the

genome of Xoo PXO99A [56]. The predicted target gene of Tal7b/

Tal8b is Os02g30910, which yields a log-fold change of 4.3 in the

PXO99 experiment. The corresponding target site sequence is

shown in the fourth column of Table 5. Notably, the nucleotide at

position 0 of this predicted target site is G instead of the usually

required T. A few exceptions to the invariable initial T have been

reported in natural TAL effector target sites (C for TalC in

Table 5. Predicted targets in O. sativa.

No. TAL effector Locus Description Rank Support (log-fold change)

SWEETs

1* PthXo1 Os08g42350 OS8N3, nodulin MtN3 family 1 PXO99(9.4); PXO99AME2(9.5); XOO(3.3)

2* TalC Os11g31190 OS11N3, nodulin MtN3 family 1 BAI3(6.2)

3 Tal7b/Tal8b Os02g30910 nodulin MtN3 family 91 PXO99(4.3)

Nutrient supply

4 AvrXa27/XOO1134_MAFF Os06g29790 phosphate transporter 1 21 MAFF311018(2.0); PXO99(2.0); PXOAME1(1.8)

5 Tal6a & XOO2158_MAFF Os06g29790 phosphate transporter 1 1 PXO99(2.0); MAFF311018(2.0)

6 Tal9d & XOO1132_MAFF Os10g25310 OsSPX3, SPX domain containing 50;48 PXO99(3.0); MAFF311018(5.0)

Small RNAs

7* XOCORF_0460 Os07g06970 HEN1 1 XOC(1.9)

8 Tal9a & XOO1138_MAFF Os07g06970 HEN1 1 MAFF311018(5.2); PXO99(5.1); XOO(2.3)

Signal transmission

9 Tal7a/Tal8a Os08g07760 BRI1-associated receptor kinase 4 PXO99(2.8)

10 XOO1998_MAFF Os08g07760 BRI1-associated receptor kinase 1 MAFF311018(1.8)

11 XOO2127_MAFF Os01g50370 MAPKKK protein kinase 1 MAFF311018(4.0)

Transcriptional regulation/DNA binding

12* PthXo6 Os09g29820 bZIP TF domain containing 2 PXO99(6.9); PXO99AME2(7.1)

13* PthXo7 Os01g73890 TFIIA gamma chain 2 PXO99(4.6); XOO(1.5)

14 Tal9b Os06g46366 zinc finger, C3HC4 type 2 PXO99(1.3)

15 XOO1136_MAFF Os06g09310 zinc finger, C3HC4 type 47 MAFF311018(2.8)

16 Tal2a Os12g24490 zinc finger, C3HC4 type 28 PXO99(4.0)

17 Tal9e/XOO2001_MAFF Os04g41229 helix-loop-helix DNA-binding domain 3 PXO99(1.6); MAFF311018(2.4)

18 XOO2865_MAFF Os07g48450 no apical meristem protein 11 MAFF311018(3.0)

19 Tal5a Os04g43560 no apical meristem protein 2 PXO99(1.4)

20 XOO1996_MAFF Os04g52810 no apical meristem protein 6 MAFF311018(3.0)

Other

21 AvrXa10 Os08g09040 Cupin domain containing 41 PXO86(4.5)

22 AvrXa10 Os08g09010 Cupin domain containing 38 PXO86(4.1)

23 Avrpth3 Os06g46500 monocopper oxidase 7 XOC(3.0)

24 Tal4 & XOO2129_MAFF Os12g24320 ATPase 3 23;16 PXO99(2.7); MAFF311018(3.3)

25 Tal7b/Tal8b Os01g40290 expressed protein 1 PXO99(3.8); XOO(1.0)

26 Tal9d & XOO1132_MAFF Os08g05910 peptide transporter PTR2 1 PXO99(2.3); MAFF311018(2.0)

List of predicted targets in O. sativa. For each predicted target, we list the name of the TAL effector, the locus ID and the description of the targeted gene, the rank
among the predictions of TALgetter for the specific TAL effector, and the list of microarray experiments that support this target. The corresponding log-fold changes
observed in the microarray experiments are given in parentheses. TAL effectors with a common target site are listed in the same row. If both TAL effectors have identical
RVD sequences, they are separated by a slash. Otherwise, they are separated by an ampersand. Known target sites are marked with an asterisk.
doi:10.1371/journal.pcbi.1002962.t005
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Os11N3 [9]; A for AvrBs3 in UPA25 [10]) and the potential Tal7b/

Tal8b target site might be another exception. Like Os8N3 and

Os11N3, Os02g30910 belongs to the clade III of the SWEET

family, which is the only known sub-family that encodes sucrose

transporters, indicating that this specific function is important for

Xoo [64,64]. However, a gene with unknown function

(Os01g40290, no. 25) is predicted by TALgetter for Tal7b/Tal8b

on rank 1. Since this gene yields a log-fold change above 1 in two

of the microarray experiments and has been predicted as a target

of Tal7b/Tal8b before [3], it is an alternative target candidate.

The second group of targets also addresses the nutrient supply

of the pathogen. We identify several putative TAL effector targets

that are related to phosphate metabolism. Xoo mutants impaired in

the utilization of phytic acid, a storage form of phosphate, are

impaired in virulence [66] indicating that the supply of phosphate

is important for a successful Xoo infection. The phosphate

transporter Os06g29790 is predicted as a putative target of three

TAL effectors, namely AvrXa27 (RVDs identical to XOO1134_-

MAFF), Tal6a, and XOO2158_MAFF with the latter two TAL

effectors differing by only one RVD. Os06g29790 is predicted by

TALgetter on rank 1 for Tal6a and XOO2158_MAFF, and rank

21 for AvrXa27/XOO134_MAFF, and is supported by two and

three microarray experiments, respectively. The predicted target

sites of Tal6a and AvrXa27 do not overlap, and the common

target is thus not due to general similarities between these TAL

effectors. AvrXa27 can also trigger resistance due to induced

expression of the resistance gene Xa27, but only in O. sativa ssp.

indica and not in ssp. japonica [67]. Tal9d and XOO1132_MAFF

differ in one RVD and are predicted to target the promoter of

Os10g25310 which encodes OsSPX3, an SPX domain containing

negative regulator involved in tolerance to phosphate starvation

[68]. High induction of OsSPX3 after Xoo infection is supported by

two microarray experiments. An alternative target of Tal9d and

XOO1132_MAFF with slightly lower over-expression but rank 1

Table 6. Predicted targets in O. sativa (2).

No. TAL effector Distance to start codon Distance to TSS Target site sequence

SWEETs

1* PthXo1 226 79 TGCATCTCCCCCTACTGTACACCAC

2* TalC 296 91 CATGCATGTCAGCAGCTGGTCAT

3 Tal7b/Tal8b 141 235 GCTCCTCCTCCTTTCTCCACT

Nutrient supply

4 AvrXa27/XOO1134_MAFF 290 269 TAGCTAGGGGAATCCATG

5 Tal6a & XOO2158_MAFF 332 314 TATAAGTGACAGCCCTCCCCT

6 Tal9d & XOO1132_MAFF 241 118 TAAATTCTCTCCAT

Small RNAs

7* XOCORF_0460 200 10 TCCCCCTCGCTTCCCTT

8 Tal9a & XOO1138_MAFF 185 21 TCCCTTCCCTAAACCCCACTT

Signal transmission

9 Tal7a/Tal8a 257 28 TATAAAGCGAGGCGACGAA

10 XOO1998_MAFF 255 28 TATAAAGCGAGGCGACGAACT

11 XOO2127_MAFF 142 31 TATATAAACGCACACAAGCGCT

Transcriptional regulation/DNA binding

12* PthXo6 112 31 TATAAAAGGCCCTCACCAACCCAT

13* PthXo7 446 30 TATAATCCCCAAATCCCCTCCTC

14 Tal9b 68 247 TCCAGTTCTCCTCCCCTGAGCTTCTCCC

15 XOO1136_MAFF 115 70 TCCGGCTACTCTCCCCCACGTAGCCGCC

16 Tal2a 82 256 TATGTGTACAAACATT

17 Tal9e/XOO2001_MAFF 53 2148 CGCAGCGCCCCCGCGCGGAGAAGCT

18 XOO2865_MAFF 355 267 TAGATATAGATAGATAGATAT

19 Tal5a 225 66 TAGCTCGCTTGGCCCCT

20 XOO1996_MAFF 898 46 TATCTAGCTAAATCTCCAT

Other

21 AvrXa10 112 51 TATATAAACACATAAAT

22 AvrXa10 117 31 TATATAAGCACATCAAT

23 Avrpth3 409 271 TACATACTCCACCGCGTA

24 Tal4 & XOO2129_MAFF 192 157 TAGGAAAAATGGTACTC

25 Tal7b/Tal8b 81 32 TATATACCTCGTTTCTCCAGG

26 Tal9d & XOO1132_MAFF 944 56 TAGATTCTCTCCCT

List of predicted targets in O. sativa. For each predicted target, we list the name of the TAL effector, the distance from the 39 end of the target site to the start codon, the
distance from the initial position of the target site to the transcription start site (TSS), and the sequence of the target site. Known target sites are marked with an asterisk.
doi:10.1371/journal.pcbi.1002962.t006
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among the TALgetter predictions is Os08g05910 (no. 26), a

peptide transporter.

The third group of target genes contains HEN1, a small RNA

pathway component that contributes to plant immune responses

[69]. HEN1 methylates the 39 terminal nucleotide of all classes of

small RNA (sRNA) duplexes thereby promoting sRNA stability

[70]. The HEN1 gene is a known target of XOCORF_0460

(Tal1c) and a previously predicted target of Tal9a [3]. In addition,

we identified HEN1 as a target of XOO1138_MAFF, a TAL

effector which differs from Tal9a in 5 of 20 RVDs. HEN1 yields

rank 1 among the TALgetter predictions for all three TAL

effectors and is up-regulated in 3 different microarray experiments

with Xanthomonas strains that express either Tal9a or XOO1138_-

MAFF. This demonstrates that TAL effectors interfere with the

sRNA homeostasis of the host cell. This example also demon-

strates that Xoo and Xoc TAL effectors can have common targets

and thus common infection strategies despite their different modes

of infection as vascular and leaf mesophyll pathogens, respectively.

The fourth group of targets is related to signal transmission. The

TAL effectors Tal7a/Tal8a and XOO1998_MAFF have over-

lapping predicted target sites in the promoter of Os08g07760 with

rank 4 and 1, respectively, and two different supporting

microarray experiments. This target gene encodes a putative

brassinosteroid-insensitive1 associated receptor kinase (BAK1)

ortholog from rice. BAK1 is a leucine-rich repeat receptor-like

kinase that is involved in both, brassinosteroid and pathogen signal

perception [71]. In addition, XOO2127_MAFF is predicted to

target and strongly induce Os01g50370, a MAPKKK protein

kinase. Elevated expression of BAK1 or MAP kinase pathway

components might interfere with signal transmission and cellular

responses.

The fifth and largest group of predicted targets contains genes

that are related to transcriptional regulation. AvrBs3 induces the

pepper basic helix-loop-helix regulator UPA20 to trigger plant cell

enlargement and a hypertrophy phenotype [46] demonstrating

that TAL effectors can control complex plant responses via

induction of regulatory genes. TALgetter predicts the known

targets of PthXo6 and PthXo7, the transcription factor TFX1 and

the transcription initiation factor TFIIAc subunit, at rank 2. In

addition, three TAL effectors are predicted to target different

genes encoding zinc finger proteins (targeted by Tal9b and

XOO1136_MAFF differing in 3 RVDs, and Tal2a) or a gene

encoding a helix-loop-helix domain containing protein (targeted

by Tal9e/XOO2001_MAFF). The predicted targets of

XOO2865_MAFF (Os07g48450), Tal5a (Os04g43560), and

XOO1996_MAFF (Os04g52810) encode no apical meristem

proteins (NAC proteins), a large family of plant transcriptional

regulators that are involved in diverse developmental and abiotic/

biotic stress response processes, including drought tolerance.

TALgetter also predicts NAC gene targets for Tal9d

(Os05g34830) and XOO2127_MAFF (Os05g10620) for which

we have described alternative targets above. Several NAC

encoding genes are induced after pathogen infection and some

repress defense-related gene expression, rendering them good

candidates for TAL effector virulence targets [72,73].

The sixth group of predicted targets comprises members with

diverse function. AvrXa10 is predicted to induce two target genes

(Os08g09040, Os08g09010) and XOO2127_MAFF one target

gene (Os08g13440) that encode cupin domain-containing pro-

teins. The cupin superfamily includes functionally diverse proteins

that can be involved in transcriptional regulation, seed storage,

enzymatic reactions to protect plants from oxidative stresses, and

pathogen infection [74]. For AvrPth3 TALgetter predicts a

monocopper oxidase (Os06g46500). It has been reported before

that Xanthomonas influences the defense of rice plants by

manipulating copper transport [75]. Tal4 and XOO2129_MAFF,

which differ in one RVD, are predicted to induce a gene encoding

a putative ATPase with unknown function.

We also use TALgetter to predict TAL effector target sites for

Xanthomonas axonopodis pv. citri (Xac 306) in Citrus sinensis. A selection

of predicted target sites of the four TAL effectors of Xac 306,

namely PthA1, PthA2, PthA3, and PthA4, is presented in Tables 7

and 8, while the complete list of predicted target sites is available

as supplementary Table S3. The predicted target of PthA1 is a late

embryogenesis-abundant (LEA) protein (orange1.1g027210m).

This family of proteins is often related to drought [76]. However,

members of this family have also been reported to be metal-

binding [77], which might indicate a role in copper transport [75].

For PthA2, TALgetter predicts a target gene from the Tetra-

tricopeptide repeat (TPR)-like superfamily. Interestingly, it has

been reported that PthA2 and PthA3 interact with TPX, which

contains a TPR domain as well and is related to protein folding

and activation, in Citrus [78]. Hence, PthA2 might play a role in

supplying such an interactor to PthA2 and PthA3. The predicted

target of PthA3 is a RAN GTPase, which might play a role in

Table 7. Predicted targets in C. sinensis.

No. TAL effector Locus Description Rank log-fold change

1 PthA1 orange1.1g027210m LEA hydroxyproline-rich glycoprotein 10 2.2

2 PthA2 orange1.1g015673m Tetratricopeptide repeat (TPR)-like superfamily 17 1.4

3 PthA3 orange1.1g027607m RAN GTPase 3 10 1.4

4 PthA4 orange1.1g026556m LOB domain-containing 1 1 5.7

List of predicted targets in C. sinensis. For each predicted target, we list the name of the TAL effector, the locus ID and the description of the targeted gene, the rank
among the predictions of TALgetter for the specific TAL effector, and the corresponding log-fold change observed in the microarray experiment.
doi:10.1371/journal.pcbi.1002962.t007

Table 8. Predicted targets in C. sinensis (2).

No. TAL effector

Distance from start

codon Target site sequence

1 PthA1 110 TATATACACACACACCCT

2 PthA2 103 TATACACTTATTTTAAT

3 PthA3 700 TCCATATCTTTAAAACC

4 PthA4 93 TATAAACCCCTTTTGCCTT

List of predicted targets in C. sinensis. For each predicted target, we list the
name of the TAL effector, the distance from the 39 end of the target site to the
start codon, and the sequence of the target site.
doi:10.1371/journal.pcbi.1002962.t008
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signal transduction. A LOB domain-containing protein (oran-

ge1.1g026556m) is the best target predicted by TALgetter for

PthA4. According to gene expression data, this gene is highly up-

regulated and achieves a log-fold change of 5.7. For these two

reasons, we consider this the most promising candidate of the four

Xac 306 TAL effectors. LOB domain containing proteins have

been shown to act as transcription factors [79].

Predicted target sites can be functional
We aim to experimentally test, if the target sites predicted by

TALgetter are valid targets for the corresponding TAL effector.

For this, we analyzed the TAL effector AvrXa10, for which the

target specificity has been experimentally verified [2], but targets

have been unknown, so far. Seven putative target rice genes are

both, in the top 100 TALgetter predictions and up-regulated in

gene expression studies (cf. Tables 5 and 6, supplementary Table

S2). Four of these target sites with predictions ranking at position

6, 38, 41, and 98, respectively, are cloned upstream of a minimal

promoter and a promoterless reporter gene in a reporter vector

and tested for gene activation in a transient reporter assay in planta

(cf. [2], details in supplementary Text S1), and we present the

results of this experiment in Figure 9. Three of the four predicted

target sites trigger an AvrXa10-dependent transcriptional activa-

tion. Both cupin domain-containing genes which we propose as

interesting targets for AvrXa10 (Tables 5 and 6) corresponding to

ranks 38 and 41, respectively, therefore contain functional

AvrXa10 target boxes. In contrast, the target site with rank 98

has more deviations to the optimal AvrXa10 target site than the

other three targets, and this reporter is accordingly not expressed

by AvrXa10. Our experimental approach demonstrates that

TALgetter can indeed predict functional target sites and that the

prediction rank gives an indication for the ability to be recognized

by a TAL effector.

Conclusions
In this paper, we present TALgetter, a new tool for the

prediction of TAL effector target sites. TALgetter uses a local

mixture model that models binding specificity and importance of

RVDs independently. In contrast to previous approaches, the

parameters of this model are estimated from training data and,

hence, allow for an easy adaptation to new validated target sites.

We demonstrate that TALgetter is able to identify known TAL

effector target sites in rice and we show that TALgetter predicts a

greater number of TAL effector targets that are consistent with up-

regulation after Xanthomonas infection than Target Finder in a

benchmark study using public and in-house gene expression data.

In the benchmark study, a substantial fraction of target sites is

uniquely predicted by TALgetter and, hence, these potential

virulence targets would have been missed using previous

approaches.

Scrutinizing the binding specificities learned by TALgetter, we

find that for many RVDs, binding specificities are estimated in

accordance to the literature. In addition, we observe gradually

decreasing binding specificities for some RVDs, which have also

been reported by recent experimental studies. Regarding the

concept of RVD importance, we find substantially different

parameters for the individual RVDs, which gives indication that

different RVDs indeed contribute differently to transcriptional

activation by TAL effectors.

In subsequent studies using target sites predicted by TALgetter,

we discover a strong positional preference of target sites towards

the transcription start site. Most true positive target sites are

located within a window from 300 bp upstream to 200 bp

downstream the TSS. We demonstrate that exploiting this

positional preference for predicting TAL effector target sites

further improves the overall prediction performance of TALgetter.

This finding is of general value for the computational prediction of

TAL effector target sites, since it may also help to reduce the

number of false-positive predictions of other approaches.

We also study the relationship of TAL effector target sites to

core promoter elements. We show that a considerable number of

target sites overlaps with the TATA-box, which indicates that

TAL effector binding to the TATA-box – and possibly substituting

the TATA binding protein – might constitute one mode of

transcriptional activation by TAL effectors. These two findings,

positional preference and binding to the TATA-box, reveal new

insights into the biology of TAL effector target sites that may aid

the understanding of transcriptional activation by TAL effectors.

For models to explain this observation, see supplementary Figure

S7.

Figure 9. Recognition of predicted target sites by AvrXa10. (A)
RVDs of the TAL effector AvrXa10 and predicted target sites. The
optimal box is deduced from the known RVD specificites, while box 6,
box 38, box 41, and box 98 are TALgetter AvrXa10 target predictions
from rice promoters. Mismatches and non-optimal RVD-base pair
combinations are shaded in light and dark grey, respectively. (B)
AvrXa10 and Hax3 target boxes are cloned upstream of the minimal
pBs4 promoter and a promoterless uidA reporter gene. The artificial TAL
effector ArtBs4 targets the pBs4 promoter and is used as control for
reporter construct integrity. (C) Specific recognition of target boxes.
Reporter constructs are codelivered via A. tumefaciens into N.
benthamiana with (+) and without (2) constructs producing TAL
effectors, respectively, and GUS reporter activity was determined two
days post inoculation. Error bars indicate standard deviation (n~3
samples). 4-MU, 4-methyl-umbelliferone. Leaf disks are stained with X-
Gluc (5-bromo-4-chloro-3-indolyl-b-D-glucuronide). A blue color indi-
cates reporter gene activity.
doi:10.1371/journal.pcbi.1002962.g009
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Against this background, we discuss predictions of TALgetter in

Oryza sativa (rice) and Citrus sinensis (sweet orange). Besides several

known target sites, TALgetter also predicts promising targets for

many TAL effectors with currently unknown targets. We

experimentally demonstrate that TALgetter predicts target sites

that are functional in planta.

We make TALgetter available as a web-application at http://

galaxy.informatik.uni-halle.de, which can be used without regis-

tration. For confidential analyses, this web-application can also be

installed in a local Galaxy server. At http://jstacs.de/index.php/

TALgetter, we additionally provide a command line program,

which can be easily scripted. Web-application and command line

program allow for estimating new model parameters from custom

training data to account for the rapid emergence of new TAL

effector target sites. Since TALgetter is implemented in the open-

source Java library Jstacs, it can be easily extended or modified.

Supporting Information

Dataset S1 Training data. Input sequences in annotated

FastA-format used to train TALgetter. The annotation of each

DNA sequence contains the RVD sequence of the corresponding

TAL effector and the weight of the input sequence used in the

training.

(TXT)

Figure S1 Comparison of TALgetter to Target Finder
with a T (Target Finder T), or T or C (Target Finder T/
C) at position 0 on public gene expression data. We

consider as performance measure the number of predicted targets

that are supported by up-regulation according to gene expression

data after Xanthomonas infection using a log fold-change of 0:5.

Performance is measured for different rank cutoffs (Top 10, 20, 50,

and 100 predictions) on the predictions for each TAL effector.

(TIF)

Figure S2 Summary of the evaluations presented in
Figure S1. For each rank cutoff (10, 20, 50, 100), we count the

number of data sets where a prediction program outperforms the

other (bars colored identical to program), or both score equally

well (bars colored gray).

(TIF)

Figure S3 Venn diagrams of the predictions of the three
programs using a log fold-change of 1 and a rank cutoff
of 100.

(TIF)

Figure S4 Comparison of TALgetter with binding
specificities depending on the individual RVD (dark
green) or on amino acid 13 (light green). Binding

specificities and importances of these models are visualized in

Figure 5 and 6, respectively. We consider as performance measure

the number of predicted targets that are supported by up-

regulation according to gene expression data after Xanthomonas
infection using a log fold-change of 1. Performance is measured for

different rank cutoffs (Top 10, 20, 50, and 100 predictions) on the

predictions for each TAL effector.

(TIF)

Figure S5 Positional preference of TAL effector target
sites in core promoter element-less upstream sequences
relative to the start codon (left) and the transcription
start site (TSS, right). The estimated density of positions from

the positive set is plotted as a green line, while the density of the

negatives is plotted in red. The whiskers indicate the bandwith of

the box kernel used to smooth the curves in a kernel density

estimation. The green points at the bottom of the plots represent

the distribution of positions from the positive set along the x-axis,

where the points are distributed randomly in y-direction to make

individual points distinguishable.

(TIF)

Figure S6 Comparison of TALgetter scanning different
types of upstream regions. i) 1 kb upstream of the start codon,

ii) 300 bp upstream of the start codon, and iii) in a region from

300 bp upstream to 200 bp downstream of the transcription start

site. We consider as performance measure the number of predicted

targets that are supported by up-regulation according to gene

expression data after Xanthomonas infection using a log fold-change

of 1. Performance is measured for different rank cutoffs (Top 10, 20,

50, and 100 predictions) on the predictions for each TAL effector.

(TIF)

Figure S7 Models for promoter site preference of TAL
effectors. Natural TAL effector target sites are enriched between

2300 and +200 around the natural transcriptional start site. TAL

effectors can initiate transcription at TATA box-containing and

TATA box-less genes. Often transcriptional initiation starts 40–

60 bp following the TAL effector binding site, but the underlying

mechanism is unclear. Four models are presented to explain the

apparent target site preference of TAL effectors. Combinations of

models are possible. (I) The open chromatin model reflects that the

access of TAL effectors to DNAmight be blocked by other proteins.

Promoter regions are often less compacted and open areas are

typically targeted by transcription factors. (II) The cooperative model
suggests that TAL effectors execute transcriptional initiation via

other factors, some of which might bind to distinct promoter

elements. Effective transcriptional initiation thus requires that the

TAL effector targets promoter regions that are in an appropriate

distance to these promoter elements. (III) The correct gene product model
emphasizes that natural TAL effectors have likely been selected to

upregulate production of functional proteins. This requires that the

TAL effector-dependent mRNA allows translational initation at a

suitable start codon (e.g. the original). Too early or too late mRNA

initiation can lead to use of alternative and potentially out-of-frame

ATGs and thereby non-functional products. (IV) The safe haven model
describes that TAL effectors target DNA regions that are conserved.

Some natural TAL effectors have been selected to function as

efficient virulence factors which results in selective pressure for the

plant to enrich mutations that block TAL effector function.

Conserved promoter elements are less likely to change, because

mutations also have a deleterious effect on normal gene function.

Solid line: DNA; open arrow: open reading frame of a target gene;

ATG: original start codon; (ATG): sequences in untranslated

regions that can encode for a non-natural start codon if this region is

transcribed; +1: natural transcriptional start site.

(TIF)

Table S1 Tabular overview of training data. A list of all

pairs of RVD sequence and target sequence used for training the

TALgetter model. Includes the name of the TAL effector, the name

of the target site (if applicable), and GUS activity (if applicable).

(XLS)

Table S2 Predictions for O. sativa. List of all target sites

predicted by TALgetter for a rank cutoff of 100 that yield a log-fold

change greater than 1 in at least one O. sativamicroarray experiment.

(XLS)

Table S3 Predictions for C. sinensis. List of all target sites
predicted by TALgetter for a rank cutoff of 100 that yield a log-

fold change greater than 1 in the C. sinensis microarray experiment.

(XLS)
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Text S1 Supplementary information on priors, param-
eters, and TAL effectors. In this file, we explain the prior on

the parameters of the statistical model used by TALgetter, define

the hyper-parameters of this prior, and list the estimated

parameters. In addition, we give the RVD sequences of all TAL

effectors used in the studies, and we list the TAL effectors

expressed by the Xanthomonas strains used in the O. sativa

experiments.

(PDF)
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