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Abstract !i
In developing mathematical models of systems from a given input-output i

I.

data sequence, the choice of the sampling interval and the selection of the I_

order of the model in time-series analysis pose difficult problems. Band- [_

limited (up to i5 Hz) random torque perturbations were applied to the human I

f,
ankle joint. The applied torque input, the angular rotation output, and the

electromyographic activity using surface electrodes from the extensor and flexor

muscles of the ankle joint were recorded. Autoregressive moving average models

were developed. A parameter constraining technique is applied to develop more

reliable models. It is sho_ that the asymptotic behavior of the system must

be taken into account during parameter optimization to develop predictive models.

INTRODUCTION

In a series of previous papers (Agarwal and Gottlieb, 1977 a,b; Gottlieb

and Agarwal, 1978; Gottlieb, Agarwal, and Penn, 1978) we have attemped to

describe quantitatively the neuromuscluar system dynamics to applied sinusoidal

and band-limited gaussian torque perturbations. In these studies, the compliance

of the joint was calculated using Fourier series analysis for sinusoidal and

power spectral density methods for random perturbations. Although linear

. analysis methods were used, the system is known to be nonlinear and the parameter

= values such as the joint viscous and stiffness coefficients are functions of

the level of neuromusclar activity,

The purpose of the present paper is to apply time series analysis methods

-361- _,.$ !.'vr_rr: ...... ,,,., • ....

1982005792-358



r

to study the input-output behavior of the neuromuscular system. The time series

method is very parsimonious in the use of parameters to represent the model

structure. Normalized residual criterion (NRC) will be used to estimate the

model order (For details of this method see Suen and Liu, 1977; Osafo-Charles

et. al., 1980).

Our previous analysis was limited to analysls of the angular rotation data

and calculation of Joint compliance. The electromyographic (EMG) data was not

analysed due to inherent difficulties in representing this output by linear

transfer functions. The time series approach allows nonlinear representations

as long as the model is linear in parameter space.

Dufresne, Soechting and Terzuolo (1978) used pseudo-random torque pulses

to study the human forearm response. They developed a mode] of the EMG in

terms of the lime position and its derivatives in the fo]lowing form:

•" (1)e_IG(t) = A O(t - d) + B _(t - d) + C e(t - d)

where A, B, and C are constant parameters and d is the time delay. They

found that the motor output depends primarily on the angular velocity of the

joint. Tile time delay was found to be about 47 msec.

In a subsquent study, Dufresne, Soechtlng, and Terzuolo (1979) used

different time delay parameters for position and its two derivatives. The

best estimates for the time delays were found to be 86 msec for position, 25 mse¢

for velocity, and 45 msec for acceleration. The physiological processes

associated with these varying delays are not clear. Soechting and Dufresne

(1980) found that the linear model given in equation (I) predicted 80% of the

EMC response.

Our analysis of the EMG using time series shows that the autoregressive

terms of the EMG are important and cannot be ignored as was done in the Dufresne

et. al (1978) model.
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METHODS

These experiments were done using normal human subjects. A subject sat

in a chair with the right foot strapped to a footplate which could rotate about

a horizontal, dorsal-plantar axis through the medial malleolus. The plate could _

be rotated by a DC torque motor. A band-limited gaussian ( 0-15 Hz ) signal was

prerecorded from a noise generator. These time-varying signals were superimposed

on a biasing mean motor torque level. The subject was instructed to try to

maintain a constant mean force against the bias torque of the motor so that the

ankle joint movement was nearly symmetrical with respect to the reference angle.

The input was applied for 30 sec or more and the data continuously recorded on

a digital tape.

The torque was measured hy a strain gauge bridge on the side arms of the

footplate. Angular rotation was measured by a continuous capacitive transducer.

The EMGs were recorded from disc surface electrodes taped over the bellies of

the soleus (SM) and the anterior tibial (TA) muscles. These were amplified

full-wave rectified and passed through an averaging filter (i0 msec averaging

time) b_fore recording. A computer generated the motor drive voltage at

a conversion rate of 250/s and digitized data on four input channels. The angle

and the torque signals were sampled at a rate of 250/s and filtered EMGs at

d rate of 500/s. The data analysis was done off-line using the Minitab 2

statistical software package on an IBM 370 computer. "'
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The Normalized Residual Criterion ,

Time-serles analysis can be extended to obtain discrete linear transfer

functions of systems having an input x(t) and output y(t). By x(t) and y(t) we

mean pairs of observations that are available at equispaced intervals of time. /

The behavior of the dynamic system can be adequately represented by the present

and past responses and the current and past inputs of the systems. We denote this

process as transfer function (TF) models (n,m) and write its equation as

y(t) = aO + alY(t - 1) _ "'. + anY(t - n) + 80x(t)+...+fl x(t-n)_v(t)
n (2)

In (2) the parameters to be estimated are a0,...,Sn, 80 ....,Bm, n, and

m. The time series v(t) is a random term measuring the difference between the

response y(t) and the variables used to expalin the time-series data. The

parameter a0 measures the mean output.

Equation (2) reduces to an autoregressive model (AR(n)) if x(t) is omitted

from the model, and reduces to a moving average model (}_(m)) if lags of y are

omitted. The following assumptions will be made concerning _(t) for a given

ouput time sequence y(t), t = [O,T],

I) El_(t)] = 0

2

2) E[,,(i),(j)] = ov61j (3)

where

{_ for i=j
_ij = for i_j "_

3) T_'n.

rrom (2), - n

v(t) * y(t)-aO- Eaty(t - i) -E _jx(t- j),

t=l j-O

Define t - I, 2, "'.,T-n. (4)

1-n T-.

. ;jvj; and -llYII (5)

t-I t'l
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Note that in the discussion below V and Y are vectors such that

v(1) y(1)

(2) y()

V= Y=

v (T-n) y (T-n) (6)

Squaring (4) and normalizing by the total sum of squares, we have

= - - _ = E(n,m, (7)
IIYII 2 IIYII 2

and therefore

Since y(t), the data series, is deterministic, (8) can be rewritten as

From (6) we have

_:hich by assumption 2) in (3) reduces to

Substitution of (11) in (9) we have

(T- n) 7_, - • (12)
L J I!YIi 2

and by assumption 3), (12) becomes

$ E _(n,m, T) : ToC (13)
lIYll_

The quantity _(n,m,T} depends cn n, m, and T and is proportlonal to the

normalized variance of the regression for a given n and m. If this ratio is

mininized over n and m, then the data fit as measured by the correlation coeffi-

cient p will be maximized. Note that
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_= [1- ;iv];2]if2ii_i12 (m4_
or

where T, being a constant for the data, is omitted in the optimization procedure,

and _(n,m) is the minimum value for c(n,m). This optimization technique is the

so called the Normalized Residual Criterion.
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RESULTS

The mathematical modeling problem was considered in two separate parts.

For the first model the applied torque is the input and the resulting angular

rotation of the joint is the output of the system. For the second model, the

angular rotation (and its derivatives) is considered as the input to the

system and the resulting stretch reflex electromyographic activity is consi-

dered as the output. It should be emphasized that the angular rotation is

the net result of two torque inputs applied at the joint; one by the external

motor torque and the other muscle forces produced by the stretch reflex mech-

anism. These mechanisms are also responsible for a signi¢icant contribution

to the joint viscous and elastic properties. Figure I shows a sample of the

data at 4 msec sampling interval. The velocity was obtained by digital

differentiation.

Angle-Torque Model

Although the data was recorded for 30 seconds at each input (Agarwal and

Gottlieb, 1977b), this method does not require such long data records which

w_uld also use too much computer time. The time series analysis was done using

only two-seconds of the data record. (The first two-seconds of the data were not

used to a11ow the turn-on transients to die out).

The values of [(n,m'Pwere computed for a given data record and then plotted

against different values of n (see Figure 2). T;le data sampling interval in

this case is 4 msec. Thi_ analysis clearly indicates that n = 2 and m • 0 is

adequate to model this data. The same data was analyzed again using the sampling

intervals of 12, 20, 40, and 60 msec. Figure 3 shows the c(n,m) values for the

sampling interval of 20 msec. Note that the minimum value ol the normalized

residual is about 60 times of that in the first case. For 40 and 60 msec sampling

c(n,m) did not reach as}_ptotic values even for model order of (8,8). The norm-

I alized resldual_ at 12 and 20 msec sampling implied a model order of (3.1).
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Figure 4 shows the actual angular rotation data (2 to 4 sec interval used

in this analysis ), the regression fit and the predicted output using 4 msec

sampling and model order of (3,!). The regression fit is obtained by using the

equation

• 0(t) = a 0 + a I 0(t - 1) + a 2 0(t - 2) + a 3 0(t - 3) + 80T(t) + 81_(t - '"

(16)

The error between the actual data and the regression fit is nearly zero.

The correlattop coefficient is p • 0.999. However, when this mode, _ sed to

predict the output using the first three data output values as the inxtial con-

ditions, the predicted output is a poor approximation of the actual data (see

Figure 4). Figure 5 shows the observed angle and the predicted model values for

model ordtrs of (3,1), (7,1), (9,1), and (14,1). Even the fourteenth order

model is not able to adequately reproduce the data sequence. These models are

not able to capture the steady state (or long term) behavior of the system.

Osafo-Charles, et al., (1980) showed ti_at to develor ke_ter predictive models,

the TF(n,m) models must be constrained to incorporate the steady state response

of the system.

Constrained Model

Consider the estimated model given by equation (16). Under conditions

of equllibrlum

o(t) - o(t - 1) = o(t - 2) - o(t - 3_ = 0e

,uld

T(t) ,, T(t - 1) - Te

_'here O and T are the steady state response and input respectlvelv. At physicale e "

and statistical equilibrium, with 0(t) = 0 e and T(t) = Te, equaition (16) became

_e = al 0e + a2 0e + a3 0e + _0 Te + dl Tc (17)

or

Oe t_0 "_ t31
• --_. g (18)

T e 1 - a 1- a 2 - a3
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where (18) expres:;es the steady state gain in terms of the parameters of the model.

The value of g was approximated by the slope of the curve of torque vs. angular

rotation in the relaxed ankle during slnusoldal oscillatlon at 0.i H (Gottlleb
z

and Agar_a!, 1978).

• For 8e = g Te to be true, we must have

80 " 8(1 - al - a2 - a3)- 81 (19)

From equctlons (19) and (16), we get

+ a3 (t - 3) - g T(t

+ 61 _(t - i) - T (t_ (20)

Regression analysis is used again to estimate the parameters al, a2,

a3 and 61 for a given value of gain 8. 60 is then obtained using (19). Figure

6 shows the output angle and predicted model response for a constrained model

with gains of g - 6.5, 7.5, and 8.5. The gain value of 8.5 was considered to

provide the best fit in terms of the minimum estimated standard devlatlon of the

regression.

The transfer function for the unconstrained model is:

-l
H(z) - 0.00239 - 0.00024 z

-) -_ -3 (21)
1 - 2.678 z + 2.399 z - 0.7191 z

For the constrained model with a slope of 8.5, the transfer function is:

-1
tt(z) ," 0.00238 + 0.00017 z

; (22)
-1 -2 -3

. 1 - 2.731 z + 2.503 z - 0.7717 z
-tF

,e ,-

-y
Z
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EMG Model

Our efforts to model EHG as a function of either the angular rotation

or the velocity or a combination of both were not successful. As was noted I

by Dufresne et al. (1978), the velocity of rotation is the most significant

input due to splndle properties (Matthews, 1972), However only those

components of velocity which stretch the spindle contribute to the EHG of ,_

the stretched muscle. (The splndle is silent during shortening). Therefore, J!o
J

a new velocity slgnal represnetlng only the stretching velocities was

d_fined as:
, • J

ed (t) = 0 (t) if 0 _> 0 _j

• != O if 0 < 0 (23)

The normalized residual analysis indicated a model order of (4,1) using

soleus E,_IGas the ouput and 0d as the input signal. The predicted output of

the unconstrained model and its comparison with the actual EMG slgnal is

shown in Figure 7. Since the EMG signal is a full-wave rectified and filtered

fusing an averaging filter) slgnal, it has only negative values (because of

negative filter gain). The predicted value of EMG ks a poor approxi_Jtlon of

the data.

A const_ai,,ed model was developed u_ing a similar approach as outlined

earlier. Figure (8) sho_'s tle predicted EHG and the actual data at three

values _" the gl, tn parameter. The gain of -0.005 was considered to give the

most appropriate fit.

For the constrained model with a slope of -0.005, the transfer f'anction

is:
-1

H(z) = DIG - -.004164 + .00314 z (24)

_d 1 - 1.19 z-I + ,6685 z-: - .2947 z-3 + .02104 z"_
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CONCLUSIONS

The time series approach is a powerful and versatile technique in

developing time domain models from a given input-output data sequence. Norm-

alized residual criterion allows effective prediction of the model order.

Models developed in this manner may be satisfactory, but may not be good

predic*Ive models. It is recommended that constrained parameter modeling

which allows incorporating the steady-state behavior be used to obtain

better predictive models.
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