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Abstract. One of the most complex DNA processing in nature known
to us is carried out by ciliates during the sexual reproduction when their
micronuclear genome is transformed to the macronuclear genome. This
process of gene assembly is intriguing and captivating also from the com-
putational point of view. We investigate here three intramolecular molec-
ular operations (ld, hi, and dlad) postulated to accomplish gene assembly.
The formal models for these operations are formulated on three different
abstraction levels: MDS descriptors, legals strings and overlap graphs. In
general both legal strings and overlap graphs contain strings and graphs
that do not model any micronuclear gene. After a short survey of gene
assembly we study the problem of recognizing whether a general legal
string or a general overlap graph is a formalization of a micronuclear
gene.

“One of the oldest forms of life on Earth has been
revealed as a natural born computer programmer.”

BBC 10th September 2001

1 Introduction

Ciliates are complex single-cell organisms; around 8,000 species are known by to-
day, but it is generally believed that the actual number of species is much higher
than this. Ciliates are about two billion years old, and they live in almost every
environment containing water including oceans, lakes, ponds, soils, and rivers.
They are characterized by their cilia (Latin cilium, eyelash) – tiny hairs used
for moving around as well as for moving food (e.g., bacteria or algae) towards
mouth opening. Ciliates possess a unique feature of nuclear dualism: they have
two, functionally different, types of nucleus – the macronucleus, which provides
for the RNA transcripts needed for the cell to function, and the micronucleus,
which is mostly dormant – activated only during sexual reproduction.

In stichotrichs ciliates, that are considered in this paper, micronucleus and
macronucleus differ from each other drastically both on global and local levels.



A micronucleus has about 100 chromosomes; each of them containing very long,
hundreds of thousands base pairs (bp), DNA molecule. Micronuclear genes are
scattered along these molecules with long stretches of spacer DNA separating
them. On the other hand, the macronuclear genome consists of short chromo-
somes (on average about 2000 base pairs) with the shortest of these about 200
bps – shorter than any other known DNA molecule occurring in nature. As for
the local level, the micronuclear genes are not functional and each of them they
consists of segments of the macronuclear version of this gene (these segments
are called macronuclear destined segments or MDSs) separated by noncoding
segments of DNA (called internal eliminated segments or IESs).

During the sexual reproduction process a macronucleus develops from a mi-
cronucleus. This transformation is the most involved DNA processing known in
living cells. During the whole process of gene assembly about 100,000 IESs are
excised, and MDSs are ligated to form competent genes. One of the amazing
computational features of gene assembly is the fact that ciliates implement this
this process using one of the standard data structures of computer science –
linked lists.

Computational aspects of gene assembly were was first investigated by Landwe-
ber and Kari [10, 11]. The focus of their studies is the computational power (in
the sense of theoretical computer science) of molecular operations used in gene
assembly. A different model was proposed by Ehrenfeucht, Prescott and Rozen-
berg [9, 19, 20]. Their system of operations for gene assembly is based on three
molecular operations: ld, hi, and dlad (see [19]). It was proved by Ehrenfeucht,
Petre, Prescott and Rozenberg [7] that every micronuclear gene can be assembled
using the three postulated molecular operations. The major difference between
the two models for molecular operations is that the model of Landweber and
Kari is based on intermolecular operations while the other model is based on
intramolecular operations.

Three abstraction levels of formalizing the three molecular operations ld, hi
and dlad were considered in the literature: MDS descriptors, legal strings and
overlap graphs. While the MDS descriptors give a rather faithful description
of the micronuclear genes, the legal strings and the overlap graphs are more
general in nature, that is, there exist legal strings and overlap graphs that do
not correspond to any micronuclear gene. In this paper, after surveying the
basic notions and results for the operations of gene assembly, we shall study the
problem of recognizing when a general legal string, or a general overlap graph,
is a formalization of a micronuclear gene.

For problems and results concerning formal aspects of gene assembly we
refer to [4] (for characterizations of micronuclear MDS/IES patterns that can
be assembled using various subsets of the three molecular operations), [5] (for
general graph theoretic method for modelling and analysing gene assembly), and
[8] (for invariant properties of the assembly process). For background on DNA
molecules, we refer the reader to [12] and [13].



2 Legal strings and overlap graphs

Let Σ be a (finite or infinite) alphabet, and let Σ = {a | a ∈ Σ} be a copy of Σ
such that Σ ∩Σ = ∅. We also write

Σz = (Σ ∪Σ)∗

for the set of all strings over Σ ∪Σ. Each v ∈ Σz is a signed string over Σ. The
signing a 7→ a can be extended as follows. For each a ∈ Σ, let a = a, and for a
nonempty signed string u = a1a2 . . . an ∈ Σz, where ai ∈ Σ ∪ Σ for each i, let
the inversion of u be u = anan−1 . . . a1 ∈ Σz. Let also uR = anan−1 . . . a1 and
uC = a1a2 . . . an be the reversal and the complementation of u, respectively. It
is then clear that u = (uR)C = (uC)R.

A letter a ∈ Σ ∪ Σ occurs in v, if either a or a is a substring of v. Let
dom(v) = {a ∈ Σ | a occurs in v} be the domain of v.

Let Σ and Γ be two alphabets. A function τ : Σz → Γz is a morphism,
if τ(uv) = τ(u)τ(v) for all u, v ∈ Σz, and τ is a substitution, if, moreover,
τ(u) = τ(u) for all u, v ∈ Σz. Note that the images τ(a) for the letters a ∈ Σ
determine the substitution τ . Two strings u ∈ Σz and v ∈ Γz are isomorphic,
if τ(u) = v for an injective substitution τ : Σz → Γz such that τ(Σ) ⊆ Γ . Let
ξ be the morphism such that for all a ∈ Σ,

ξ(a) = a = ξ(a) .

A signed string v ∈ Σz is a signing of a string u ∈ Σ∗, if ξ(v) = u.

Example 1. The signed string u = 433545 ∈ {3, 4, 5}z
is isomorphic to v =

233424. The isomorphism τ is defined in this example by τ(4) = 2, τ(3) = 3 and
τ(5) = 4. Also, u is a signing of the string 433545. ut

Let v = a1a2 . . . an ∈ Σ∗. Then a string u ∈ Σ∗ is a permutation of v, if there
exists a permutation (i1 i2 . . . in) of {1, 2, . . . , n} such that u = ai1ai2 . . . ain

.
Moreover, a signing of a permutation of v is said to be a signed permutation
of v. A string v ∈ Σ∗ is a double occurrence string, if every letter a ∈ dom(v)
occurs exactly twice in v. A signing of a nonempty double occurrence string is
called a legal string. If a legal string u ∈ Σz contains one occurrence of a ∈ Σ
and one occurrence of a, then a is said to be positive in u; otherwise, a is negative
in u.

Example 2. In the legal string u = 24 3 2 5 3 4 5 letters 2 and 5 are positive while
3 and 4 are negative. The string w = 24 3 2 5 3 5 is not legal, since it has only
one occurrence of 4. ut

Let u = a1a2 . . . an ∈ Σz be a legal string over Σ, where ai ∈ Σ ∪ Σ for
each i. Then for each a ∈ dom(u), there are indices i and j with 1 ≤ i < j ≤ n
such that ξ(ai) = a = ξ(aj). The substring

u(a) = aiai+1 . . . aj



is called the a-interval of u. Two different letters a, b ∈ Σ are said to overlap
in u, if the a-interval and the b-interval of u overlap: if u(a) = ai1 . . . aj1 and
u(b) = ai2 . . . aj2 , then either i1 < i2 < j1 < j2 or i2 < i1 < j2 < j1. Moreover,
for each letter a, we denote by Ou(a) (O+

u (a), O−
u (a), resp.) the set of letters

(positive, negative, resp.) overlapping with a in u. For technical reasons, it is
convenient to include a in Ou(a): if a is positive in u, then a ∈ O+

u (a), and if a
is negative in u, then a ∈ O−

u (a).

Example 3. The 2-interval u(2) = 24 3 5 3 2 of the string u = 24 3 5 3 2 6 5 7 4 6 7
contains only one occurrence of 4 and 5, but two or no occurrences of 3, 6 and 7.
Therefore 2 overlaps with 4 and 5 but not with 3, 6 and 7, and so Ou(2) =
{2, 4, 5}, O+

u (2) = {2, 5} and O−
u (2) = {4}. Similarly,

u(3) = 35 3 and 3 overlaps with 5 ,

u(4) = 43 5 3 2 6 5 7 4 and 4 overlaps with 2, 6, 7 ,

u(5) = 53 2 6 5 and 5 overlaps with 2, 3, 6 ,

u(6) = 6 5 7 4 6 and 6 overlaps with 4, 5, 7 ,

u(7) = 74 6 7 and 7 overlaps with 4, 6 .

ut

For each letter a ∈ Σ, let a = {a, a}, and for each legal string v ∈ Σz, let
Pv = {a | a ∈ dom(v)}. Define the overlap graph γv = (Pv, E, σ) of v as a graph
on the set Pv of vertices together with the labelling σ of the vertices defined by

σ(a) =

{

+ , if a ∈ Σ is positive in v ,

− , if a ∈ Σ is negative in v ,

and

{a,b} ∈ E ⇐⇒ a and b overlap in v .

The label of a vertex x in an overlap graph is usually called the sign of x. Overlap
graphs of double occurrence strings are also known as circle graphs (see [1, 2]).

Example 4. The overlap graph of the legal string u of Example 3 is given in
Fig. 1, where the sign of each vertex is given as a superscript. ut

The mapping w 7→ γw of legal strings to overlap graphs is not injective: for
each legal string w = w1w2, we have

γw1w2
= γw2w1

and γw = γς(w) ,

where ς is any mapping that chooses an element ς(a) from a = {a, a} for each
a. In particular, all conjugates of a legal string w have the same overlap graph.
Also, the reversal wR and the complementation wC of a legal string w define the
same overlap graph as w does.
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Fig. 1. The overlap graph of u = 24 3 5 3 2 6 5 7 4 6 7

3 Gene assembly in ciliates

The genes in a micronuclear chromosome in ciliates consist of MDSs separated by
IESs. Moreover, some of the MDSs may have been inverted. From the viewpoint
of gene assembly, the micronuclear gene can be seen as a sequence of MDSs and
IESs forming the gene.

Example 5. The actin I gene in Sterkiella nova has the following MDS/IES mi-
cronuclear structure:

M3I1M4I2M6I3M5I4M7I5M2I7M1I8M8 . (1)

This structure is illustrated in Fig. 2, where each MDS is drawn as a rectangle
and the interspacing IESs are represented by lines. Note that the MDS M2 is
inverted. ut
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Fig. 2. The micronuclear version of the actin I gene in Sterkiella nova

In the process of gene assembly each micronuclear gene is translated into a
macronuclear gene by excising all IESs and by splicing the MDSs in the orthodox
order M1,M2, . . . ,Mκ (see, [13, 14, 18]). Each MDS Mi has the form

Mi = (πi, µi, πi+1) , where π1 =
b

b
, πi =

pi

pi

(for 1 < i < κ), and πκ+1 =
e
e
.

Here πi, µi and πi+1 correspond to double stranded molecules; πi and πi+1 are
the (incoming and outgoing) pointers and µi is the body of the MDS Mi. The
markers b and e (and their inversions b and e) designate the locations where the
macronuclear DNA gene is to be excised. In the final gene in the macronucleus,
the MDSs M1,M2, . . . ,Mκ are spliced together by “gluing” Mj and Mj+1 on
the common pointer πj+1 for each j.

We now describe the operations ld, hi and dlad introduced in [9, 19].



1. The operation (loop, direct repeat)-excision, or ld, for short, is applied to
a molecule with a direct repeat pattern (– π – π –) of a pointer: either
the two occurrences of π are separated by one IES or they are at the two
opposite ends of the molecule. The molecule is folded into a loop in such a
way that the pointers are aligned and then, the operation proceeds as shown
in Fig. 3. The ld operation yields two molecules: a linear and a circular one.
The circular molecule either contains the whole gene or it contains one IES
only.

(a) (b)

(c) (d)

Fig. 3. The ld operation

2. The operation (hairpin, inverted repeat)-excision/reinsertion, or hi, for short,
is applied to a molecule with an inverted repeat pattern (– π – π –) of a
pointer. The molecule is folded into a hairpin in such a way that the pointers
are aligned and the operation proceeds as in Fig. 4. The operation hi yields
only one molecule.

3. The operation (double loop, alternating direct repeat)-excision/reinsertion,
or dlad, for short, is applied to a molecule with an alternating direct repeat
pattern (– π – π′ – π – π′–) for two pointers π and π′. The molecule is folded
into a double loop in such a way that the pointers π and the pointers π′ are
aligned and then the operation proceeds as in Fig. 5. The operation dlad
yields one molecule.

4 MDS descriptors

The process of gene assembly can be seen as a process of assembling MDSs
through splicing so that finally the macronuclear gene is obtained (recall that
the macronuclear gene is obtained by gluing together, on common pointers, the
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Fig. 4. The operation hi

(a) (b)

(c) (d)

Fig. 5. The operation dlad

MDSs arranged in the orthodox order M1,M2, . . . ,Mκ). Therefore the struc-
tural information about the micronuclear gene or an intermediate precursor of a
macronuclear gene can be given by the sequence of MDSs of the gene. Thus one
can represent a macronuclear gene, as well as its micronuclear or an intermediate
precursor, by its sequence of MDSs only.

Example 6. The representation of the actin I gene in Sterkiella nova from Exam-
ple 5 has the following simplified representation: α = M3M4M6M5M7M2M1M8

(all the IESs were removed). From the point of view of our considerations has
the same information as the structure in (1). ut

We shall use the alphabets Θκ = {Mi,j | 1 ≤ i ≤ j ≤ κ} to denote the MDSs
for all κ ≥ 1. Also, we let

Θ =
⋃

κ≥1

Θκ .

The signed strings in Θz are (MDS ) arrangements. Elements Mi,i (that denote
micronuclear MDSs) are called elementary MDSs, and they are often written



simply as Mi. Letters Mi,j with j > i denote composite MDSs formed during
the assembly process by splicing the MDSs Mi,Mi+1, . . . ,Mj .

We say that an arrangement α ∈ Θκ
z is orthodox, if it is of the form

α = M1,i2−1Mi2,i3−1 . . .Min,κ . (2)

Note that an orthodox arrangement does not contain any inverted MDSs. A
signed permutation of an orthodox arrangement (M1M2 . . .Mκ, resp.) is a real-
istic arrangement (micronuclear arrangement, resp.) of size κ.

Each orthodox arrangement α such as (2) can be mapped onto the orthodox
arrangement M1M2 . . .Min

by mapping Mir,ir+1−1 to Mr (with 1 = i1). Hence
every realistic arrangement is an image of a micronuclear arrangement by such
a mapping.

Example 7. The arrangementM1,1M2,5M6,9 is orthodox. It is not a micronuclear
arrangement, since it contains composite MDSs M2,5 and M6,9. ut

In an assembled gene no pointers are present, because the gene has no IESs.
On the other hand, the micronuclear form of a gene has (possibly many) pointers.
Thus the gene assembly process can be analysed by

1. representing the micronuclear and each of the intermediate genes by the
pattern of pointers present in this gene, and then

2. representing the process by a sequence of such patterns, where each next
pattern results by the application of molecular operations to the previous
one.

Consequently, we can simplify the formal framework by denoting each MDS
by the ordered pair of its pointers and markers only, i.e., Mi,j = (πi, µ, πj) is
represented as (pi, pj), and its inversion M i,j = (πj , µ, πi) as (pj , pi) for all i ≤ j.

More formally, let Ψ = {b, e, b, e} denote the set of the markers (b stands for
“beginning”, and e for “end”). For κ ≥ 2, let

Πκ = ∆κ ∪∆κ, Πex,κ = Πκ ∪ Ψ where ∆κ = {2, . . . , κ} and ∆κ = {2, . . . , κ} .

Also, let ∆ = {2, 3, . . . } and Π = ∆ ∪ ∆. We do not use 1, since it represents
a begin marker in the encoding defined in a latter section. The letters in Π are
called pointers, and for each p ∈ Π, the pair p = {p, p} is the pointer set of
p (and of p). Whenever we deal with a specific gene (in any specific species)
the number of elementary MDSs in the micronuclear determines the index κ.
In order to avoid too involved formalism we shall assume that, unless explicitly
stated otherwise, the index κ is clear from the context. Let

Γκ = { (b, e), (e, b) } ∪ { (i, j), (j, i) | 2 ≤ i < j ≤ κ } ∪

∪ { (b, i), (i, b), (i, e), (e, i) | 2 ≤ i ≤ κ } .

A string over Γκ is called an MDS descriptor.



We define the morphism ψκ : (Θκ)
z → Γ ∗

κ as follows:

ψκ(M1,κ) = (b, e) and ψκ(M1,κ) = (e, b) ,

ψκ(M1,i) = (b, i+ 1) and ψκ(M1,i) = (i+ 1, b) (1 ≤ i < κ) ,

ψκ(Mi,κ) = (i, e) and ψκ(M i,κ) = (e, i) (1 < i ≤ κ) ,

ψκ(Mi,j) = (i, j + 1) and ψκ(M i,j) = (j + 1, i) (1 < i ≤ j < κ) .

The mapping ψκ is bijective, and therefore, for formal purposes, an MDS ar-
rangement α and its image MDS descriptor δ = ψκ(α) are equivalent – that is,
the structure of these two strings is the same. In particular, the mapping ψκ is
invertible: if δ = ψκ(α) then α = ψ−1

κ (δ) is well defined.

Example 8. For the realistic arrangement α = M3,5M9,11M1,2M12M6,8, we ob-
tain the MDS descriptor ψ12(α) = (3, 6)(12, 9)(3, b)(12, e)(9, 6). ut

Let δ = (x1, x2) . . . (x2n−1, x2n) and δ′ = (y1, y2) . . . (y2n−1, y2n) be two MDS
descriptors. They are isomorphic, if

(1) xi ∈ ∆ ⇐⇒ yi ∈ ∆ and xi ∈ Ψ =⇒ yi = xi ,
(2) ξ(xi) < ξ(xj) ⇐⇒ ξ(yi) < ξ(yj) for xi, xj /∈ Ψ .

Example 9. The MDS descriptors (4, 5)(8, 6)(b, 4) and (2, 3)(5, 4)(b, 2) satisfy the
above requirements, and thus they are isomorphic.

An MDS descriptor δ is said to be realistic, if δ is isomorphic with an MDS
descriptor ψκ(α) for some κ and a micronuclear arrangement α. The following
lemma is clear from the definition of the mapping ψ.

Lemma 1. An MDS descriptor δ is realistic if and only if δ = ψκ(α) for some
κ and a realistic MDS arrangement α of size κ.

Let δ = (x1, x2)(x3, x4) . . . (x2n−1, x2n) be a realistic MDS descriptor. Each
pointer p ∈ ∆ either does not occur in δ or it occurs exactly twice in δ. If there
are two occurrences, let these be xi, xj ∈ p = {p, p} for 1 ≤ i < j ≤ 2n. The
p-interval of δ is then defined to be the set

δ(p) = {xi, xi+1, . . . , xj} .

If xi = xj , then p is negative in δ; otherwise (i.e., if xi = xj) p is positive in δ.

5 The assembly operations

We now formalize the gene assembly operations through formal operations on
realistic MDS descriptors. Corresponding to the three molecular operations ld,
hi, and dlad, we have three operations ld, hi, and dlad on MDS descriptors.



1. For each p ∈ Πκ, the ld-rule for p is defined as follows:

ldp(δ1(q, p)(p, r)δ2) = δ1(q, r)δ2 (l1)

ldp((p, q)δ1(r, p)) = (r, q)δ1 (l2)

where q, r ∈ Πex,κ and δ1, δ2 ∈ (Γκ)∗.

The case (l1) is called a simple ld-rule, and it applies to two adjacent occur-
rences of p separated by one IES only. The case (l2) is called a boundary hi-rule,
and it applies to two occurrences of p at the two ends of the molecule. Both of
these cases are illustrated in Fig. 6, where rectangles denote MDSs with their
pointers indicated, the zigzag line denotes a segment of a molecule that may
contain both MDSs and IESs; a simple straight line represents an IES.

q p p r
δ1 δ2

p q r p
δ1

Fig. 6. The MDS/IES structure to which ldp is applicable

2. For each p ∈ Πκ, the hi-rule for p is defined as follows:

hip(δ1(p, q)δ2(p, r)δ3) = δ1δ2(q, r)δ3 (h1)

hip(δ1(q, p)δ2(r, p)δ3) = δ1(q, r)δ2δ3 (h2)

where q, r ∈ Πex,κ and δi ∈ (Γκ)∗ for each i = 1, 2, 3.

Here one occurrence of p is the incoming pointer and the other occurrence is
the outgoing pointer. These cases are illustrated in Fig. 7.

p q p r
δ1 δ2 δ3

q p r p
δ1 δ2 δ3

Fig. 7. The MDS/IES structure to which hip is applicable



3. For each p, q ∈ Πκ, p 6= q, the dlad-rule for p and q is defined as follows:

dladp,q(δ1(p, r1)δ2(q, r2)δ3(r3, p)δ4(r4, q)δ5) = δ1δ4(r4, r2)δ3(r3, r1)δ2δ5 (4a)

dladp,q(δ1(p, r1)δ2(r2, q)δ3(r3, p)δ4(q, r4)δ5) = δ1δ4δ3(r3, r1)δ2(r2, r4)δ5 (4b)

dladp,q(δ1(r1, p)δ2(q, r2)δ3(p, r3)δ4(r4, q)δ5) = δ1(r1, r3)δ4(r4, r2)δ3δ2δ5 (4c)

dladp,q(δ1(r1, p)δ2(r2, q)δ3(p, r3)δ4(q, r4)δ5) = δ1(r1, r3)δ4δ3δ2(r2, r4)δ5 (4d)

dladp,q(δ1(p, r1)δ2(q, p)δ4(r4, q)δ5) = δ1δ4(r4, r1)δ2δ5 (3a)

dladp,q(δ1(p, q)δ3(r3, p)δ4(q, r4)δ5) = δ1δ4δ3(r3, r4)δ5 (3b)

dladp,q(δ1(r1, p)δ2(q, r2)δ3(p, q)δ5) = δ1(r1, r2)δ3δ2δ5 (3c)

where ri ∈ Πex,κ and δi ∈ (Γκ)∗ for each i.

In each of the above instances, the pointer p overlaps with the pointer q. The
cases (4a) – (4d) are illustrated in Fig. 8, and the ‘short’ cases (3a) – (3c) in
Fig. 9.

(d1) p r1 q r2 r3 p r4 q
δ1 δ2 δ3 δ4 δ5

(d2) p r1 r2 q r3 p q r4

δ1 δ2 δ3 δ4 δ5

(d3) r1 p q r2 p r3 r4 q
δ1 δ2 δ3 δ4 δ5

(d4) r1 p r2 q p r3 q r4

δ1 δ2 δ3 δ4 δ5

Fig. 8. The main MDS/IES structures to which dladp,q is applicable

The following lemma is clear by the form of the operations and the definition
of isomorphism of MDS descriptors.

Lemma 2. Let δ be a realistic MDS descriptor, p and q be pointers in δ, and
ϕ ∈ {ldp, hip, dladp,q}. If ϕ is applicable to δ, then also ϕ(δ) is realistic.

Let a composition ϕ = ϕk . . . ϕ1 of operations ϕi ∈ {ldp, hip, dladp,q | p, q ∈
Π} be applicable to an MDS descriptor δ. In this case, we also say that ϕ
is a reduction of δ. Moreover, ϕ is successful for δ, if either ϕ(δ) = (b, e) or
ϕ(δ) = (e, b).



(d5) p r1 q p r4 q
δ1 δ2 δ4 δ5

(d6) p q r3 q q r4

δ1 δ3 δ4 δ5

(d7) r1 p q r2 p q
δ1 δ2 δ3 δ5

Fig. 9. The special MDS/IES structures to which dladp,q is applicable

Example 10. Let δ = (4, 5)(2, b)(5, e)(4, 3)(3, 2). Now δ is a realistic MDS de-
scriptor, since δ = ψ(α) for the micronuclear arrangement α = M4M1M5M3M2.
The operations ld3, hi4, and dlad5,2 are applicable to δ:

ld3(δ) = (4, 5)(2, b)(5, e)(4, 2) ,

hi4(δ) = (e, 5)(b, 2)(5, 3)(3, 2) ,

dlad5,2(δ) = (4, e)(4, 3)(3, b) .

We also have that hi4 dlad5,2(δ) = (e, 3)(3, b) and ld3 hi4 dlad5,2(δ) = (e, b), and
therefore ld3 hi4 dlad5,2 is successful for δ. ut

A single application of the three operations ld, hi, and dlad shortens the MDS
descriptor. The following theorem was first proved in [6]. It shows that the set
of our three operations on MDS descriptors, ld, hi, and dlad, is universal, i.e.,
any realistic MDS descriptor δ has a successful reduction for it.

Theorem 1. Each realistic MDS descriptor δ has a successful reduction.

Proof. It is sufficient to prove that for every realistic MDS descriptor δ at least
one of the three operations is applicable to δ, since a realistic MDS descriptor
yields again a realistic MDS descriptor by any one of these operations.

Let then δ be such a descriptor, and assume that neither ld nor hi is applicable
for δ. Since hi is not applicable, all pointers in δ must be negative, and since ld

is not applicable, δ has no simple direct repeat pattern. Consequently, if p ∈ Π
occurs in δ, then the p-interval δ(p) must contain at least one other pointer.

Let p then be a pointer in δ such that the number of pointers within the p-
interval is minimal (no other pointer from δ has less pointers in its interval). Let
q be a pointer that has an occurrence within the p-interval. Since all pointers in
δ are negative, δ contains two occurrences of q. The other occurrence of q must
be outside the p-interval, as otherwise the minimality of p is contradicted. But
now either dladp,q or dladq,p is applicable to δ. ut



6 Realizable legal strings

The model of MDS descriptors was greatly simplified in [3] and [7] by considering
legal strings instead of MDS descriptors. In order to discuss the reduction of the
model of MDS descriptors to the model using legals strings, we need the following
definitions.

Let µ be the morphism that removes the parenthesis and the markers from
each MDS descriptor. To be more precise, let ν : (∆ex,κ)

z → ∆z be a sub-
stitution defined by ν(x) = Λ if x ∈ Ψ and ν(x) = x, otherwise. Then let
µ(x, y) = ν(x)ν(y) for all x, y ∈ Πex,κ. For the MDS arrangements, we define a

substitution %κ : (Θκ)
z → (∆κ)

z
by %κ = µψκ. In particular, for the elementary

MDSs, we have

%κ(M1) = 2, %κ(Mκ) = κ , %κ(Mi) = i i+ 1 for 2 < i < κ ,

and %κ(M i) = %κ(Mi) for 1 ≤ i ≤ κ.
The operations ld, hi, and dlad carry over to legal strings in simplified form.

Indeed, as seen from the definition given below instead of the 11 cases for the
MDS descriptors, we have only four cases for legal strings.

Let p, q ∈ Π.

1. The string operations corresponding to ldp are the following:

ldp(uppv) = uv and ldp(pup) = u .

2. The string operation corresponding to hip is the following:

hip(upwpv) = uwv .

3. The string operation corresponding to ldp,q is the following:

dladp,q(u1pv1qu2pv2qu3) = u1v2u3v1u3 .

For a more detailed discussion concerning the correspondence of the operations
for MDS descriptors and legal strings, we refer to [3, 6]

We say that a legal string u is realistic if there exists a realistic MDS de-
scriptor δ such that u = µ(δ), or equivalently u = %(α) for a signed permutation
of an orthodox MDS arrangement α (see Lemma 1).

Example 11. (1) The MDS arrangement α = M3M4M6M5M7M9M2M1M8 in
Example 6 gives the realistic legal string %(α) = 3 4 4 5 6 7 5 6 7 8 9 3 2 2 8 9.

(2) The string u = 23 4 3 2 4 is legal and dom(u) = ∆κ for κ = 4. However,
u is not realistic. (It is easy to see that u has no ‘realistic parsing’.) ut

A legal string u ∈ Σz is realizable, if u is isomorphic to a realistic legal
string, that is, if there exists an injective substitution τ : Σz → ∆z such that
τ(Σ) ⊆ ∆ and τ(u) is realistic.



Example 12. The legal string u = 54 3 2 5 2 4 3 ∈ (∆5)
z

is not realistic, since
4 3 2 can never be a substring of a realistic legal string. However, u is realizable:
the substitution τ is defined by τ(2) = 2, τ(3) = 5, τ(4) = 4, and τ(5) = 3, and
then τ(u) = 3 4 5 2 3 2 4 5. Now τ(u) = %(α) for the micronuclear arrangement
α = M3M5M1M2M4, and thus τ(u) is realistic.

The following example shows that there are legal strings that are not realiz-
able.

Example 13. The legal string u = 22 3 4 4 3 5 5 is not realizable. To see this,
assume to the contrary: let v be a realistic legal string and τ an isomorphism
such that u = τ(v). Since the string pp is never an image %(Mi) of any MDS Mi,
either one of the following cases (i) or (ii) holds.

(i) τ(2) = 2 and τ(5) = 5. Now also τ(3) = 3, since u begins with 2(23). This
yields a contradiction, since now 35 is a substring of v.

(ii) τ(2) = 5 and τ(5) = 2. Now, v should begin with 55, but 55 is never a
prefix of any realistic legal string (although 55 can be). ut

We relax now the conditions of realizability by considering realizable signings.
Let Σ be an alphabet. Recall that a signed string v over Σ is a signing of a string
u ∈ Σ∗, if ξ(v) = u, where ξ removes the bars from the string. Moreover, if v is
realizable, it is a realizable signing of u.

Example 14. The legal strings v1 = 23 2 4 3 5 4 5 and v2 = 2 3 2 4 3 5 4 5 are both
signings of u = 23 2 4 3 5 4 5. Note that v1 is realistic (v1 = %(M2M1M3M5M4)),
but u is not. Also, it is easy to see that the signing v2 of u is not realistic. ut

By definition every signing of a double occurrence string is legal. We shall
now study the problem which double occurrence strings have realizable signings.

For a double occurrence string w = a1a2 . . . a2κ, we define an edge-coloured
and vertex-labelled (multi)graph Aw on the set {1, 2, . . . , 2κ} of vertices as fol-
lows: the (undirected) edges e together with their colours c(e) are

eij = {i, j} and c(eij) = 1, if |i− j| = 1 ,

e′ij = {i, j} and c(e′ij) = 0, if ai = aj .

The vertex-labelling is defined by

`(i) = ai for i = 1, 2, . . . , 2κ .

Note that if both |i− j| = 1 and ai = aj , then there will be two edges between i
and j, one edge of each colour. A path e1e2 . . . ek in the graph Aw is said to be
alternating, if c(e2r+1) = 0 and c(e2(r+1)) = 1 for each r. An alternating path is
alternating hamiltonian, if it visits every vertex of the graph exactly once.

Each edge e = {y, z} of the graph Aw has two orientations: (y, z) and (z, y).
We also denote by

y
c(e)
−−→ z

the orientation (y, z) together with the colour of the edge. In a drawing of the
graph Aw, see Fig. 10, a solid line represents colour 1 and a dashed line colour
0. We also write the values `(x) of the vertices beneath them.



Example 15. Let w = 23 5 4 6 4 6 3 2 5 be a double occurrence string over ∆6.
Then the graph Aw is drawn in Fig. 10. The path

1
0
−→ 9

1
−→ 10

0
−→ 3

1
−→ 4

0
−→ 6

1
−→ 5

0
−→ 7

1
−→ 8

0
−→ 2

is an alternating hamiltonian path of Aw. ut
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Fig. 10. The graph Aw in Example 15

Theorem 2. A double occurrence string w has a realizable signing if and only
if the graph Aw has an alternating hamiltonian path.

Proof. (1) We show first by induction on the length of the strings that every
double occurrence string w that has a realizable signing w′ has an alternating
hamiltonian path that starts from the vertex %(M1) corresponding to the begin-
ning marker and ends in the vertex %(Mκ) corresponding to the end marker of
the realistic legal string τ(w′), where τ is an isomorphism.

Let w be a double occurrence string of length 2m over Σ, and assume that
w has a realizable signing w′ ∈ Σz. Consequently, there exists a substitution
τ : Σz → (∆m+1)

z
such that τ(w′) is realistic. Clearly, the original string w

and its image τ(w) under the isomorphism τ have the same graph, Aw = Aτ(w),
except for the labelling of the vertices. Hence, without loss of generality, we can
assume that w = τ(w). In particular, w is over ∆m+1, and w′ is a realistic string
(and a signing of w).

For each i ∈ ∆m+1, let xi1, xi2 ∈ {1, 2, . . . , 2m} be the vertices of Aw such
that `(xi1) = i = `(xi2) and xi1 < xi2.

Now w = w1(m + 1)w2(m + 1)w3 for some substrings w1, w2, w3 ∈ ∆∗
m.

The string v = w1w2w3 is a signing of the realistic string v′, which is obtained
from the signing w′ of w by removing the two occurrences of the letters from
{m+ 1,m+ 1}. By the induction hypothesis, v′ has an alternating hamiltonian
path from x2t to xmr, where t, r ∈ {1, 2}, x2t is the position of the beginning
marker %(M1) and xmr is the position of the end marker %(Mm) (of v′). Since w′

is realistic, the occurrence of this m = %(Mm) is a part of the substring m(m+1)
or (m+ 1)m in w′. It is now obvious that we have an alternating hamiltonian
path

x2t
0
−→ . . .

0
−→ xmr

1
−→ x(m+1)r′

0
−→ x(m+1)r′′



in Aw, where {r′, r′′} = {1, 2} and x(m+1)r′′ is the position of the end marker
m+ 1 = %(Mm+1) in w′. This proves the claim in one direction.

(2) In the other direction, suppose that w is a double occurrence string such
that the graph Aw does have an alternating hamiltonian path. Let the hamilto-
nian path be

x11
0
−→ x12

1
−→ . . .

1
−→ xi1

0
−→ xi2

1
−→ · · · → xm1

0
−→ xm2 ,

where again `(xi1) = `(xi2), for each i = 1, 2, . . . ,m, so that the edge {xi1, xi2}
has colour 0. Here {xi1, xi2 | i = 1, 2, . . . ,m} = {1, 2, . . . , 2m}. Define the
substitution τ by τ(`(xi1)) = i + 1, and then define the signing as follows: if
xi2 > x(i+1)1 (and so xi2 = x(i+1)1 + 1) in the edge {xi2, x(i+1)1} of colour 1,
then sign both τ(`(xi2)) and τ(`(x(i+1)1)); otherwise xi2 = x(i+1)1 − 1, and in
this case, τ(`(xi2)) and τ(`(x(i+1)1)) are left unsigned. By the construction, the
so obtained string is realistic, and the claim follows from this. ut

Example 16. We illustrate the previous theorem and its proof by continuing
Example 15. In Fig. 11 we have drawn the alternating hamiltonian path

1
0
−→ 9

1
−→ 10

0
−→ 3

1
−→ 4

0
−→ 6

1
−→ 5

0
−→ 7

1
−→ 8

0
−→ 2

of Aw. The labels beneath the vertices are now obtained by following the hamil-
tonian path as in the proof above. The signing given by the proof produces the
realistic legal string 2 6 3 4 5 4 5 6 2 3. ut
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Fig. 11. Alternating hamiltonian path of Example 16

From the proof of Theorem 2 we have the following procedure to determine
whether a given legal string is realizable. Let v be a legal string of length 2m
over an alphabet Σ. We consider the graph Av = Av′ . Let x be a vertex of Av.
Define an induced alternating path altv(x) of v from x as follows:

(1) Start with the edge x1
0
−→ x2, where x1 = x and `(x2) = `(x1). Then alt(w)

is the maximum path obtained by iterating the step (2):

(2) Suppose the alternating path x1
0
−→ x2

1
−→ . . .

1
−→ xi−1

0
−→ xi has been con-

structed so that the colour of the edge {xi−1, xi} is 0. If the label of xi is
signed in w, then the next edges are {xi, xi−1} (of colour 1) and {xi−1, xi+1}
(of colour 0), where `(xi+1) = `(xi).



Notice that after the vertex x is chosen, the induced alternating path altv(x)
is well defined, that is, in every step the next edge is uniquely determined.

The following result is a corollary to Theorem 2.

Theorem 3. Let v be a legal string. Then v is realizable if and only if there exists
a vertex x of Av such that the induced alternating path alt(v) is an alternating
hamiltonian path of Av.

7 Nonrealizable strings and graphs

The model of MDS descriptors and (realistic) legal strings can be further ab-
stracted by considering overlap graphs of legal strings. This line of research was
initiated in [3] and [7].

By Example 13, there are legal strings that are not realizable. We prove a
stronger result in this section: there exist overlap graphs that cannot be ‘realized’
by any micronuclear arrangement.

For the next two proofs we adopt the following notation: let A = {x1, x2, x3}
be an alphabet, and let [xi] = xi1xi2xi3xi0xi1xi2xi3.

Lemma 3. The cyclic conjugates of the double occurrence string

w′ = x10x20x30[x1][x2][x3]

do not have realizable signings.

Proof. We let the letters y and yi be variables, and let

[y] = y1y2y3y0y1y2y3 . (3)

Let u be a realizable double occurrence string such that either u = v1[y]v2 or
u = w2vw1, where [y] = w1w2. The specified substring [y] or the scattered cyclic
conjugate w2w1 of [y] in the above is called a [y]-block of u. By Theorem 2, there
exists an alternating hamiltonian path of the graph Au. Let H be any such path.

It is straightforward to show by case analysis that if the path H does not
start at a position inside the [y]-block, then H ends at a position inside the
[y]-block, and symmetrically, if H does not end at a position inside the [y]-block,
then H begins at a position inside the [y]-block. In Fig. 12 we have illustrated
one possibility to travel along the substring [y] in H for the case u = v1[y]v2.
(In the figure, the vertices of Au are simply represented by their labels.) There
the path H visits outside the string [y] between the last y3 and the next z = y0.
The path ends in y0 in the middle of [y].

Therefore H either starts or ends at a vertex corresponding to an occurrence
of a pointer in the [y]-block. It follows that any cyclic conjugate of a realizable
double occurrence string can contain at most two different blocks, a [y]-block and
a [y′]-block, of the form (3) such that these do not share letters. In particular,
the string w′ of the claim does not have conjugates with realizable signings. ut



y1 y1 y2 y2 y3 y3 z y0. . .

Fig. 12. A part of the path H

As we have seen the mapping w 7→ γw from the legal strings to the over-
lap graphs is not injective. Therefore Lemma 3 leaves unanswered the question
whether there are overlap graphs γw that are not ‘realizable’. In the following
theorem we answer this question by constructing an (unsigned) overlap graph
that is not realizable.

Theorem 4. There exists an overlap graph of a double occurrence string that
has no signing of the vertices such that the result is an overlap graph of a realistic
legal string.

Proof. Let w′ = x10x20x30[x1][x2][x3] be as stated in Lemma 4. The overlap
graph γ = γw′ of w′ is given in Fig. 13. We show now that this graph is different
from γw for all realizable double occurrence strings w.

x10 x20

x30

Fig. 13. The overlap graph from the proof of Theorem 4

Assume to the contrary that there exists a realizable double occurrence string
w such that γw = γ. In particular, w has the same pairs of overlapping letters
as w′. For each i, the vertices corresponding to xi1, xi2 and xi3 are adjacent to
each other in γ, and they have the same neighbourhood in the rest of γ (the
vertex corresponding to xi0). Hence, we can assume that they occur in w in the
given order: w = vi0xi1vi1xi2vi2xi3vi3xi1vi4xi2vi5xi3vi6 for some substrings vij

for each i.
Since the letters xj0, . . . , xj3 overlap with each other in w and they do not

overlap with xi1, xi2, xi3 for i 6= j, we conclude that all occurrences of xjk for
each 0 ≤ k ≤ 3 are either (a) in one substring vit for some 1 ≤ t ≤ 5, or (b)
they are all in vi0vi6. We show now that there are indices i and j such that
the case (a) holds. Indeed, there is an index i such that [xi] is not a substring



of w, since otherwise there would be three disjoint substrings in w of the form
(3), which is not possible by the proof of Lemma 3. Now if the occurrences of
xj0, xj1, xj2, xj3, for both indices j with j 6= i, are in vi0vi6, then an occurrence
of xi0 must also be in vi0vi6 (since xi0 overlaps with xj0), and therefore the
second occurrence of xi0 must be in vi3 (since xi0 overlaps with xi1, xi2 and xi3).
This means, however, that [xi] is a substring of w; a contradiction.

Moreover, exactly one occurrence of xi0 is in vit, since xi0 overlaps with xj0.
This occurrence must be in vj0vj6, since the other occurrence of xi0 is not in vit.

Now, by the overlapping properties of xj0, we have for m = j that

[xm]xi0xm0 or xm0xi0[xm] is scattered substring in vit. (4)

Since for the remaining index k /∈ {i, j}, xk0 overlaps with xj0, an occurrence
of xk0 lies in the interval of the letter xj0, and thus it is in vit. Similarly to the
above, we can show that (4) also holds for m = k.

By the above, xk0 does not occur in vjr for any 1 ≤ r ≤ 5, because otherwise
both occurrences of xi0 are in vjr. Therefore the index i is unique with respect
to the property (a), and then it follows that [xm] is a substring of vit for both
m with m 6= i. This implies that a conjugate of w has three disjoint substrings
of the form [y], which yields, by the proof of Lemma 3, a contradiction. ut

Example 17. The simplest form of the counter example discussed in the above
proof is the string 2 3 4 5 6 7 2 5 6 7 8 9 10 3 8 9 10 11 12 13 4 11 12 13 . ut
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