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Abstract 

Why has computational psychiatry yet to influence routine clinical practice? One reason may be that it has neglected 

context and temporal dynamics in the models of certain mental health problems. We develop three heuristics for 

estimating whether time and context are important to a mental health problem: Is it characterized  by a core 

neurobiological mechanism? Does it follow a straightforward natural trajectory? And is intentional mental content 

peripheral to the problem? For many problems the answers are no, suggesting that modeling time and context is  

critical. We review computational psychiatry advances toward this end, including modeling state variation, using 

domain-specific stimuli, and interpreting differences in context. We discuss complementary network and complex-

systems approaches. Novel methods and unification with adjacent fields may inspire a new generation of 

computational psychiatry.  

Key words: computational psychiatry; network approach; state versus trait; domain specificity; temporal dynamics; 

functional analysis 
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1 1. Introduction 

2 Computational psychiatry is a burgeoning research field that applies methods, formalisms, and theories from 

3 the computational cognitive neurosciences to mental health. The last decade has seen an explosion of research in 

4 both theory-based (formal accounts of mental health) and data-driven (predictive modeling using many variables) 

5 approaches. Attesting to the field’s promise, several studies have found that predictions of diagnostic categories or 

6 symptoms could be improved by including latent parameters estimated through computational models fit to brain or 

7 behavioral data (reviewed in Huys et al., 2021; Maia & Frank, 2011; Wang & Krystal, 2014). Here we focus on 

8 emerging challenges as computational psychiatry matures (Browning et al., 2020; Williams, 2016). How can the field 

9 help us understand how mental health problems differ from each other? What modeling strategies are needed for 

10 different kinds of problems? And what methods will be helpful for modeling temporal dynamics and the social and 

11 environmental contexts in which mental health problems emerge? 

12 The allure of computational psychiatry is that it is organized around theories such as reinforcement learning, 

13 dynamical systems, neural networks, Bayesian decision making, and sequential sampling. These theories span many 

14 fields, including mathematics, computer science, and computational cognitive neuroscience. Thus, unlike many 

15 psychological theories with shallow roots in basic science (Haslbeck et al., 2019a), computational psychiatry theories 

16 build from deep terrain, ranging from mathematical theories to biological sciences. Computational psychiatry offers 

17 principled techniques to link processes across levels of analysis (see Eronen, 2019). In particular, it provides distinct 

18 vantage points on neurocomputational functions from rational analysis of the problem being solved, to algorithmic 

19 details of specific solutions, to plausible biological implementations (Maia & Frank, 2011; Wang & Krystal, 2014). 

20 Despite its promise, computational psychiatry has as yet had little influence on clinical practice (Rutledge et 

21 al., 2019). A running joke in the field is that the number of reviews hyping the field’s promise has outpaced its empirical 

22 results. With the benefit of retrospect, however, it was perhaps unrealistic to predict dramatic and near-immediate 

23 progress on a topic as complex as mental health. Early disappointment may have come from over-optimism, rather 

24 than fundamental limitations. The field also may have had difficulty recognizing how different mental health problems 

25 are from each other. As such, computational psychiatry may have been slow to adopt sufficiently distinct modeling 

26 strategies for problems that drastically differ. We propose that, to accelerate progress, the next generation of 

27 computational psychiatry will need to incorporate modeling strategies suited to even the most complex problems (see 

28 also, Gillan & Rutledge, 2021; Moutoussis et al., 2017). 

29 A key challenge in early computational psychiatry has been the field’s reliance on diagnostic systems that are 

30 widely acknowledged to be flawed, such as the Diagnostic and Statistical Manual of Mental Disorders (DSM; American 

31 Psychiatric Association, 2013). Many phenotypes are poor—they lack reliability, validity, and are highly 

32 heterogeneous—and as such permit limited conclusions about mechanisms (“garbage in, garbage out”). Yet, much 

33 early computational psychiatry research (including our own) recruited healthy controls and compared them to 

34 individuals with one mental health disorder (or severity cutoff) as conceived by the DSM. Diagnostic systems delineate 

35 static and categorically distinct mental health problems, yet many problems are best thought of as mixtures of 

36 dynamically interacting and dimensionally varying processes (Borsboom, 2008; Cuthbert & Kozak, 2016; Gillan et al., 

37 2017; Kotov et al., 2017; Nelson et al., 2017). Dimensional and transdiagnostic approaches have thus been 

38 increasingly utilized in computational psychiatry (Gillan & Seow, 2020; Gillan et al., 2017; Gueguen et al., 2021; Wiecki 

39 et al., 2015). In psychopathology research broadly, three prominent alternatives to sharp diagnostic delineation have 

40 recently been developed. The Research Domain Criteria (RDoC) assumes that mental health symptoms arise from 

41 mixtures of individual differences in cognitive and emotional processes (Cuthbert & Kozak, 2016). The Hierarchical 

42 Taxonomy of Psychopathology uses factor analytic methods to investigate symptom co-occurrence patterns across 

43 a broad, transdiagnostic space of mental health problems (Kotov et al., 2017). And the network approach to 

44 psychopathology views mental health problems as dynamic systems of elements that interact within and across 

45 diagnostic boundaries (Borsboom, 2008; Fried & Cramer, 2017). 

46 Although these three approaches differ in many respects, they concur that it is unwise to attempt to cleanly 

47 delineate individuals with one mental health problem from those with another at a single point in time. This critique 
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48 comes down to the perils of essentialist thinking about mental health problems. Essentialist thinking focuses attention 

49 away from the superficial features of a phenomenon and toward an internal mechanism or property assumed to give 

50 rise to it (S. A. Gelman, 2004). This is unproblematic if mental health problems are indeed characterized by a “single, 

51 well-defined etiological agent” (Kendler et al., 2011, p. 1144) that is both necessary and sufficient to distinguish 

52 individuals with versus without the problem (similar to infectious diseases such as measles). In this case, grouping 

53 500 patients diagnosed with Major Depressive Disorder (MDD) into the same category and investigating biological 

54 markers compared to a healthy control group would be a sound scientific step. But many mental health problems 

55 instead appear to be best understood as complex systems—interactions between neurocomputational processes 

56 (see Terms and Definitions) and socioenvironmental contexts unfolding over time (Boyd, 1991; Fried & Cramer, 2017; 

57 Kendler et al., 2011). These may well differ greatly among the 500 MDD patients just described (Cai, Choi, & Fried, 

58 2020). The utility of essentialist thinking thus depends on the nature of the problem (Brick et al., 2020; McNally, 2020). 

59 For simplicity, we will hereafter refer to disorders as varying along a spectrum of essentiality, from high to 

60 low. Critically, this term is only meant as a shorthand for the utility of essentialist thinking (i.e., the psychological 

61 process; S. A. Gelman, 2004) about a problem. It is not a claim that some or all mental health problems have 

62 essences, for instance. In Section 2, we will suggest three heuristics for estimating the essentiality of a mental health 

63 problem. We will argue that many mental health problems may have modest or fairly low essentiality. Essentialist 

thinking is not helpful for such problems because interdependent, temporally extended interactions partly constitute 

them (McNally, 2020) and essentialist thinking obfuscates the importance of these interactions. Section 3 will then 

review developments in computational psychiatry and adjacent fields that move us toward capturing the dynamic 

interactions of even medium and low essentiality problems by modeling time and context. Note that throughout we 

focus on examples rather than comprehensive review due to citation limitations.  

72 
 

Terms and Definitions 

 

Neurocomputational process – An input-output transformation and the neural machinery that effects it. 
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75 

76 2. Three Heuristics for Estimating the Essentiality of a Mental Health Problem 

77 This section develops three heuristics for estimating the essentiality of mental health problems. Figure 1 

78 shows estimates of essentiality for some well-known mental disorders. Note that an estimate is just that; it is subject 

79 to change as more is learned. Moreover, each heuristic alone provides only limited information about a disorder’s 

80 essentiality; the heuristics should be combined to triangulate on an estimate. Figure 2 depicts the three heuristics. 

81 A challenge in estimating essentiality is that poor phenotyping can make a problem appear to have lower 

82 essentiality than it truly does (e.g., due to lack of understanding or misclassification). A well-established aim of 

83 computational psychiatry, closely aligned with initiatives such as the RDoC, is to improve phenotypic precision (Redish 

84 & Gordon, 2016). Computational psychiatry offers powerful tools to build bridges between phenotypes defined by the 

85 current diagnostic systems and an emerging neurocomputational ontology (Poldrack & Yarkoni, 2016). Ultimately, 

86 this may allow the current system of symptom-level descriptions to be partly reformulated as mixtures of 

87 neurocomputational processes (e.g., Drysdale et al., 2017) that have been refined through a combination of 

88 measurement innovation and theory (such as employing computational modeling strategies and process-pure tasks 

89 that can reveal differences underlying superficially similar symptoms and behaviors). 

90 Yet, even if we could perfectly phenotype problems at any one point in time, we argue that there would still be 

91 a spectrum of essentiality. This is because the variability that we see among mental health problems is not only due 

92 to variability in how well we currently understand them (i.e., in our current knowledge of the underlying processes and 

93 our way of clustering these processes). The problems themselves can also have what we call meaningful 

94 heterogeneity. This is heterogeneity that arises due to the interdependence of the elements that constitute the 

95 problem, which makes it difficult to classify them at any one point in time and out of context (Lydon-Staley et al., 2021; 

96 Nelson et al., 2017). The three heuristics of this section are meant to build intuition about indicators and practical 

97 consequences of meaningful heterogeneity through a series of examples. 

98 In particular, we will consider Parkinson’s Disease, Schizophrenia, and MDD as running examples of high, 

99 moderate, and low essentiality disorders. To situate this discussion, we will often draw on the neurocomputational 

100 functions of corticostriatal circuitry and dopamine (DA) in decision making, motivation, and reinforcement learning and 

101 how dysfunctions or alterations in this circuitry relate to mental health (Maia & Frank, 2011). 

102 

103 

104 

105 

106 
 

 

 

 

 

Figure 1. Estimates of whether some well-known mental health problems have high, medium, or low 

essentiality. 
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Figure 2. Visualization of three heuristics for estimating essentiality. 

 

1. High-essentiality problems comprise a set of signs and symptoms that arise from a core neurobiological 

mechanism, whereas low-essentiality problems are best thought of as a set of elements in varied 

relational patterns with each other (denoted by arrows of different widths and directions). These elements 

constitute low-essentiality problems. 

 

2. High-essentiality problems follow a relatively linear and similar natural (i.e., absent intervention) course, 

whereas lower-essentiality problems follow variable trajectories. 

 

3. Intentional mental content (e.g., negative schemata; represented by the blue thought bubble) is central to 

low-essentiality problems (e.g., Major Depression; represented by the white plane). Such content may be 

present in high-essentiality problems (e.g., Parkinson’s Disease), but it is not key to understanding such 

problems. 
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110 2.1. Neurobiological mechanism heuristic 

111 Does a single, well-specified neurobiological mechanism cause the mental health problem? Would repairing it resolve 

112 the problem? 

113 High-essentiality problems are caused by impairment of a specific, core neurobiological mechanism, 

114 beginning in a well-defined temporal window and leading to the disorder’s primary signs and symptoms. (Note that a 

115 single neurobiological mechanism can lead to more than one neurocomputational dysfunction Box 1; see Parkinson’s 

Disease below for an example.) The paradigmatic example of a clear biological etiology and 

116 resulting neurobiological impairment is general paresis of the insane, today known as late-stage syphilis. In the early 

117 20th century, this disorder was famously discovered to be caused by the spiral-shaped bacterium, Treponema 

118 pallidum, which produces frontotemporal atrophy. This raised the prospect that simple etiologies would soon be 

119 discovered to underlie many mental health problems (Kendler, 2005). More than a century later, however, this appears 

120 quite unlikely; as Kendler (2005, p. 1) has noted, “we can expect no more ‘spirochete-like’ discoveries.” Although 

121 most mental health problems are more etiologically complex than general paresis of the insane, there still appears to 

122 be substantial variation in the extent to which they are characterized by a core neurobiological mechanism. 

123 Parkinson’s Disease. The relatively high-essentiality disorder Parkinson’s Disease involves the progressive 

124 denervation of DA neurons of the substantia nigra, preferentially targeting dorsal striatum of the basal ganglia (BG) 

125 early in the disease (Cools et al., 2001). In computational models, a healthy dynamic striatal DA range is required for 

126 adaptive action selection and reinforcement learning. Chronic DA depletion in Parkinson’s Disease leads to a bias to 

127 learn from negative compared to positive reward prediction errors (RPEs; Wiecki & Frank, 2010). DA medications 

128 reverse these biases by restricting DA levels to an artificially high range, preventing DA “dips” that normally 

129 accompany negative RPEs, as captured by computational modeling (Frank, 2005). Confirming model predictions, 

130 relative to healthy controls, unmedicated Parkinson’s Disease patients showed impaired learning from positive RPEs 

131 but relatively enhanced learning from negative RPEs; medications reversed this bias, impairing learning from negative 

132 RPEs (Frank et al., 2004). This pattern may explain some of the adverse effects of DA medications, such as 

133 impulsivity, and has been replicated at least 15 times (some of which are reviewed in Collins & Frank, 2014). 

134 Other Parkinson’s Disease sequelae arise as a consequence of this core pathology. This pattern is common 

135 to many high-essentiality problems: a core neurobiological mechanism can lead to multiple neurocomputational 

136 dysfunctions. In PD, dopamine depletion impacts on not just motor striatal circuits but also on those interacting with 

137 prefrontal cortex. Accordingly, in the computational models, this mechanism alters gating not only of motor actions, 

138 but also cognitive ones, such as the entrance of cortical content into working memory. Empirical work confirms 

139 parallels in how motor actions and working memory content are gated, and that these are related to striatal DA 

140 mechanisms in PD (Salmi et al., 2020; Wiecki & Frank, 2010). Within a given corticostriatal circuit, DA depletion also 

141 induces hyperactivity of the subthalamic nucleus (STN). According to the computational model, this hyperactivity leads 

142 to elevated decision thresholds for initiating actions, separately from the effect of DA on weighting costs vs benefits 

143 (Frank et al., 2007). Indeed, deep brain stimulation of the STN reduces the decision threshold and partially remediates 

144 motor deficits, but can accordingly lead to a distinct sort of impulsivity--preventing patients from adaptively elevating 

145 the decision threshold when needed for cognitive control (Cavanagh et al., 2011; Frank et al., 2015; Herz et al., 2016). 

146 Thus, the same computational model ties together several cognitive, motivational, and motor sequelae of Parkinson’s 

147 Disease resulting from a core neurobiological mechanism: DA denervation in the BG. It therefore suggests how 

varying rates of dysfunction in these pathways can help to explain Parkinson’s Disease subtypes, such as those where 

gait freezing predominates (Matar et al., 2018). 

148 Schizophrenia. DA has also been long implicated in the middle-essentiality problem Schizophrenia 

149 (McCutcheon, 2020). Indeed, many of the disorder’s positive symptoms can be accounted for by spontaneous striatal 

150 DA fluctuations that assign meaning to irrelevant events (“aberrant salience”; Kapur, 2003) and many negative 

151 symptoms by weaker adaptive DA responding to motivationally significant events (Gold et al., 2015; Maia & Frank, 

152 2017). Yet, it is clear that dysregulated striatal signals alone are an insufficient account of Schizophrenia; much 
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Box 1: What Does Dysfunction Mean in A Mental Health Context? 
 

How to define dysfunction within a mental health context has been the subject of intense debate (e.g., McNally, 2001; 

Wakefield, 1992a). We favor a definition proposed by McNally that casts dysfunction as a disrupted process operating 

within a larger causal system (McNally, 2011; McNally, 2001). For instance, the heart malfunctions within the context 

of the circulatory system if it fails to pump blood; the amygdala malfunctions within the threat-detection system if it 

fails to respond to proximal threat or responds excessively to neutral stimuli (McNally, 2011). This definition rests on 

a notion of “normal” function to contrast against aberrant functioning. Wachbroit (1994) has argued that a concept of 

normality is indispensable within biology. Normal function according to this account is not the same as statistically 

normal (average or prototypical function). For instance, a radioactive accident could render the hearts of everyone on 

earth dysfunctional; in this case, statistical deviation would not help to reveal dysfunction (Wakefield, 1992b). Rather, 

normal function by this account refers to an idealized operation of the function against which deviations can be 

contrasted (Wachbroit, 1994). 

 

153  

154 evidence also implicates prefrontal cortex (PFC) dysfunction that leads to context-inappropriate behavior (J. D. Cohen 

155 & Servan-Schreiber, 1992). To formally model complementary BG and PFC contributions, an extended neural network 

156 model included PFC layers that maintain stimulus-outcome associations in working memory “attractor states”; these 

157 afford specific representations about the expected values of stimuli and actions, and rapid adjustment to recent 

158 outcomes (Frank & Claus, 2006). Experiments disentangling these contributions with quantitative modeling revealed 

159 that Schizophrenia patients mostly struggled with PFC-like computations (e.g., reduced contributions of working 

160 memory and expected value, reduced top-down biasing of learning), with relatively spared incremental reinforcement 

161 learning from reward prediction errors (e.g., Collins et al., 2017; Gold et al., 2012; Geana et al., in press). This 

162 conclusion is also supported by neuroimaging (Dowd et al., 2016) and is consistent with other dynamical systems 

163 models of deficient attractor states in Schizophrenia (e.g., Durstewitz & Seamans, 2008). 

164 Depression. A wide range of neurocomputational differences have been noted in the relatively low-essentiality 

165 problem MDD, including alterations in reward processing and cognitive control tasks, and greater experience of 

166 negative emotions and proneness to self-referential, ruminative thinking (Goldstein & Klein, 2014; Kaiser et al., 2015; 

167 Keren et al., 2018; Snyder, 2013). Yet, in contrast to Parkinson’s Disease where there is a focal pathological 

168 aberration of midbrain DA neurons, the processes implicated in MDD develop over a long time and in close interaction. 

169 Depression also comprises a heterogeneous phenotype (Fried & Nesse, 2015): differences documented at the group 

170 level are not reliably present among individual patients (e.g., Webb et al., 2016). 

171 Critically, it is unclear which observed alterations in MDD should be thought as dysfunctional (as opposed to 

172 adaptive) in light of others and social and environmental factors. For example, rumination has been consistently 

173 associated with depression (reviewed in Nolen-Hoeksema et al., 2008). And neuroimaging studies confirm altered 

174 activity patterns in depression in many areas implicated in self-referential processing and attentional control (Kaiser 

175 et al., 2015). These patterns are sometimes interpreted as aberrant, yet it is unclear what distinguishes 

176 maladaptive from adaptive repetitive thinking about oneself (though see Watkins, 2008 for one delineation). Intuitively, 

177 intense and protracted thinking can be important after a serious setback to one’s life plans. Stressful life events tend 

178 to precipitate MDD (Kendler et al., 2000), hence it is unclear where to mark a boundary between dysfunctional thinking 

179 (Dayan & Huys, 2008) and constructive thinking that helps to resolve problems, facilitate recovery, and elicit support 

180 (Andrews & Thomson, 2009). Similar, depressed individuals on average show performance decrements in cognitive- 

181 control demanding tasks (Snyder, 2013). Yet, operating from a computational perspective on cognitive-control 

182 allocation, Grahek and colleagues have emphasized that merely observing a difference in a control-demanding task 

183 is uninformative about whether the difference emanates from dysfunction per se or from learned control-allocation 

184 decisions (Grahek et al., 2019). For example, control may be allocated to self-directed mentation if such thinking is 

185 valued (cf. Agrawal, Mattar, Cohen, & Daw, 2020; Andrews & Thomson, 2009). And decreased control could be 

186 rationally learned from action-outcome statistics (Lieder et al., 2013). To the experimenter’s eye, these learned 
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187 differences--products of a properly functioning control system--would (typically) lead to a performance pattern 

188 indistinguishable from cognitive control dysfunction (Grahek et al., 2019). 

189 In sum, research points to a relatively specific core dysfunction in Parkinson’s Disease, whereas 

190 Schizophrenia arises from a more complicated interaction between striatal and PFC dysfunction and other interrelated 

191 neurocomputational processes (reviewed in Valton et al., 2017). MDD involves an even more complicated set of 

192 alterations, many of which are difficult to interpret out of context (e.g., whether the alteration helps or harms in coping 

193 with recent life stress). 

194 2.2. Variable Trajectory Heuristic 

195 Would the problem manifest in the same way irrespective of neurocomputational and social and environmental 

196 context? 

197 High-essentiality problems follow a stereotyped natural course (absent intervention), whereas lower- 

198 essentiality problems involve the contingent interactions of neurocomputational and social and environmental 

199 processes over time. This makes it difficult to predict the specific trajectory of such problems (Henry et al., 2020). This 

200 heuristic thus concerns a continuum on which problems fall: from following an ordered and linear progression to 

201 comprising interacting elements that lead to ramifying trajectories over time. 

202 At the heart of this heuristic is the degree of multifinality—the extent to which the same predisposing 

203 constellation of factors leads to divergent outcomes (Cicchetti & Rogosch, 1996). For instance, a bias to attend to 

204 negative information has been implicated as a risk factor for various internalizing disorders, yet it is unclear why one 

205 individual develops Obsessive-Compulsive Disorder but another develops MDD. One reason multinfal problems are 

206 challenging to model is that the causes of mental unhealth appear at different causal distances from acute problem 

207 onset. Heuristically, these can be classified into distal and proximal factors (things that happen to people, such as 

208 one’s having certain genes or having experienced child abuse, versus things that vary over time within individuals, 

209 such as one’s current propensity to ruminate or tolerance for ambiguity) as well as moderators that determine exactly 

210 how a problem unfolds (such as, a problematic behavior crystallizing into a strong habit; Nolen-Hoeksema & Watkins, 

211 2011). In lower-essentiality problems, the dynamic interrelations between these elements (that are operative at 

212 different time scales) partly constitute the problem (McNally, 2020). For instance, in MDD processes such as negative 

213 schemas, rumination, cognitive control differences, interpersonal stress, and a conflict-laden work environment  

214 can mutually reinforce each other (Fried & Cramer, 2017; Kendler et al., 2011). 

215 In contrast, for higher-essentiality problems, there is a more direct path from distal risk factors to core 

216 neurobiological mechanism, concomitant dysfunction(s), and resulting symptoms. For instance, in contrast to many 

217 mental health problems, single-gene mutations confer strong risk for Parkinson’s Disease (though note that various 

218 genes leading to somewhat different etiologies are implicated, hence Parkinson’s Disease may be further subtyped 

219 eventually; Weiner, 2008). The hallmark of Parkinson’s Disease is denervation of DA neurons, leading to well- 

220 characterized problems that follow a fairly ordered progression over time. It is important to note that even this relatively 

221 high-essentiality disorder is dependent on the social milieu and environment. This follows from the aforementioned 

222 findings that DA denervation in Parkinson’s Disease leads to exaggerated learning from negative outcomes (in the 

223 unmedicated state; Frank, 2005). In addition to having direct detrimental effects on motor performance, this 

224 denervation can induce progressive aberrant learning that amplifies symptom progression in a context-dependent 

225 fashion (Beeler et al., 2012). It is noteworthy that some degree of social and environmental dependence is present 

226 even toward the farthest end of the essentiality spectrum, such as in Huntington’s Disease, which has a single genetic 

227 cause, yet for which it is still unclear when symptoms will manifest (Wiecki et al., 2016). 

228 In Schizophrenia, there appears to be a more temporally extended and interactive pathway to disorder 

229 development. Schizophrenia involves distal risk factors including a complex suite of genetic risk factors that are 

230 thought to be at least partly responsible for cognitive impairments that become evident over childhood and 

231 adolescence (McCutcheon et al., 2020). Stress caused by difficulties in functioning due to these impairments—and 

232 compounded by factors as childhood abuse, familial stress, and social marginalization (Egerton et al., 2016)—are 
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233 thought to alter the function of the striatal DA system by adulthood (McCutcheon et al., 2020). As noted, altered striatal 

234 DA signaling may serve to imbue irrelevant events with salience (via spontaneous firing) and prevent appropriate 

235 responding to relevant events (via lower adaptive firing; Maia & Frank, 2017). Disorganized and inappropriate 

236 responding resulting from these dysfunctions may in turn promote social ostracism and fuel the development of 

237 idiosyncratic beliefs, such as negative views about oneself and one’s abilities, leading to emotional symptoms and 

238 further functional impairment (Perivoliotis et al., 2009). 

239 MDD (and  other  internalizing  disorders with which it is  highly  comorbid)  appear  to show  an  intricate 

240 interdependency with social and environmental context and to be highly dependent on the formation of specific beliefs. 

241 Strikingly, the genetic correlation between MDD and Generalized Anxiety Disorder (GAD) has been estimated at 1 in 

242 women (and .74 in men), implying that non-genetic (e.g., socioenvironmental) factors play a crucial role in determining 

243 the unique symptoms of these problems (Kendler et al., 2007). Indeed, there appears to be some specificity between 

244 life stress experienced and resulting symptoms, with humiliating events showing a stronger relationship to MDD and 

245 danger a stronger relationship to GAD (although loss is comparably associated with both and with mixed 

246 presentations; Kendler et al., 2003). 

247 Hammen (2005) has emphasized that stressful life events include not only independent stressors (such as 

248 losing one’s spouse) but also dependent stressors (events in which individuals play a role, such as a major fight with 

249 one’s spouse). This suggests a transaction between depression risk factors and stress-generating behavior in 

250 challenging situations. For instance, rumination and worry among individuals prone to MDD and GAD may disrupt 

251 reinforcement learning about external contingencies (Hitchcock et al., 2021; Whitmer et al., 2012). Because 

252 rumination involves accessing negative memories within a negative-affective context, it may also make negative 

253 memories more accessible in the future (e.g., R. T. Cohen & Kahana, 2020; Van Vugt et al., 2012). Hence, rumination 

254 may simultaneously increase the future availability of negative thoughts while decreasing the chance of adaptively 

255 behaving in similar (external) situations in the future (see Hitchcock et al., 2021 for discussion). Depending on what 

256 outcomes this leads to, different symptoms could result. For instance, an individual who experiences substantial 

257 humiliation may develop depression symptoms, whereas someone who finds themself in ensnaring or dangerous 

258 situations could develop general anxiety symptoms (Kendler et al., 2003). This latter possibility may be especially 

259 likely if the individual becomes pessimistic about their ability to act safely in general (Zorowitz et al., 2020). 

260 Longitudinal investigation confirms that there is a complex interplay between the tendency to ruminate, impaired 

261 performance in control-demanding activities, dependent stress generation, and subsequent depression and anxiety 

262 symptoms (Snyder & Hankin, 2016). As we will discuss in Section 3, we think these complex interactions imply that 

263 time and context must be more fully incorporated into computational psychiatry models if we are to predict and model 

264 precisely problems such as MDD and GAD. 

265 2.3. Relevance of Intentional Content Heuristic 

266 Is mental content about something (such as beliefs and values) critical to the problem? Is intervening on such content 

267 an important “lever” to intervene on in the problem? 

268 Mental health problems vary in the importance of intentional content: content about something, such as a 

269 belief about oneself, significance attributed to a personally meaningful event, or a value about how one ought to live. 

270 This heuristic thus concerns the extent to which such content is central or peripheral to a mental health problem. For 

271 example, consider Parkinson’s Disease and MDD. A Parkinson’s Disease  patient will experience substantial 

272 functional and occupational impairment as the disorder progresses, which may lead to negative views about themself. 

273 Changing these beliefs may assist in this person’s ability to cope, but it would not fix the root problem: midbrain DA 

274 denervation. In contrast, negative views about oneself are arguably core to MDD; they partly constitute the problem 

275 (Kendler et al., 2011). Evidence-based psychotherapeutic interventions specifically target such negative schemata 

276 and can lead to considerable improvement. 

277 As another example, consider a soldier who unintentionally killed a civilian in combat (see Litz et al., 2009). 

278 Trauma-informed Guilt Reduction (TrIGR) psychotherapy guides clients who have incurred guilt from these kinds of 
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279 experiences to reinstate the event’s complete context: distinguishing the knowledge they had at the time from that 

280 which they accrued later; recalling which actions were actually available then (rather than which actions they wish 

281 had been available); and identifying their specific responsibility (which typically reveals that their actions were 

282 embedded in a complex causal chain). Elaborating the context of such an experience with a psychotherapist may not 

283 bring full relief, but it can help to move a client from seeing themself as deserving of unrelenting and lifelong shame 

284 toward living consistently with their values now (Norman et al., 2014). 

285 An individual who has experienced an event or set of events that challenged their values and moral sense 

286 (this is sometimes referred to as “moral injury”) may report mental health symptoms (e.g., low mood, lost motivation, 

287 shame and guilt; Litz, 2009). Finding the best “lever” (Redish & Gordon, 2016, p. 19) for intervening on these 

288 symptoms would probably require understanding the injurious memory and the beliefs that have developed around it; 

289 this would seem especially plausible if dialogue (via TrIGR, for example) improved the person’s symptoms. Of note, 

290 such an intervention undoubtedly would change memory and judgment engrams distributed through the person’s 

291 brain (and with these changes, eventually larger-scale neural circuits). Yet, there is no reason to think that the specific 

292 details of the neural instantiation of these engrams themselves would be especially interesting. A more useful level of 

293 analysis for understanding this person’s difficulties is at the level of their specific memories, judgments, and beliefs 

294 (Eronen, 2019; Kendler, 2005). By analogy, if I want to convince someone that I have a blue bandanna in my closet, 

295 I will almost assuredly have more success if I tell them as much directly rather than trying to manipulate their brain. 

296 Similar, when the causal loci of a mental health problem involve specific intentional mental content, intervening on 

297 such content (Eronen, 2020a) may be the most direct route to effecting change. 

298 A perhaps underappreciated point in computational psychiatry is that computational theories can inform clinical 

299 principles relevant to intervening on intentional content. For instance, inverse-planning models formalize theory-of- 

300 mind inferences about an agent’s goals and objectives from their actions in situations (Baker et al., 2017); potentially, 

301 such models could elucidate how one draws inferences about one’s own actions (see Gillan et al., 2017 for a similar 

302 proposal). Understanding the computational costs of different action selection strategies can help to explain how 

303 factors such as time pressure and proximity to threat mandate the use of fundamentally different ways of responding 

304 (Mobbs et al., 2020). This could help to explain why people act in ways when they are under pressure that are 

305 fundamentally different from the values that they espouse when they have more time to reflect. And the computational 

306 expense of certain ways of thinking might also help us to understand why we tend to save (“amortize”) costly 

307 computations for later reuse (Dasgupta & Gershman, 2021), possibly including inferences about our own character 

308 made under or in the wake of duress. In fact, this may even help to explain why we tend not to recompute past 

309 inferences unless we have a strong motivation to do so--indeed, why we may not do so even if we have since acquired 

310 relevant new information (an observation that has puzzled many a psychotherapist who has observed their client 

311 express flatly contradictory beliefs that were formed in different contexts). 

312 Of note, moral injury provides a particularly clear example of the relevance of intentional content in mental 

313 health, yet beliefs, self-judgments, perceived values violations, and other types of intentional content are core to many 

314 mental health problems. That intentional content is especially important in lower-essentiality problems follows from 

315 the two previous heuristics. Lower-essentiality problems do not involve a core mechanism that leads to generic 

316 neurocomputational deficits, but rather comprise individual differences transacting with social and environmental 

317 contexts over time. Such contexts, rather than dysfunctions or neurocomputational propensities alone, in part 

318 determine which mental health elements arise subsequently based on the conclusions that people draw (i.e., the 

319 intentional content that emerges) within such situations. 

320 2.4. Concluding Thoughts on our Three Heuristics for Estimating Essentiality 

321 We offered three complementary heuristics for estimating the essentiality of a mental health problem: whether 

322 a single and specific neurobiological mechanism is core to the problem; whether the problem follows a straightforward 

323 natural course or is characterized by divergent trajectories (multifinality); and whether intentional mental content 

324 (beliefs, values, etc.) are core or peripheral to the problem. Note that although we used diagnostic categories in our 

325 running examples for familiarity, essentiality could be estimated for more granular representations (e.g., 
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326 endophenotypes), subsuming representations (e.g., higher-order factors; Kotov et al., 2017), or multidimensional 

327 profiles (Wiecki et al., 2015) or “biotypes” (Drysdale et al., 2017) if these are consistently replicated and refined in a 

328 way that enables categorization. For this reason, we refer throughout to “mental health problems” for simplicity and 

329 generalizability. 
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330 3. New Methods to Model Lower Essentiality Problems in Computational Psychiatry 

331 An important challenge to estimating essentiality is the possibility that a disorder only appears to have low 

332 essentiality due to poor phenotyping (improper clustering and superficial understanding), and that perhaps it would 

333 be possible to derive a higher-essentiality disorder (or disorders) through improved phenotyping. Enhancing 

334 phenotypic precision is critical to continued progress in computational psychiatry and in the current context is key to 

335 avoiding confounds in estimating essentiality. Section 3.1. will review efforts to improve phenotypic precision in 

336 computational psychiatry (Figure 3). 

337 However, even in the limit of perfect phenotyping, there would still likely be a spectrum of essentiality because 

338 many mental health problems are characterized by meaningful heterogeneity: heterogeneity that arises from the 

339 interdependency of the elements constituting the problem, which confounds attempts to categorize the problem at 

340 any single time point and without an understanding of the context in which it arose. Sections 3.2. and 3.3. will focus 

341 on modeling dynamics unfolding in context over time to tame meaningful heterogeneity (Figure 4). 

342  

343  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Approaches to improving phenotypic precision. 

 

Top-down approaches begin with symptoms or symptom clusters (represented by white circle and white-circle 

cluster) and relate these to processes inferred via computational psychiatry methods (such as differences in 

learning rate, represented by an 𝜶 parameter). 

 
Intermediate approaches also typically use symptoms encoded in the diagnostic systems, but they use 

dimension-reduction techniques to derive summaries of which symptoms share variance (represented by the 

orthogonal planes) and then relate these summaries to inferred processes. 

 
The bottom-up approach begins with a process well-characterized by computational psychiatry methods, such as 

a mechanism represented by a parameter that can be distinguished from others and which has a clear function 

and link to neurobiology. It then attempts to relate differences in this process to clinical phenomena, such as 

symptoms or diagnostic categories. 
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345  

346 3.1. Refining Phenotypes 

347 A key step toward more precise phenotyping is discovering (possibly high-dimensional) clusters of 

348 neurocomputational alterations. There are a few strategies for discovering such clusters (see also, Maia & Frank, 

349 2011): top-down (from the diagnostic systems to neurocomputational processes), bottom-up (working from well- 

350 defined neurocomputational processes to mental health phenomena), and intermediate (e.g., using data-driven 

351 approaches to summarize questionnaire-based data from the diagnostic systems and then relating these summaries 

352 to neurocomputational processes). 

353 Top-down approaches. A number of computational psychiatry studies have taken steps to move beyond 

354 diagnostic categories. One strategy is to report differential relationships between neurocomputational processes and 

355 specific symptoms. Beevers and colleagues reported that estimated drift rate (a rate parameter in computational 

356 models that assume information is sequentially sampled over time) for negative words in the Self-Referential Encoding 

357 Task strongly related to depression symptoms such as sadness and self-dislike, yet only very weakly related to 

358 symptoms such as feeling like a failure, crying, and lost appetite (Beevers et al., 2019). A symptom-centric approach 

359 may be particularly valuable for poorly phenotyped problems such as MDD (i.e.. those with very different risk factors, 

360 neurobiological correlates, relationships to functional impairment, etc.; Fried & Nesse, 2015). Diagnostically minded 

361 theorists have also emphasized that there is special value in understanding the processes that underlie hallmark 

Figure 4. An example of meaningful heterogeneity. 

 

Various mental health problem elements, such as elements of Major Depression Disorder or Generalized Anxiety 

Disorder, might arise in some individual (partially transparent colored dots). The specific elements that in fact 

arise in a given time frame (filled-in dots), and their relations to each other (arrows), are determined in part by 

socioenviromental context, such as a stressful life event involving humiliation (more likely to lead to depression) 

or endangerment (more likely to lead to general anxiety; Kendler et al., 2003). 
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362 (disorder-specific) symptoms—given that these carve phenotypic space at its joints (Spitzer et al., 2007). For instance, 

363 from a nosological perspective, there may be special value in understanding “flashbacks” in Post-traumatic Stress 

364 Disorder (PTSD) due to their specificity to this disorder, whereas symptoms such as negative beliefs about oneself 

365 and the world are much less specific to PTSD. 

366 Another approach that begins with the diagnostic categories is to use common clusters of symptoms. For 

367 instance, Brown and colleagues reported that amygdalar activity evoked by computational-model-derived 

368 “associability” (increased attention proportional to prediction error, here specifically in a loss condition) was more 

369 related to avoidance/numbing and hyperarousal than re-experiencing symptom clusters of PTSD (Brown et al., 2018). 

370 However, note that obtaining replicable symptom clusters for common mental health problems has been challenging 

371 (e.g., Armour et al., 2015). 

372 Bottom-up approaches. A fundamental challenge to top-down research that begins with the DSM diagnostic 

373 system is that the signs and symptoms collected in this manual were deliberately described at a superficial level, 

374 rather than in terms of underlying processes. The aspiration was to enable reliable diagnosis by clinicians of different 

375 theoretical orientations who disagreed about the underlying processes (Wakefield, 1992b). However, a critical aim for 

376 psychopathology science, including computational psychiatry, is to move beyond such superficial descriptions. 

377 Computational cognitive neuroscience offers powerful tools for fractionating processes previously subsumed under 

378 an aggregating construct into primitive units; computational psychiatry seeks to fractionate the processes specifically 

379 relevant to mental health (Maia & Frank, 2011). That is, it takes a “bottom-up” approach that begins with well-defined 

380 processes and relates these to mental health phenomena. Underscoring the importance of this endeavor, many 

381 symptoms within the current diagnostic manuals (and constructs in the wider psychopathology vernacular) are turning 

382 out to be “suitcase terms”—terms that obscure precise distinctions (Minsky, 2007). For example, anhedonia—a 

383 cardinal symptom of MDD that is also present (or similar to symptoms described) in numerous other mental health 

384 problems (McCabe, 2018)—involves distinct components, only some of which are altered in MDD (Huys et al., 2013; 

385 Keren et al., 2018; Treadway & Zald, 2011). Similar, impulsivity can arise from a variety of mechanisms, including 

386 valuation asymmetries related to striatal DA (Frank, 2005), alterations in decision-threshold activity during conflict via 

387 PFC-STN interactions (Frank et al., 2007), and differences in how future rewards are discounted (McClure et al., 

388 2004). Once such decompositions are confirmed, they should influence our strategies with top-down phenotypes; for 

389 instance, the discovery that individuals with Attention Deficit/Hyperactivity Disorder could be distinguished by type of 

390 impulsivity could help to stratify pharmacological approaches. Ultimately, we will likely need dynamic, quantitative, 

391 aggregative methods to iteratively refine the diagnostic systems, especially if the pace of discovery of strongly 

392 supported mental-health-relevant decompositions quickens. Emerging data-driven neurocomputational ontologies 

393 offer inspiration (Poldrack & Yarkoni, 2016). 

394 Intermediate approaches. An intermediate strategy is to begin with questionnaires related to diagnostic 

395 categories (i.e., problems or symptoms commonly seen in patients with a specific disorder), but then use dimension 

396 reduction techniques such as factor analysis to derive data summaries that cut across diagnostic symptoms, which 

397 can then be related to neurocomputational processes (e.g., Gillan et al., 2017; Gillan & Daw, 2017; Gillan & Seow, 

398 2020). Studies using this approach have reported specificity in neurocomputational processes associated with distinct 

399 regions of phenotypic space (e.g., Gillan et al., 2016; Roualt et al., 2018). For instance, Roualt and colleagues (2018) 

400 found, using computational modeling applied to a perceptual decision-making task, that individuals who endorsed 

401 more compulsive behavior and intrusive thoughts (as per a data-driven summary factor with transdiagnostic symptoms 

402 including schizotypal symptomatology) were more confident in their choices, yet poorer in their ability to discern which 

403 choices were actually correct; by contrast, individuals endorsing more depression and anxiety symptoms (via another 

404 factor which included apathy symptoms) showed the opposite pattern: less confidence but relatively higher 

405 discernment of which choices were correct (Roualt et al., 2018). Parallel to these developments in computational 

406 psychiatry, there are efforts underway in clinical science more broadly to delineate relations among symptoms and 

407 disorders transdiagnostically, such as the Hierarchical Taxonomy Of Psychopathology (Kotov et al., 2017). 
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408 This intermediate approach is not without challenges. For one, dimensional summaries depend (of course) on 

409 the questionnaires that they are summarizing. To establish factor structure replicability, computational psychiatrists 

410 have tended to use similar questionnaires as an original set of studies by Gillan and colleagues, yet these may not 

411 encompass all processes of interest (see Watts et al., 2020, for an interesting perspective on this issue). Gillan and 

412 Seow (2020) noted therefore that dimensions from prior studies (and questionnaires from which they are constructed) 

413 must be iteratively refined to enable continued progress. Other challenges relate to interpretational and measurement 

414 challenges which arise whenever symptom questionnaires are used. Symptoms can co-vary for a number of reasons, 

415 and methods finding dimensions based on symptom covariation often provide little insight into the data-generating 

416 mechanisms behind the covariation (Bringmann & Eronen, 2018). For instance, symptoms can correlate due to a 

417 common cause (e.g., sweats and aches arising from a fever) or because one symptom causes another (e.g., worry 

418 causing insomnia; Borsboom, 2008; Kendler et al., 2011). They can also covary for more artificial reasons, such as 

419 semantic overlap among items (e.g., feeling sad, feeling blue, and feeling depressed in a prominent depression scale; 

420 Fried & Cramer, 2017), response styles that have nothing to do with questionnaire content (e.g., tending to answer 

421 “strongly agree”), and implicit theories (e.g., guessing that one is answering a questionnaire about depression; 

422 Podsakoff et al., 2012). Identifying and extracting components, factors, or dimensions from such instruments thus 

423 does not by itself establish reliable or valid intermediary phenotypes between symptoms and disorders (see, Leising 

424 et al., 2020 for an accessible overview of some of these issues). 

425 In sum, bottom-up, top-down, and intermediate strategies have a natural synergy; each approach has 

426 limitations, but also complementary strengths and weaknesses. It is also worth noting here that algorithmic 

427 computational models in computational psychiatry play a special bridging role in that they can connect clinical 

428 phenomena and observations to biologically realistic models. Yet, algorithmic models too have limitations and require 

429 substantial caution (Box 2). A more fundamental challenge than any of these particular limitations is that only so much 

430 progress can be made by refining static and decontextualized phenotypes due to the challenge of meaningful 

431 heterogeneity (Figure 4). The next sections review emerging developments for incorporating time and context toward 

432 taming this heterogeneity, and thereby modeling mental health in the dimensionality within which even low-essentiality 

433 problems reside. 

434  
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435  
 

Box 2: Algorithmic Modeling Issues and Innovations in Computational Psychiatry  

[Supplemental Material in publication] 
 

Algorithmic computational models can concisely capture key dynamics, including those that emerge from 

biologically detailed models, and describe individual differences and within-subject changes relevant to mental 

health. Such models can also lead to dangerous misinterpretations if used incorrectly, however (see Wilson & 

Collins, 2019 for a tutorial). Here, we focus on a set of related challenges that are especially relevant to 

computational psychiatry. 

Sharing information across levels and representing uncertainty. Much computational psychiatry research to 

date has estimated model parameters as fully “random effects” at a local level (e.g., subject and time point). 

However, more refined hierarchical Bayesian approaches allow parameter estimates for each individual to be 

informed by the larger group—specifically, by dynamically “shrinking” estimates optimally based on how similar 

individuals are to each other. This procedure improves parameter estimation even for individuals (A. Gelman 

& Hill, 2007) and provides estimates of the uncertainty around parameters’ values (via posterior distributions). 

Several toolboxes exist to facilitate hierarchical inference for common reinforcement-learning and decision- 

making models; for bespoke applications, computational psychiatrists are turning to probabilistic programming 

languages such as Stan and PyMC3. Box 2 Figure depicts the distinction between estimating a point estimate 

of a parameter’s value versus a distribution over its credible values by (respectively) the dot versus distribution 

in parameter space (that uncertainty estimates in hierarchical Bayesian models are constrained by multiple 

data levels is not shown). 

Moving beyond selecting a single best model. Although hierarchical modeling is increasingly applied to capture 

clustering within data, one level that is typically still left out is model identity. In particular, researchers typically 

select a single best model and either shoehorn it onto all subjects or discard subjects (Hitchcock et al., 2017) 

or they describe participant behavior through a mix of separately estimated models (e.g., Harlé et al., 2017). 

However, when participant behavior tends to be describable through some mix of models, model identity can 

also be viewed as a random effect. A recently developed toolbox does just that. It allows researchers to estimate 

behavior at the group level as arising from a mix of models (e.g., mostly a Reinforcement Learning model with 

a fixed learning rate, but also some Kalman Filter with a decreasing learning rate) and to weight subject-level 

parameter estimates from each model proportional to its estimated responsibility for the subject’s behavior 

(Piray et al., 2019). Box 2 Figure depicts the distinction between a single “best” model versus the wider space 

of models under consideration in a given study (respectively) by the blue circle and wider light blue circle. 

Moving beyond a limited model space. Another bottleneck in translating from theory to testable models is that 

the whole set of models that a given study tends to consider has typically itself been limited due to the need to 

select among models with closed-form likelihood expressions. (A likelihood function maps from an empirically 

observed data point to a chance of observing it based on a model and set of parameter values.) However, the 

set of models with such expressions is much smaller than those of theoretical interest. For instance, a common 

model for fitting choice and reaction time data is the standard drift diffusion model (DDM). In many cases other 

models may be more appropriate for capturing the underlying decision dynamics (e.g., time-varying decision 

bounds), yet the DDM is used anyway for convenience. Approximate Bayesian Computation (ABC) methods 

are gaining traction in computational cognitive neuroscience to overcome this challenge, but traditionally are 

extremely computationally intensive. Recent developments overcome this challenge by using neural networks 

to “amortize” expensive computations, thereby allowing a dramatic expansion in the number of hierarchical 

Bayesian models available to the computational psychiatry community (Fengler et al., 2020). Box 2 Figure 

depicts the set of modeling approaches that are of theoretical interest as the gray model space, within which 

only a subset of models, represented by light blue circles, are typically fit. 
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Domain-general or domain-specific differences? Besides these technical issues, there is the computational 

psychiatry issue of whether alterations are generic or domain-specific (see Section 3.2)? This issue, which 

also determines the choice of algorithmic model, is depicted on the right side of the Box 2 Figure. 
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438 3.2. Capturing Domain-Specific and Time-Varying Phenomena in the Real World 

439 We have argued that rather than arising from a core neurobiological mechanism, lower-essentiality problems 

440 comprise dynamically changing neurocomputational processes interacting with situations and social milieus 

441 encountered over time. This calls for an expansion of focus in computational psychiatry away from looking exclusively 

442 for trait-like dysfunctions and toward understanding time-varying alterations in context (see also, Radulescu & Niv, 

443 2019; Scholl & Klein-Flugge, 2018). 

444 Modeling State Variation. Many mental health problems are far from static; they follow stages or exhibit 

445 oscillations and change and transact in important ways with social and environmental context. Addiction, for example, 

446 has been described as following distinct stages, and neurocomputational processes may vary dynamically by stage, 

447 while possibly retaining an invariant multidimensional structure (Gueguen et al., 2021). A neurocomputational account 

448 of bipolar disorder produces oscillations whereby mood and reward appraisal interact in a positive feedback loop (Eldar &  

449 Niv, 2015; Mason et al., 2017). And MDD (and possibly many other internalizing disorders) are both precipitated by 

life stress and associated with stress-generating behavior (Hammen, 2005), possibly due to a complex interplay  

450 between dynamically changing propensities and stressful experiences (Hitchcock et al., 2021; Snyder & Hankin, 2016). 

451 Time-varying phenomena present a challenge to task assays performed at one cross-section in time, as these 

452 are predicated on the assumption that the processes under study are stable (i.e., trait-like; Rodebaugh et 

453 al., 2016). However, if time-varying phenomena can be harnessed, they present opportunities, in that phenomena 

454 which signal transition points in mental health could be detected for prediction and intervened upon for prevention. 

455 Exemplifying this possibility, Konova and colleagues administered a task, which distinguished comfort with known risk 

456 (via monetary gambles where the probabilities were known) from unknown risks (via monetary gambles where 

457 probabilities were partially occluded), up to 15 times over 7 months to individuals receiving community treatment for 

458 opioid use. Using computational modeling, the researchers estimated individual propensities to take known and 

459 unknown risks and submitted these as 1-time-back predictors in logistic regression models predicting opioid use. They 

460 found that tolerance for unknown (i.e., ambiguous) risks alone significantly predicted subsequent use. This result was 

461 especially compelling because data were collected from a parallel cohort of healthy controls, among whom the model- 

462 derived predictors were relatively stable over time; by contrast, the predictors’ stability was lower among the 

463 individuals struggling with opioid use, likely in part due to meaningful variation that facilitated prediction (Konova et 

469 al., 2020). 

470 Incorporating Domain-specific Stimuli or Contexts. Another method for understanding neurocomputational 

471 differences in context is to use domain-specific stimuli or contexts rather than generic (e.g., fractal) stimuli. Frey and 

472 colleagues found that individuals with elevated depression symptoms showed slower incremental learning in two 

473 social tasks: one that involved picking items for a party and then seeing how each item was judged by other (putative) 

474 participants (Frey et al., 2019), another that involved gradually learning how happy or fearful different people tended 

475 to be by repeatedly guessing each person’s emotion and then seeing them make a neutral or happy/fearful face (Frey 

476 & McCabe, 2020a). Those who were slower to learn in the first study reported that they also spent more time quarreling 

477 or involved in similar other unpleasant social activities in their everyday lives (Frey et al., 2019). Another interesting 

478 finding from this research group was that, in the face-learning task, non-depressed participants who underwent 

479 serotonin depletion showed similar patterns of sluggish learning and altered neural activity as the depressed 

480 participants (Frey & McCabe, 2020b). 

481 One limitation of these studies is that they did not directly compare social and non-social contexts, making it 

482 difficult to determine whether participants were characterized by a generic decision-making alteration or one specific 

483 to social settings (see Pulcu & Browning, 2017). Addressing this issue, Lamba and colleagues investigated behavior 

484 in a game where participants received an initial monetary endowment then invested portions of it on a trial-wise basis 

485 with (they were told) a human partner or slot machine, who would subsequently return varying amounts; they were 

486 told the human participant would receive quadruple the invested amount before apportioning the return. In reality, the 

487 amount that the “partner”/machine returned was rigged and drifted slowly over time, mimicking real-world situations 

488 where fortunes or attitudes change gradually (such as a job interview that takes a slow but steady turn for the worse). 
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489 Participants across a spectrum of generalized-anxiety symptoms struggled to stop investing in slot machines that 

490 began shorting them on returns; however, lower-anxiety participants rapidly adjusted when their human partners did 

491 the same, possibly reflecting a swift ability to detect exploitation in this social context. By contrast, higher-anxiety 

492 participants were similarly slow to adjust investments to human partners who became more miserly as they were to 

493 slot machines. The use of matched social and non-social contexts allowed the researchers to conclude that the 

494 difficulty in responding to gradual uncertainty among anxious participants was (mostly) specific to the social domain 

495 (Lamba et al., 2020). 

496 Connecting Lab-based Observations to Real-life Behavior. Complementary to research that brings 

497 idiosyncratic and ecologically valid stimuli into the lab is work that relates lab-observed differences to behavioral 

498 variation in everyday life. Eldar and colleagues reported a tour-de-force example of connecting modeling, real-world 

499 behavior, and multimodal measurement. Ten individuals completed a reinforcement-learning task twice per day on 

500 their smartphones while electroencephalography and heart-rate data were recorded via portable systems. 

501 Computational modeling revealed individual differences related to dissociable fast and slow learning processes; 

502 participants with stronger neural decodability (according to machine-learning methods) of the fast-learning process 

503 showed an improvement in their mood a few hours later, whereas those with more-decodable slow processes showed 

504 higher mood the following day (Eldar et al., 2018). 

505 In general, smartphones offer an unprecedented opportunity for so-called “digital phenotyping,” including high 

506 frequency or even ubiquitous collection of certain types of mental-health-relevant data with minimal participant burden 

507 (see Gillan and Rutledge, 2021, for an authoritative review). 

508 Understanding Alterations in Context. A theme of this section has been the importance of understanding 

509 empirically observed neurocomputational alterations in context, rather than merely documenting that an alteration 

510 exists. One area of computational psychiatry where a shift has been evident in how to interpret observed differences 

511 is the investigation of “model-free” versus “model-based” strategies in reinforcement learning. Briefly, model-free 

512 reinforcement learning algorithms are those that solve trial-and-error learning tasks without an explicit representation 

513 of the world, whereas model-based strategies represent aspects of the world such as reward distributions and 

514 transition probabilities. An impactful set of studies used the so-called “two-step task” (Daw et al., 2011) to infer 

515 participants’ model-free vs. model-based propensities. Early studies suggested that a tendency to employ model- 

516 based control emerges over development (Decker et al., 2016) and implicated decreased model-based control in 

517 Obsessive-Compulsive Disorder (Gillan et al., 2015) and compulsive decision making broadly (Gillan et al., 2016). 

518 This seemed to imply that a trait-like and domain-general propensity toward model-free over model-based control 

519 contributes to faulty decision making and psychiatric disorders. This may be correct to an extent, but recent work has 

520 also shifted focus toward understanding how different contexts and goals influence the type of strategy used.1 This 

521 includes theoretical accounts that implicate incorrect model-based reasoning in depression (Huys et al., 2015) and 

522 suggest a spectrum of model-free to model-based reasoning depending on the speed under which a decision must 

523 be made (e.g., Keramati & Smittenaar, 2016). A study involving the two-step task showed that people increased 

524 model-based control when incentivized to do so, cutting against the notion of a fixed capacity; perhaps surprisingly, 

525 the researchers also found that individuals high on sensation seeking and an anxious-depression dimension were 

526 especially responsive to incentives to use model-based control (Patzelt et al., 2019). In a reinforcement-learning task 

527 with a social framing, Hunter and colleagues (2019) found that individuals with elevated social anxiety symptoms 

528 showed increased model-based control specifically to “upward-counterfactual” feedback (Hunter, Meer, Gillan, Hsu, 

529 & Daw, 2019). Finally, building on behavioral neuroscience research, Mobbs and colleagues have argued that the 

530 same animal will tend to employ (within subject) a spectrum of strategies depending on their proximity to threat: from 

531 hardwired responses when threat is extremely close to multi-step model-based reasoning when threat is very far 
 

 

 

 

1 Note that from their earliest work, Daw and colleagues emphasized context should normatively influence 
the strategy used (Daw et al., 2005). 
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532 (Mobbs et al., 2020). Overall, this recent work reflects a shift in emphasis toward the differential use of model-free 

533 versus model-based strategies based on demand and context. 

534 3.3. Measuring Dynamics and Person-specific Processes and Developing Formal Mental Health Systems 

535 This section reviews methods for modeling temporal and within-person dynamics, which we have argued are 

536 especially important in medium and lower-essentiality problems (see also, Gillan & Rutledge, 2021; Scholl & Klein- 

537 Flugge, 2018). 

538 Modeling Dynamics. Recent frameworks that conceptualize mental disorders as complex systems of 

539 interacting processes have developed novel network methods to model dynamic changes to mental health over time 

540 (Beltz & Gates, 2017; Borsboom, 2008; Bringmann et al., 2013; Fried & Cramer, 2017; McNally, 2020; van de Leemput 

541 et al., 2014). These network models are statistical representations of node-and-edge relationships between mental 

542 health elements (most commonly symptoms, although other variables are increasingly incorporated; Fried & Cramer, 

543 2017). These elements are often assessed by self-report, hence they are subject to similar limitations as those 

544 mentioned earlier in the context of intermediate approaches. This includes that the methods typically provide  

545 only weak information about the structure of mental health problems (Bringmann & Eronen, 2018). 

546 Notwithstanding these modeling limitations, the network approach has drawn important attention to the 

547 ontology of mental health (McNally, 2020). Additionally, recent network modeling developments may provide more 

548 information about the structure of mental health problems and potentially point to novel intervention targets. This 

549 includes recent methods that leverage control theory to attempt to infer the most “controllable” node within a network, 

550 which could be a fruitful target for psychotherapy (Henry et al., 2020). Predictability methods estimate how well each 

551 node in a network can be predicted by all other nodes in terms of variance explained, potentially revealing how 

552 important a node (e.g., sleep difficulties) is within a broader system (e.g., depression). Moreover, the “average 

553 predictability” of all nodes in a network can (under some critical assumptions) provide insight into how well (or poorly) 

554 the included elements reflect the full system. For instance, a review of 18 network studies found that depression, 

555 PTSD, and anxiety had higher average predictability than psychosis, suggesting elements (possibly including a 

556 neurocomputational common cause) were not represented in the psychosis network (Haslbeck & Fried, 2017). 

557 Methods from complex-systems analysis could also aid our understanding of the structure and dynamics of various 

558 problems. These methods build on properties of complex systems, such as their leaving signatures like autocorrelation 

559 and increasing variance near transition points, regardless of their specific constitutive elements. An influential paper 

560 argued that rising autocorrelation and variance among emotions signals a “critical slowing down” that augurs a 

561 depressed state, similar to critical transitions observed in fields such as ecology (van de Leemput et al., 2014). 

562 In computational psychiatry, there is a rich tradition of modeling neural dynamics (recently reviewed in 

563 Durstewitz et al., 2020), yet there has been much less focus on externally observable dynamic elements of mental 

564 health systems. A notable exception are models developed by Eldar and colleagues that produce oscillatory 

565 dynamics. These model individual differences relevant to Bipolar Disorder via an interdependence between mood 

566 and evaluation. In this approach, a mood-biasing parameter (assumed to be trait-like) can produce dynamics such that 

567 that perceived rewards sometimes far exceed expectations, leading to large positive surprises which send mood  

568 rocketing upward, and sometimes fall far short of expectations, leading to crushing disappointments which  

569 drive mood downward (Eldar & Niv, 2015; Mason et al., 2017). Remarkably, the administration of a selective  

570 serotonin reuptake inhibitor (SSRI) appeared to modulate this parameter, leading rewards to be more impactful  

571 when in a good mood, in turn 

572 further increasing mood. This might lead to a slow-but-steady increase in the proportion of felicitous experiences that 

573 are experienced, eventually leading to greater well-being over time. Thus, this finding may help to explain the gradual 

574 effects of SSRI--as well as the increased susceptibility to mood instability that these drugs appear to induce among a 

575 subset of individuals (Michely et al., 2020). Computational psychiatry theories that predict these kinds of temporally 

576 extended dynamics offer a glimpse into how risky predictions concerning how elements of mental health systems 

577 interrelate can be derived, then tested on data collected in the real world—leading to iterative refinement of model 

578 and theory (Figure 5). For instance, this model predicts trait-like individual differences as well as drug effects on 

579 mental health elements--expectations, subsequent gloomful and glorifying appraisals of surprising experiences, and 
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580 domino effects on mood. These could be tested by applying network models, such as moderated (Haslbeck et al., 

581 2019b) network models, to data reported by participants over time, in order to capture varying drug effects or between- 

582 subject trajectories related to the mood-biasing parameter. 

583 Capturing Person-Specific Processes. Due to the divergent trajectories of lower-essentiality problems (i.e., 

584 multifinality), measuring, modeling, and understanding person-specific patterns are especially important. One striking 

585 example of how person-specific patterns can dissociate from group-level patterns is Simpson’s Paradox: that, for 

586 example, coffee consumption may perfectly positively correlate with neuroticism between subjects, even if the 

587 relationship is negative within subjects (i.e., these individuals 

588  

 
 
 
 
 
 
 
 

Figure 5. Theories from recent computational accounts that predict temporal and contextual dynamics in the real 

world. 

 
Theorized interrelations between mental-health elements in two recent computational-psychiatry accounts. 

These predict real-world dynamics, hence data could be collected over time and analyzed (e.g., via network- 

model representations) to test and iteratively refine the theories. Arrows show theorized direction and arrow 

width the hypothetical strength of relations for different individuals. This reflects that specific element 

relationships may vary among people, such as one person showing an especially strong or weak sensitivity to 

reward prediction error. 

 

Left: Based on empirical literature on mood and reinforcement learning and computational modeling, Eldar and 

colleagues recently proposed a positive feedback loop between mood, appraisal of outcomes, and reward 

prediction error (Eldar & Niv, 2015; Mason et al., 2017). 

 

Right: Based on empirical literature on rumination and stress-generating behavior, Hitchcock et al. (2021) 

recently suggested that rumination comprises the recollection and reconsolidation of negative, self-referential 

memories (and other cognitive processes, not depicted). And when it takes place at the same time as a 

potentially important external learning experience, it impairs reinforcement learning (RL) about the contingencies. 

This concurrent process may at once increase the future likelihood of negative memory recollection and stress- 

generating behavior. 
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589       become less neurotic when they consume coffee; Kievit et al., 2013). Such a possibility should trouble computational 

590 psychiatrists, because a tacit assumption in much task-based research is that finding an altered pattern between 

591 mentally unhealthy and healthy individuals (or groups) is the first step toward developing a remediative within-subject 

592 intervention. Notably, the fact that extrapolating from between-person to within-person patterns—or more generally 

593 from groups to subgroups, groups to individuals, or averages across time to temporal patterns (Kievit et al., 2013)— 

594 can lead to misleading conclusions appears to be of more than theoretical concern, with a recent computational 

595 psychiatry study providing an interesting example. As mentioned, a longitudinal investigation by Konova and 

596 colleagues found that opioid use could be predicted by a 1-time-back measure of tolerance for ambiguous risk. On 

597 average between groups, however, a quite different pattern emerged: Tolerance of known risk, which was not a 

598 significant predictor of subsequent opioid use, was the only different marker among the recovering and healthy-control 

600 groups (Konova et al., 2020; see also, Guegen et al., 2021 for discussion of this result). 

601   Hierarchical modeling (including frequentist mixed-effects models and hierarchical Bayesian models; see Box 

602    2) offer a statistically principled approach to modeling between and within-subject effects and enjoy widespread use  

603        in computational neuroscience and psychiatry. Multilevel vector auto-regressive (VAR) models enable the estimation  

604    of some specific temporal effects, permitting examination (for example) of how various emotions predict themselves  

605    and other emotions over time (Lydon-Staley et al., 2021). This has allowed researchers to corroborate clinical insights,  

606        such as the idea that, among neurotic individuals, worry strengthens the duration of and transition between negative  

607       emotions (Bringmann et al., 2013). To date, such models have largely relied on self-reports, but an exciting future  

608    avenue is to use multimodal methods, including neurocomputational markers derived from computational psychiatry  

609       methods, to estimate the elements in such networks with higher precision. This is especially important in order to  

610       overcome problems inherent to the investigation of suitcase constructs, such as worry, which may encompass so  

611    many primitive processes that their relationships to other items is confounded (Eronen, 2020b). 

612   Despite their advantages, hierarchical methods alone are of course unable to resolve the limitations inherent 

613      in attempting to extrapolate from between-subjects data to within-subject patterns. Moreover, from the perspective of 

 614      informing person-specific interventions, hierarchical methods can distort individual patterns that may be important  

615   (due to their imposition of distributions that can alter patterns from the raw data, especially outlying points). In  

616      particular, hierarchical methods may sometimes mask patterns operative within individuals over time that could be  

617    important—to psychotherapy conceptualizations, for example. Drawing on a rich tradition of single-case designs  

618      (Barlow & Hersen, 1973), psychotherapy-minded research is seeing an efflorescence of methods aimed at capturing  

619    and capitalizing on within-subject patterns (Wright & Woods, 2020). Potentially offering the best of both worlds,  

620   methods such as the GIMME algorithm seek to capture time-series patterns reliably present within a group and  

621   concurrently extract idiographic patterns (Beltz & Gates, 2017). 

622    An exciting future avenue is to connect these person-specific methods that offer rigorous methods for 

623       functional conceptualizations of mental health with computational psychiatry accounts. What the latter have to offer  

624       are new clinical principles for the next generation of psychotherapy drawn from basic (e.g., computer and decision)  

625    sciences (Moutoussis et al., 2018; Niv, Hitchcock, Berwian, & Schoen, in press). It is worth noting that there are  

626       natural complementarities between the functional-analytic tradition in behavior therapy, which seeks to understand  

627       why behavior occurs in context with an eye toward modifying it (Burger et al., 2020; Hofmann & Hayes, 2019); the  

628       network approach, which views mental health problems as causally related elements interacting over time (McNally,  

629   2020); and the bounded (computational) rationality perspective in the decision and computer sciences, which seeks  

630     to model decision making under limited resources, and which can explain how what might appear to be dysfunctional  

631   responding is actually rational in light of context and constraints (Gershman et al., 2015; Simon, 1990). 

632 Formalizing Mental Health Systems. A landmark development toward modeling time and context is the recent 

633     development by Robinaugh and colleagues of a large-scale mental-health system (in this case, panic disorder). This  

634   system implements the network-approach vision of interacting mental health elements within a detailed computational  

635   model that can simulate mental-health dynamics (Robinaugh et al., 2019). Notably, this system was recently extended 

636       to model the effect of functional-analytic interventions for panic disorder (Burger et al., 2020), thereby demonstrating  

637    a parallel functionality to the ability of biologically detailed computational-neuroscience models to simulate the  

638       dynamics of specific interventions, such as an increase in tonic dopamine. Robinaugh et al.’s (2019) model has not  

639        yet incorporated rich biological detail, nor has it been paired with algorithmic approaches to concisely summarize key  
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640       model behaviors that can then be applied to describe individual differences between people; these are exciting future  

641    avenues. Integrating this type of approach with powerful techniques from the mainstream of computational psychiatry  

642    may eventually enable time and context to be rigorously incorporated into computational psychiatry, providing insights  

643    and targeted intervention opportunities for even low-essentiality problems. 

 
 

 

Summary Points 
 

1. We predict that progress in the next generation of computational psychiatry will come from modeling time and 

context in order to tame the complexity of mental health disorders of lower “essentiality.” 

 

2. Three heuristics can help to estimate essentiality. Is there a single, core neurobiological mechanism at the 

problem’s root? Does the problem follow a straightforward natural course? Is intentional mental content (such as 

beliefs) distinct from the problem itself? 

 

3. If the answer to the above questions is yes, the problem has high essentiality. By contrast, lower-essentiality 

problems comprise multiple interrelated elements (not all necessarily dysfunctional) and vary greatly over time. 

Intentional content is important in these problems. 

 

4. Clinical principles concerning beliefs, values, personal significance, humiliation, and other types of intentional 

content could be grounded in computational theories. In addition, the type of intentional content endemic to a 

problem can help us to contextualize observed differences. For instance, do individuals with this problem show 

differences in trial-and-error learning full stop or are the differences limited to social contexts? What does this tell 

us about the problem itself? 

 

5. Mental health problems may spuriously appear to have low essentiality because of imprecise phenotyping. 

Computational psychiatry has much to contribute to the important project of refining phenotypes. Yet, standard 

approaches to deriving more precise phenotypes at a single point in time may be insufficient for lower-essentiality 

problems because of their temporal and contextual dependence (i.e., their meaningful heterogeneity). Modeling 

variation over time and in context is critical. Even when this is done, the complexity of these problems implies 

that they may take a longer time to make progress on than simpler problems. Computational psychiatry needs 

time as in temporal dynamics, but it needs time as in patience, too. 

 

6. Algorithmic modeling has a special place in connecting levels and dimensions of analysis in computational 

psychiatry, although there are many technical and inferential challenges. Caution is required. Recent innovations 

may dramatically advance the scope and power of these models (Box 2). 

 

7. Computational psychiatry theories are beginning to make risky predictions about dynamics in the real world. 

Modeling and measurement techniques from adjacent areas--including network and complex-systems 

approaches and digital phenotyping--will be important to the next generation of computational psychiatry, 

especially for capturing and modeling the real-world dynamics of lower-essentiality problems and thereby enabling 

iterative refinement of increasingly sharp predictions. 

 

8. The importance of context in lower-essentiality problems resonates with the perspectives of three traditions that 

developed largely independently: the functional-analytic tradition in behavior therapy; the bounded 

(computational) rationality tradition in the decision sciences; and the network approach to mental health. These 

shared perspectives raise the prospect of uniting computational and psychotherapy principles. 

674 

675 
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