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Abstract

Rationale Psychopharmacology needs novel quantitative measures and theoretical approaches based on computational

modelling that can be used to help translate behavioural findings from experimental animals to humans, including

patients with neuropsychiatric disorders.

Objectives This brief review exemplifies this approach when applied to recent published studies of the effects of

manipulating central dopaminergic and serotoninergic systems in rodents and marmoset monkeys, and possible

comparisons with healthy human volunteers receiving systemic agents or patients with depression and schizophrenia.

Methods Behavioural effects of central depletions of dopamine or serotonin in monkeys in probabilistic learning

paradigms are characterised further by computational modelling methods and related to rodent and human data.

Results Several examples are provided of the power of computational modelling to derive new measures and reappraise con-

ventional explanations of regional neurotransmitter depletion and other drug effects, whilst enhancing construct validation in

patient groups. Specifically, effects are shown on such parameters as ‘stimulus stickiness’ and ‘side stickiness’, which occur over

and above effects on standard parameters of reinforcement learning, reminiscent of some early innovations in data analysis in

psychopharmacology.

Conclusions Computational modelling provides a useful methodology for further detailed analysis of behavioural

mechanisms that are affected by pharmacological manipulations across species and will aid the translation of exper-

imental findings to understand the therapeutic effects of medications in neuropsychiatric disorders, as well as

facilitating future drug discovery.
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Psychopharmacology is a quantitative branch of neuroscience

that relates behavioural effects of drugs in the laboratory or the

clinical context to their underlying mechanisms. From the

pharmacological perspective, the ability of the investigator

to vary the dose of the active drug so as to produce graded

behavioural effects provides an exquisite test of the relation-

ship. From the experimental psychologist’s perspective, it is

desirable to seek the most sensitive measures for that relation-

ship, which may involve transforming the dependent variables

in theoretically coherent ways, using computational methods,

to attain insight into controlling processes and mechanisms.

An excellent example is the use of signal detection theory

(Green and Swets 1966) which can dissect discrimination per-

formance into two orthogonal factors—discriminative sensi-

tivity (measured by d’) and response bias (β or c). The latter
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provides an overall tendency to make a particular choice (e.g.

to respond or not, to answer ‘yes’ or ‘no’) which could arise

from response strategy or motivational factors. Warburton and

Brown (1972) introduced such methods into psychopharma-

cology to show that cholinergic agents such as physotigmine,

at least at some doses in rats, improved d’with no effects onβ,

suggesting that the drug enhanced visual attention.

Bernard Weiss and Victor Laties (Weiss and Gott

1972; Laties 1972) also pioneered the use of sophisti-

cated variables to characterise drug effects and several

investigators have employed microanalyses of behaviour

to look for understanding at the level of ongoing se-

quential changes in behaviour. For example, Koek and

Slangen (1984), using a measure of the conditional ten-

dency to repeat responding [p(rep)], found that amphet-

amine had a tendency to increase response repetition

that overshadowed its effects on discrimination per se.

Sahgal and Clincke (1985) pointed out potential prob-

lems with the p(rep) measure and introduced more re-

fined indices that were shown to be sensitive to this

tendency under amphetamine.

Although there is much to be said for examining effects of

drugs on stable baselines of choice behaviour (established, for

example, by training) in order to analyse processes such as

attention, it is also important to quantify effects of drugs on the

dynamic processes of learning—although it is more difficult

and costly to perform adequate dose-response analyses.

Traditionally, learning can be measured crudely in terms of

the number of trials, or errors made, that it takes to reach a

suitable criterion of discrimination. However, reinforcement

learning theory has provided us with a number of algorithms

that adequately support learning, ranging from agent-based

approaches (Russell and Norvig 1995; Sutton and Barto

1998) to more psychologically motivated models such as that

of Rescorla and Wagner (1972) for Pavlovian conditioning.

Learning can be interpreted as a hypothesis testing or environ-

mental modelling process by which the animal (or human)

p r ed i c t s ou t comes o f i t s behav iou r a l cho i ces .

Mechanistically, learning can be driven by ‘prediction errors’

that signal a difference between expected outcomes and ob-

tained outcomes, updating pre-existing evidence of the asso-

ciative strength of a specific response with this new evidence.

Prediction errors can thus be seen as part of the brain’s

Bayesian updating process. Modern computing has also

brought the ability to apply formal Bayesian computational

approaches analytically, providing a rich potential basis for

analysing drug effects on learning. This has become an excit-

ing endeavour, given that we not only understand much about

how drugs such as amphetamine affect neurotransmitter func-

tion, but also because of discoveries that neurotransmitters

such as dopamine (DA) and serotonin (5-hydroxytryptamine,

5-HT) play important roles in learning as well as performance.

Thus, Schultz et al. (1997), based on such previously

hypothesised mechanisms (Montague et al. 1996), were able

to show in rhesus monkeys that the phasic firing of mid-brain

DA neurons in response to conditioned stimuli (CSs) associ-

ated with reward provided the neuronal substrate of prediction

errors. These neurons’ behaviour conformed to classical learn-

ing algorithms, including the Rescorla-Wagner equation,

where learning is essentially represented as:

ΔVCS ¼ αβ λ–V totalð Þ

whereΔVCS represents the change in learned association for a

CS, (λ – Vtotal) represents a mismatch (prediction error) be-

tween expected (Vtotal) and obtained (λ) outcomes, and α and

β are constants for the CS (predictor) and the unconditioned

stimulus (US or outcome), respectively. In the original state-

ment of this learning theory (Rescorla and Wagner 1972, p.

75–76), λ is described as the asymptote of learning on a given

trial, which depends on the US presented and may be 0 for

nonreinforcement. The parameter α is a learning rate associ-

ated with the CS (to capture the concept that different CSs

may have different salience and thus support learning at dif-

ferent rates) and β is a learning rate associated with the US (to

support the assumption that different USs might similarly sup-

port learning at different rates); α and β are constrained to the

range [0, 1] (Box 1).

In humans, prediction errors have been confirmed during

reinforcement learning via the haemodynamic blood-oxygen-

level-dependent functional magnetic resonance imaging

(BOLD fMRI) response. Typical paradigms have used prob-

abilistic discrimination learning in which subjects learn to

choose by trial and error which of two stimuli is more likely

associated with reinforcement when one stimulus on average

is rewarded, for example, on 75% of trials and for the other

stimulus on 25% of trials, with punishment (or non-reward)

occurring on the other trials in reciprocal manner (i.e. 25% and

75% respectively). The initial probabilistic learning phase

may be followed by one ormore reversals of the contingencies

to further assess the flexibility of learning (Fig. 1). Such par-

adigms have revealed activity during learning and reversal in

such structures as the orbitofrontal and ventrolateral prefrontal

cortex and the ventral striatum, which are in receipt of dopa-

minergic afferents (O’Doherty et al. 2001; Cools et al. 2002).

Reinforcement learning theory and dopamine

It is obviously more difficult in human studies to measure the

activity of DA neurons specifically, although it is possible to

employ relatively specific DA agonists and antagonists that

can be used to test the causal validity of the correlation
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betweenDA neuron firing and behaviour. One of the first such

studies (Pessiglione et al. 2006) compared the effects of sys-

temic doses of 3,4-dihydroxy-L-phenylalanine (L-dopa) and

the D2/3 DA receptor antagonist haloperidol, together with a

placebo control, to assess effects of manipulations of DA

function in three separate groups of human volunteers

performing an instrumental probabilistic discrimination

learning paradigm. In this procedure, subjects were rewarded

on 75% of occasions for choosing option A, signalled by a

distinctive visual fractal stimulus, and only 25% for option B,

signalled by a second fractal stimulus (analogous to, but not

the same as, to those shown in Fig. 1). In such a task, the

optimal strategy for maximising rewards is to choose option

A 100% of the time, even though this inevitably results in

Box 1: Selected computational models of simple learning processes

Delta rule for observational learning: Rescorla–Wagner (1972) model of classical conditioning

Delta rule for actions: Q learning in Pessiglione et al. (2006)

Delta rule with “stimulus stickiness” and “side stickiness” (Clarke et al. 2014; Rygula et al. 2014)

Psychopharmacology (2019) 236:2295–2305 2297



being punished 25% of the time. Pessiglione et al. also inter-

leaved such discrimination trials with other trials using a dif-

ferent pair of distinctive icons that were associated with

avoiding losses instead of gaining rewards. They reported

significant differences in reinforcement learning between the

two DA manipulations, associated with alterations in BOLD

prediction error signals in specific DA terminal regions. Under

L-dopa treatment, subjects accrued more rewards during learn-

ing than under haloperidol, although there were no effects on

losses. By using the striatal BOLD responses to estimate pre-

diction errors, these authors were able to show that the drug

effects on behavioural choice conformed to a standard action–

value computational model of reinforcement learning (see Fig.

1 of Pessiglione et al. 2006 and Box 1). This included the

standard parameters of learning rate (α) and ‘temperature’

(β), adjusted to maximise the likelihood of the actual choices

of the subjects under the model.

This elegant demonstration naturally raises several issues,

including the pharmacological specificity of the agents

employed, the contribution of individual differences, and the

precise functional interpretation of parameters such as β

(temperature) which could, for example, reflect motivational

factors or general strategic tendencies such as ‘win-stay and

lose-shift’ or ‘exploration vs exploitation’ (e.g. the overall ratio

of stay to shift responses) (Cohen et al. 2007; Frank et al. 2009).

A problem we have observed, especially in human studies,

is the difficulty of performing dose-response studies,

particularly at low doses of certain agents that may affect

presynaptic ‘autoreceptors’ that regulate neurotransmitter

function and thus may actually lead to opposite functional

effects to those anticipated. For example, DA D2

autoreceptors inhibit DA neuronal firing and DA release from

dopaminergic neurons; thus, DA D2 antagonists can increase

DA release via presynaptic (autoreceptor) mechanisms (see

Ford 2014). Support for Michael Frank’s modelling of D2

receptor actions has depended to some extent on interpreting

the effects of haloperidol as working in part at DA D2

autoreceptors (e.g. Frank and O’Reilly 2006). Recently, we

were able to report tri-phasic effects of intra-caudate

quinpirole on reversal learning in monkeys, with low and high

doses impairing performance and intermediate doses signifi-

cantly improving learning (in terms of errors to criterion)

(Horst et al. 2019). We have also observed sometimes ‘para-

doxical’ improvements in cognitive performance of highly

selective D2/3 receptor antagonists such as sulpiride (Mehta

et al. 1999). Later studies by Mehta et al. (2008) showed that

the commonly used dose of 400 mg sulpiride occupies only

about 30% of striatal D2 receptors. Therefore, in the study of

Eisenegger et al. (2014), we obtained ethical permission to

administer a dose of 800 mg to healthy volunteers, which

occupies about 60% of striatal D2 receptors (and which in fact

produced no adverse side effects). We could therefore be fairly

sure that any presynaptic effects at the mid-brain level would

be overcome by the large D2 striatal receptor blockade (al-

though note there are also striatal D2 terminal autoreceptors

that may exert additional effects). We reduced variability

when assessing effects of drug dose by capitalising on indi-

vidual differences in plasma levels of the drug. Moreover,

based on previous behavioural findings relating genetic poly-

morphisms to learning parameters, including reversal (Frank

et al. 2007; Jocham et al. 2009; den Ouden et al. 2013), we

also stratified the population of human volunteers by

recruiting individuals with and without the DA D2 receptor

Taq1A polymorphism, as the minor A1 allele has been asso-

ciatedwith a reduction of up to 30% of striatal DAD2 receptor

density (Thompson et al. 1997). This stratification also poten-

tially helped to dissect possible D2 versus D3 receptor

influences.

Sulpiride had very clear-cut effects that were similar in

several ways to those of haloperidol in the study by

Pessiglione et al. (2006). There were effects on appetitive

but not aversive learning, possibly consistent with Schultz’s

findings in monkeys (Schultz et al. 1997). Notably, the drug

impaired performance, but its effects mainly appeared to be at

asymptotic levels of discrimination rather than in its initial

acquisition. In fact, this is again similar to the effects reported

by Pessiglione et al. Whilst the effects in the entire sample of

volunteers were statistically marginal, the findings did reach

significance when the influence of dose was introduced (low

versus high plasma levels of sulpiride) and there was also a

Fig. 1 Typical visual stimuli and reinforcement contingencies employed

for human studies of probabilistic learning and reversal in discrete trial

procedures involving forced choices between option A and option B.

Participants are instructed to obtain the most rewards as possible (best

achieved here by choosing exclusively the 75% rewarded stimulus).

Rewarding outcomes are denoted by brief immediate feedback from the

happy face presentation, and punishing outcomes by the frowning face.

Following attainment of a learning criterion over a suitable number of

trials, the contingencies may be reversed without warning. Such

paradigms can be employed to model reinforcement learning in humans

and experimental animals. The actual probabilities of reinforcement may

vary from study to study. Taken from Cools et al. (2002)
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genetic influence whereby the volunteers with the A1 poly-

morphism exhibited the largest effects.

All of these findings were further confirmed by the use of a

‘softmax’ Q-learning algorithm similar to that used by

Pessiglione et al. (2006) (Box 1), which showed that the ef-

fects were confined largely to the temperature parameter β

(Fig. 2). This precision achieved by the computational model

of the drug effects is impressive and has exciting implications,

although we are left to interpret what the effects on tempera-

ture (β) mean. One possibility is that the parameter reflects

‘exploration’ (versus ‘exploitation’) of the reinforcement con-

tingencies (Cohen et al. 2007). From a computational perspec-

tive, exploration versus exploitation has been related to chang-

es in tonic DA function in the basal ganglia (Humphries et al.

2012) and from genetic evidence in humans, exploration has

been shown to be affected by polymorphisms of the enzyme

catechol-O-methyl transferase, which regulates DA in the hu-

man prefrontal cortex (Frank et al. 2009).

The lack of effect on learning rate is perhaps surprising in

view of the presumed role of dopamine in learning. However,

it should not be forgotten that D2 receptors have been linked

with tonic rather than phasic modes of dopamine function and

that the prediction errors are supposed to be a function of the

latter (Dreyer et al. 2010). One hypothesis that emerges from

the findings is that the D1 DA receptor may be more directly

implicated in learning rate (parameter α). Unfortunately, D1

DA receptor antagonists have not been widely used in human

psychopharmacology to date due to the difficulty in obtaining

them for studies in healthy volunteers. However, there is a

clear prediction that D1 agents would affect α. Such a result

would also validate the sensitivity of the probabilistic learning

paradigm employed by Pessiglione et al. (2006) and

Eisenegger et al. (2014), which may possibly be more sensi-

tive to effects on β than α.

Computational modelling applied to a dopaminergic
animal model of schizophrenia

A second example of the use of computational approaches to

understanding effects on learning of dopamine manipulation

comes from an attempt to determine the functional sequelae of

DA depletion from the prefrontal cortex in marmoset mon-

keys (Clarke et al. 2014) to model some of the presumed

changes occurring in schizophrenia, which have been pro-

posed to reflect a reciprocal balance between cortical DA un-

deractivity and subcortical DA over-activity (Weinberger

1987; Meyer-Lindenberg et al. 2002). This focuses attention

on prefrontal cortical D1 receptors which have been reported

to be upregulated in unmedicated schizophrenia and may re-

flect a compensatory response to disorder-related down-regu-

lation of prefrontal DA (Abi-Dargham et al. 2012).

The experimental depletion in marmosets was effected by

6-hydroxydopamine and restricted to the orbitofrontal cortex.

Studies using ligand-based positron emission tomography

(PET) showed that this treatment caused a reduction of striatal

D2 receptor availability consistent with a striatal upregulation

of DA function. The monkeys were tested behaviourally using

a range of instrumental probabilistic visual discrimination

tasks, structurally similar to that employed for the human

studies described above. They were trained to respond to

two multi-coloured abstract shapes presented on a touch-

sensitive screen. One of these stimuli was probabilistically

rewarded with fruit juice, e.g. 80% of trials, whereas the other

was only rewarded 20% of the time. Negative feedback (20%

0.0

0.1

0.2

0.3

0.4

gain loss gain loss

α β

Placebo

Sulpiride

a          Sulpiride main effects

gain loss gain loss

α β

≤ 426 ng/ml

> 426 ng/ml

b     Serum level effects

gain loss gain loss

α β

Placebo

Sulpiride

c   Genotype effects (A1+)

Fig. 2 Effects of sulpiride on reinforcement learning model parameters in

human volunteers. Effects were restricted to ‘temperature’ (β) rather than

learning rate (α), were for gains only, and were exaggerated by higher

plasma levels of sulpiride and in participants with the A1+ genotype of

the Taq1A polymorphism for DA D2 receptors. Parameter estimates of

the Q-learning model were derived across drug, serum value and

genotype groups, separately for the gain and loss domain. a The

temperature parameter βgain was significantly higher in the sulpiride

group (57% increase compared to the placebo, P = 0.005), but the

learning rate αgain was not affected, and there were no effects in the loss

domain (αloss, βloss). b Higher sulpiride serum values selectively affected

the temperature parameter gain (183% increase in high compared to low

serum values, P = 0.001), with no effects on either αgain, αloss or βloss. c

Pronounced sulpiride effects on βgain were observed in A1+ genotype

carriers (211% increase following sulpiride compared to placebo

administration, P < 0.001), but not in A1–genotype carriers.

Reproduced from Eisenegger et al. (2014) with permission of the

publishers
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and 80%) was provided by aversive white noise. Thus the

reinforcement contingencies were quite similar to those

employed by Eisenegger et al. (2014) and Pessiglione et al.

(2006), above. The optimal strategy in such a discrimination is

of course to respond exclusively to the ‘majority’ reinforced

stimulus, i.e. 80%. This does mean that the marmoset has to

remember the overall associative strengths associated with its

choices and ignore, for example, occasional punishment for

responding to the 80% stimulus, and occasional reward asso-

ciated with the ‘minority’ (20%) stimulus. Disproportionate

reactivity to such immediate feedback, e.g. to shift away from

the majority stimulus following ‘spurious’ punishment, or to

stay with the minority stimulus following ‘spurious’ reward,

would both serve to retard overall learning. Thus, the rein-

forcement contingencies in this task can be described as occa-

sionally being ‘misleading’ and affecting their overall ‘truth-

fulness’ or ‘falsity’, i.e. ‘veracity’, with respect to the overall

discrimination task.

Bearing in mind these subtle contingencies, the behaviour-

al changes caused by OFC DA depletion were quite complex

and initially difficult to characterise. The OFC DA depleted

monkeys were faster to learn, i.e. they made fewer errors to

criterion than sham-operated controls. More detailed analysis

revealed that this was because the OFCDA depleted monkeys

were less affected by ‘false’ punishment, so that they more

rapidly discriminated the 80% reinforced, majority stimulus

with fewer shifts to the 20% reinforced, minority stimulus.

The OFC DA depleted monkeys were not though less sensi-

tive to ‘true’ punishment. Deeper analysis however revealed

some difficulties with this simple formulation. Although the

effect clearly depends on the prior history of outcomes, when

behaviour was analysed for dependencies further back in the

sequence of trials (n-back), also taking into account apparent

stimulus preferences of the monkeys, this failed to provide a

satisfactory description of their behavioural choices.

Therefore, in order to gain further understanding of this

change in behaviour, it was characterised further using com-

putational reinforcement learning models. Two major classes

were considered. The first was termed ‘model-based’ (or ‘de-

clarative’) learning, in which the subjects are assumed to have

expectancies about outcomes and track the reinforcement

probabilities with varying degrees of certainty, based on in-

corporating the current evidence into their prior estimates of

them. Thus an ‘ideal subject’would estimate the overall prob-

ability of reinforcement for each stimulus (utilising logical

inference to update the associative strengths or values of both

stimuli on each trial rather than simply focusing on one stim-

ulus), represent its uncertainty about those estimates, and

choose so as to maximise the reward obtained. The subject

might in principle have elaborate hypotheses about the struc-

ture of the task, for example, anticipating when reversals may

occur on the basis of sequences of trial outcomes. This is

essentially an ‘optimal Bayesian’ class of models.

The second class of models was described as being ‘model-

free’ (the animal does not form a ‘model’ or declarative set of

expectations about the environment) and depends on simple

reinforcement rules. Value-based delta reinforcement learning

algorithms simply assign a value to each stimulus or action in

a single update manner, and choose accordingly; the values

are updated according to rules and parameters determining the

impact of reward or punishment (e.g. sensitivity to reward or

punishment, or to reinforcement in general). There is thus no

overall strategy for representing the environment as a whole.

Some additional parameters were also defined. One of these

was the tendency to prefer one stimulus over the other, irre-

spective of its reinforcement contingencies—i.e. the likeli-

hood of repeating a choice of that stimulus, or ‘stimulus stick-

iness’. The second was an analogous tendency to prefer one

response location because it had been chosen on the previous

trial (‘side stickiness’). Consideration of these local strategic

tendencies appeared likely to explain some of the behavioural

choices of the marmoset, as had earlier been acknowledged by

the type of analysis advocated by Sahgal and Clincke (1985)

described above. Full computational details of these two clas-

ses of model can be found in Clarke et al. (2014).

Thus, several different models were formulated for the be-

havioural data and tested against one another for the best fit to

the data using a standard method called the Bayesian

Information Criterion (BIC), which takes into account such

factors as the number of parameters employed (fewer being

better). (Statistical methods move on, and more recent work

has improved the optimal method for Bayesian model

comparison; see Gronau et al. 2017.) The ‘winning’, simple

reinforcement learningmodel (Box 1) included parameters for

(1) sensitivity to overall reinforcement, regardless of valence,

(2) stimulus stickiness and (3) side stickiness. OFC DA deple-

tion modulated the model’s parameters, affecting both rein-

forcement sensitivity and local response strategies.

Specifically, it reduced side stickiness and increased reinforce-

ment sensitivity (irrespective of whether for reward [gain] or

punishment [loss]). Of these two effects, the latter was most

important for simulating the observed reduction of errors to

criterion and was also found to correlate negatively with D2

receptor binding in the head of the caudate nucleus (but, im-

portantly, not in the OFC itself). This reduction in errors could

be inferred to correlate with increased DA levels in the head of

the caudate. By contrast, the side stickiness parameter corre-

lated better with D2 receptor binding in the body of the cau-

date, which is consistent with the role of the dorsal striatum in

egocentric spatial processing (e.g. Brasted et al. 1997).

These results lead to several interesting implications. First,

they are consistent with a view that striatal DA changes are not

only important for reinforcement learning, but additionally may

affect local strategies such as side bias, probably via effects on

striatal tonic levels (as the OFC DA depletion did not affect

phasic striatal DA release, determined by microdialysis of this

2300 Psychopharmacology (2019) 236:2295–2305



region with K+ pulses). The reduced side bias may even reflect

an increased tendency to ‘exploration’ (c.f. Cohen et al. 2007),

analogous to effects of systemic d-amphetamine to increase

response switching in an uncertain environment (Evenden

and Robbins 1983) and also to the strategies of acute psychotic

patients exposed to a random 2-choice guessing game (Frith

and Done 1983). Indeed, other studies of patients with schizo-

phrenia using a similar probabilistic reversal learning procedure

(e.g. Waltz and Gold 2007; Waltz et al. 2007, 2013;

Schlagenhauf et al. 2014) have also shown changes in param-

eters of reinforcement learning, illustrating the translational po-

tential of this approach. Specifically, medicated first episode

patients with schizophrenia exhibit probabilistic reversal learn-

ing as an apparent consequence of increased switching and

impaired reinforcement sensitivity (Waltz et al. 2013). Whilst

D2 receptor antagonists certainly affect probabilistic reinforce-

ment learning parameters in healthy volunteers, as we have

described above, the study by Schlagenhauf et al. 2014) con-

firmed that the behavioural deficits in probabilistic reversal

were also present in unmedicated patients with schizophrenia.

The latter study also showed that it was feasible to use compu-

tational modelling to identify individual differences in how

patients may approach tests such as probabilistic reversal and

thus provide a basis for stratification that may help to resolve

heterogeneity in clinical populations.

Computational modelling applied to a serotoninergic
translational model of affective disorder

The probabilistic (reversal) learning paradigm has also been

used in the context of defining certain deficits in depression.

Apart from the relevance of changes in reinforcement learning

in this patient group, some early studies noted a particularly

relevant effect that may relate directly to certain symptoms in

depression associated with Beck’s ‘negative set’—the tenden-

cy to focus on negative aspects of experience. Thus, Murphy

et al. (2003) reported that patients with major depressive dis-

order exhibited a significant tendency to shift responding after

negative feedback. Whilst this may appear to be a normal

consequence of Thorndike’s (1898) Law of Effect (see

Thorndike 1911), it is clearly disadvantageous in certain cir-

cumstances when, as in the 80:20 reinforcement contingency

for the ‘majority’ stimulus, it is appropriate to stay after a loss

or negative feedback rather than to shift. This aberrant shifting

behaviour is obviously disadvantageous and was later shown

to occur in unmedicated patients with depression in an fMRI

setting, where it was correlated with the absence of a deacti-

vation in the amygdala that usually occurs in control subjects

in this task (and also with a possibly regulatory absence of a

prefrontal cortical activation that hypothetically regulates this

amygdaloid response) (Taylor Tavares et al. 2008).

Other studies have focused on possible neurochemical cor-

relates of this apparently heightened reactivity to negative

feedback, specifically mediated by serotonin—guided by the

fact that depression often responds to selective serotonin re-

uptake inhibitors (SSRIs) (Anderson et al. 2008). These ef-

fects of medication are a major source of evidence in support

of the serotoninergic hypothesis of depression, which has

some additional limited support from PETstudies of the status

of 5-HT receptors and the 5-HT transporter in major depres-

sive disorder (e.g. Reimold et al. 2008; Kaufman et al. 2015).

Chamberlain et al. (2006) reported that low doses of the SSRI

citalopram impaired performance on a probabilistic learning par-

adigm in healthy volunteers. Skandali et al. (2018) recently

followed up these findings in a similar group of volunteers to

show increased shifting in response to negative feedback.

In order to test these effects more mechanistically in a ro-

dent model, Bari et al. (2010) designed a spatial version of the

probabilistic reversal task in which reinforcement was

assigned according to 80:20 and 20:80 contingencies. Dose-

related effects of both acute and sub-chronic citalopram were

investigated. Effects of central depletion of 5-HT were also

determined following intra-ventricular application of 5,7-

dihydroxytryptamine, leading to profound forebrain 5-HT

loss. The main findings are summarised in Table 1. As can

be seen, the effects of an acute low dose (1 mg/kg) and high

(10 mg/kg) dose were almost opposite in direction.

Importantly, the acute low dose simulated what has been

shown human studies, i.e. increased lose-shift behaviour that

interferes with the number of reversals achieved, whereas the

acute high dose (which presumably produces a net increase in

5-HT transmission via its effects on the 5-HT transporter)

improved overall performance. Interestingly, repeated or

sub-chronic citalopram also improved reversal performance

although via increased win-stay rather than reduced lose-

shift behaviour, suggestive of some other neurochemical ac-

tion. Finally, profound depletion of forebrain 5-HT produced a

pattern of findings that resembled acute low-dose citalopram.

Overall, these findings are consistent with the human findings,

but they do not identify the neural loci at which these effects

occur.

Functional brain imaging studies of the probabilistic learn-

ing and reversal task have implicated fronto-striatal systems as

well as the amygdala (Cools et al. 2002; Pessiglione et al.

2006; Taylor Tavares et al. 2008). Therefore, in a study by

Rygula et al. (2014), we focused on effects of regional 5-HT

depletion (via 5,7-dihydroxytrypamine) of the amygdala and

orbitofrontal cortex in marmosets, using a form of the visual

probabilistic reversal task employed byClarke et al. (2014) for

studying effects of orbitofrontal DA depletion.

These treatments, which produced up to 80% local deple-

tion of 5-HT within about a month after surgery, had behav-

ioural effects analogous to those seen in the human studies. 5-

HT depletion in the amygdala impaired performance on the

visual probabilistic reversal by increasing the effectiveness of

‘misleading’ negative feedback. OFC 5-HT depletion had

Psychopharmacology (2019) 236:2295–2305 2301



similar (but only trend level) effects. However, computational

modelling during the learning phase found, perhaps surpris-

ingly, that the behavioural data for that stage in both sites

could be accounted for with a relatively simple delta rule

reinforcement learning model, similar to that used in Clarke

et al. (2014) for the orbitofrontal DA depletion experiment

described above. The effects on probabilistic learning could

mainly be explained by reductions in reinforcement sensitivity

(operating similarly for reward and punishment), both for 5-

HT depletion of the amygdala and for the weaker effects ob-

served for the orbitofrontal cortex. However, increased ‘stim-

ulus stickiness’ (i.e. the tendency to repeat responding to the

same visual stimulus, regardless of feedback; Box 1) also

offered a potential explanation of some of the data at the latter

site, whereas the amygdala 5-HT depletion tended to have

opposite effects on stimulus stickiness. These models were

generated and tested in the same way as before; the final test

was to determine to what extent they could simulate the orig-

inal behavioural data (Fig. 3).

In this example, computational modelling has not fully vin-

dicated the analysis that manipulation of 5-HT function specif-

ically enhances effect of misleading negative feedback in fa-

vour of a more general detrimental action on reinforcement.

This needs to be resolved by further experiments and

analysis. It was not feasible to apply the computational model

to the reversal phases in Rygula et al. (2014) because of the

relative lack of data and the well-known problem of ‘over-

fitting’ the model. The modelling does raise the possibility that

not only is the impact of false negative feedback affected by 5-

HT, but also that of false positive feedback—in other words, is

the tendency to repeat rewarded responses for the minority

stimulus also increased? This parameter has not previously

been analysed, e.g. in the study of Bari et al. (2010) or the

clinical studies, generally because these events did not occur

at sufficient frequency.

On the other hand, the effect of orbitofrontal 5-HT deple-

tion may be compatible with a number of other findings.

Seymour et al. (2012) found that acute dietary tryptophan

depletion in healthy human volunteers tended to increase stim-

ulus stickiness, and the findings may also contribute to our

understanding of the effects of orbitofrontal 5-HT loss on

deterministic visual reversal learning in marmosets (Clarke

et al. 2004). A parallel modelling project has been analysing

the performance of patients with obsessive-compulsive disor-

der (OCD) and stimulant drug dependence on the visual prob-

abilistic reversal learning task, finding opposite effects, for

Table 1 Effects of 5-HT manipulations on probabilistic spatial reversal in rats
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example, on stimulus stickiness (greater in stimulant depen-

dence, but reduced in OCD) (Kanen et al. 2019). These ex-

amples provide considerable hope that it may ultimately be

feasible to generalise findings of effects of neurotransmitter

manipulations from experimental animals (rodent and mon-

keys) to humans, including patients, and the effects of medi-

cations in a new translational agenda that utilises computa-

tional modelling as a unifying strategy for reducing differ-

ences among experimental test paradigms and allowing gen-

eralisations at a more theoretical level.

Model-based versus model-free learning

Most of the modelling we have performed thus far on data

from experimental animals has found that rather simple,

reinforcement-based models have proven adequate to account

for the data rather than the more representationally elaborate

‘model-based’ learning now increasingly used to characterise

human performance. The two-stage Markov decision-making

task introduced by Daw (2011) enables a direct comparison to

be made of effects of drugs or neurochemical manipulations

on model-based versus model-free learning, in the same indi-

vidual. A full description of the task and its rationale is pro-

vided elsewhere (Daw 2011). In general, it has some affinities

with the simpler probabilistic learning in that it is sometimes

optimal to resist the usual urges to repeat successful choices

and to shift from unsuccessful ones, in order to maximise

reinforcement. This task has increasingly been employed to

make comparisons between patient groups and healthy con-

trols, commonly finding that there is a shift towards model-

free learning, for example in stimulant dependence or OCD

(e.g. Voon et al. 2015). Pharmacological studies are at present

at an earlier stage, however. Wunderlich et al. (2012) reported,

perhaps surprisingly, that a dose of L-DOPA selectively en-

hanced model-based learning, perhaps as a consequence of its

actions in the ventral striatum (Deserno et al. 2015). Had it

been ethically permissible to employ higher doses, these may

have alternatively had effects on model-free behaviour via the

dorsal striatum. Worbe et al. (2016) modified the task to in-

clude a parallel set of contingencies to avoid loss (in addition

to the usual ones for gain) and studied the effects of acute

dietary tryptophan depletion. This treatment had striking ef-

fects on model-based versus model-free learning that

depended on affective valence. Tryptophan depletion en-

hanced model-free processing when it was appetitive, but

model-based performance when aversive. This strongly sug-

gests again that a manipulation of 5-HT can have asymmetri-

cal effects on reward and aversive processing, as suggested by

the original observations on patients with depression (Murphy

et al. 2003) and some of the pharmacological studies of 5-HT

function. We can anticipate further studies with these evolving

test procedures to be made with more precise neurobiological

interventions in experimental animals.

Summary and conclusions

‘Computational psychopharmacology’, like computational psy-

chiatry (Heinz 2017), is a young and nascent field that seems

to be worthy of further development, especially in a transla-

tional context that links the two. We have summarised recent

findings from a specific set of test paradigms based around

probabilistic learning and reversal learning that show some

promise in uncovering new principles about drug or neuro-

chemical effects, of possible relevance to pharmacotherapeutics.

However, rather than merely describing behavioural effects of

Fig. 3 Retrodicting actual

behavioural data in probabilistic

learning by marmoset monkeys

by the ‘winning’ (best-fitting)

reinforcement learning model

(right). Open squares, sham-

operated group. Filled circles,

amygdala 5-HT depleted group.

Filled triangles, orbitofrontal 5-

HT depleted group. The

amygdala 5-HT depleted group

exhibited impairments in

responding to both ‘misleading’

and ‘truthful’ feedback, which

were accurately modelled as a

deficit in reinforcement

sensitivity. Reproduced from

Rygula et al. (2014)
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drugs, the emergent models will also have to make contact

with plausible psychological constructs, explain psychiatric

symptoms, and make testable predictions for other test settings

and situations, in order for them to become fully pragmatic and

paradigmatic.
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