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Computational quantum chemistry for single Heisenberg spin

couplings made simple: Just one spin flip required

Nicholas J. Mayhall and Martin Head-Gordon∗

Kenneth S. Pitzer Center for Theoretical Chemistry,

Department of Chemistry, University of California,

Berkeley, California 94720, USA and

Chemical Sciences Division, Lawrence Berkeley National Laboratory

Abstract

We highlight a simple strategy for computing the magnetic coupling constants, J , for a com-

plex containing two multiradical centers. On the assumption that the system follows Heisenberg

Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a

single electron is excited (and spin-flipped), from the single reference with maximum Ŝz, M , to the

M − 1 manifold, regardless of the number of unpaired electrons, 2M , on the radical centers. In

an active space picture involving 2M orbitals, only one β electron is required, together with only

one α hole. While this observation is extremely simple, the reduction in the number of essential

configurations from exponential in M to only linear provides dramatic computational benefits.

This (M,M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory

counterpart of the various projected broken symmetry density functional theory schemes, and like-

wise gives explicit energies for each possible spin-state that enable evaluation of properties. The

approach is illustrated on five complexes with varying numbers of unpaired electrons, for which

one spin-flip calculations are used to compute J . Some implications for further development of

spin-flip methods are discussed.
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I. INTRODUCTION

Transition metal complexes often exhibit strongly correlated electronic states, partic-

ularly if there are multiple metals in the complex. A strongly correlated wave function

contains contributions of roughly equal magnitude from multiple electron configurations,

in contrast to the single configuration that is dominant in typical closed shell molecules or

simple radicals.1 In most cases, the electronic structure of strongly correlated states is chal-

lenging to model using computational methods, because standard density functional theory

(DFT)2,3 and wave function electronic structure methods4 are based on a single reference

configuration. On the other hand, multiconfigurational methods5,6 in general scale expo-

nentially with the number of strongly correlated electrons, which precludes applications to

systems where this number is large. Whilst it is an open research area, new methods are

being actively pursued to prevent this exponential scaling. Examples include pairing theo-

ries based on coupled-cluster theory,7–14 density matrix renormalization group methods,15–18

reduced density matrix theory,19–21 improved antisymmetric geminal power wavefunctions,22

and Löwdin partitioning techniques.23–25

Given the electronic structure challenge, it is no surprise that strongly correlated states

are usually difficult to understand in physical terms. However there are exceptions. Amongst

the most important cases are molecules containing two weakly interacting radical centers,

each with some number of well-localized unpaired electrons. The low-lying, strongly cor-

related states involve the recoupling or spin-pairing of the unpaired electrons into all the

different possible total spin states, according to the Clebsch-Gordon series. To an excellent

approximation, the resulting spectrum of low energy states can usually be mapped onto the

phenomenological Heisenberg-Dirac-Van Vleck (HDVV) spin hamiltonian,26–28

ĤHDVV = −2JŜaŜb (1)

where the only interaction, J , is the isotropic magnetic coupling constant between magnetic

sites a and b, and Ŝa is the spin operator for center a only. J completely determines the low

energy spectrum, where the gap between any two adjacent states of spin, S, is given as,

E(S)− E(S − 1) = −2SJ, (2)

which is known as the Landé interval rule.29
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The simplified HDVV description of the electronic structure makes it possible to obtain

straightforward statistical mechanics expressions for bulk properties such as the paramag-

netic susceptibility, χ. The Van Vleck equation defines χ as a function of both J and

temperature (T).28 By fitting the Van Vleck equation to an experimental χ vs. T plot, one

can obtain an experimentally determined magnetic coupling constant, J .

Electronic structure calculations, on the other hand, are capable of providing explicit state

energies for each spin multiplicity directly. The J values can then be determined directly

via the Landé interval rule in Eq. 2. However, due to the multiconfigurational nature of

the lower spin states, this remains a practical challenge. While multireference methods can

be successful in computing, J ,30–33 the computational cost of such calculations increases

exponentially with the number of unpaired electrons, as already discussed above. Therefore

it is important to understand clearly the minimum extent to which strong correlations must

be treated in order to correctly obtain J , which is the purpose of this paper.

The most important existing approach is due to Noodleman, who showed that it is, in

fact, possible to obtain an approximate description of such systems using only a single-

configuration method, such as Hartree-Fock (HF) or density functional theory (DFT).34 In

this approach, a broken symmetry DFT solution, (a configuration with excess α on one metal

and excess β on the other and denoted as |BS⟩ ) is treated as a mixture of the spin-pure

high spin state, |HS⟩, and low spin antiferromagnetic state, |AF⟩ .

By mapping the electronic Hamiltonian, Ĥ, onto the phenomenological HDVV Hamilto-

nian, and using a suitable spin projection of |BS⟩ , the J values can be obtained from,

⟨HS| Ĥ |HS⟩ − ⟨BS| Ĥ |BS⟩

= ⟨HS| ĤHDVV |HS⟩ − ⟨BS| ĤHDVV |BS⟩
(3)

Because ĤHDVV returns the energy difference between the |HS⟩ and |BS⟩ states in units

of J , the energy of the |AF⟩ state can be estimated. The effectiveness of BS-DFT relies

on the fact that the |BS⟩ solution includes implicit coupling with ionic configurations via

orbital relaxation, which results in non-orthogonal magnetic orbitals. Compared to mul-

tireference methods, BS-DFT presents an enormous advantage in terms of computational

efficiency, which explains why BS-DFT has become the most popular strategy for modeling

antiferromagnetically coupled complexes.

BS-DFT is, however, not fully satisfactory. In addition to the formal objections related
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FIG. 1: Schematic representation of the comparison of computing J with a BS-DFT, 3SF, or 1SF

calculations for a complex with 6 strongly correlated electrons (for instance the dichromium com-

plex shown in Figure 2). The highest spin configuration is shown at the far left, with all spins

aligned parallel. From this reference, three possibilities are shown, indicated the spin-contaminated

BS-DFT solution, the 3SF-CI wavefunction consisting of 400 determinants, and the 1SF-CI wave-

function consisting of only 36 determinants. For the 3SF and 1SF illustrations, only a single

representative configuration is shown. The far right illustrates the spin states accessible by each

of the three strategies. The order of the states increase with increasing energy.

to the spin-contamination of the |BS⟩ state, the spin-projection is not unique, and multiple

expressions have been put forth, all of which can (and do) provide different results.34–38

Furthermore, the fraction of exact exchange strongly affects the relative energies of the high-

spin and broken-symmetry solutions, resulting in a strong dependence of J on the choice

of DFT functional.39–41 In light of these ambiguities (and notwithstanding its successes), a

well defined and systematically improvable alternative methodology is highly desirable.

II. PROCEDURE

As the focus of the current article, we suggest a simple and efficient strategy to obtain

J constants from conventional ab initio wavefunction methods which is well-defined, and

can be free from spin-contamination. We advocate using the EHS − EHS-1 energy gap for

determining J , where |HS-1⟩ is taken to be the lower multiplicity spin state, adjacent to
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|HS⟩ (i.e., SHS-1 = SHS − 1). The expression for J is then given by,

J = −EHS − EHS-1

2SHS
, (4)

where SHS is the total spin of the highest spin state, |HS⟩.

The choice of the |HS⟩ state is because one of its components is typically well described

as a single configuration: the highest M = SHS component is simply obtained by placing all

the radical orbitals in the α space, while leaving the β space empty. There are 2SHS unpaired

electrons. With a good single reference, the ferromagnetic |HS⟩ state can be calculated using

standard electronic structure methods.

The choice of the |HS-1⟩ state is because its highest M = SHS − 1 component shows

minimal strong correlations; a result of preserving as much ferromagnetic coupling as pos-

sible. We can see this in two complementary ways, which we discuss in turn. The first

viewpoint is on the basis of an active space, where the natural active space is the set of

orbitals defined by the half-occupied orbitals of the |HS⟩ state. To access the M = SHS − 1

component, 2SHS − 1 α electrons are assigned to occupy the 2SHS α orbitals, while 1 β

electron is assigned to the 2SHS β orbitals. Since there is only 1 hole in the α active space,

and only 1 electron in the β active space, the number of essential configurations rises only

linearly in the size of the active space, 2SHS.42 This is a great contrast with the exponential

dependence of the number of essential configurations on 2SHS in the lowest spin state, and

is the essence of the advantage of our procedure.

The second viewpoint is in terms of the spin-flip approach,43 which have been extensively

developed for configuration interaction (CI) methods43–49, coupled cluster (CC) theory,50,51

and DFT.52,53 This approach provides a capable methodological framework which is well

suited for describing energy differences between states of different multiplicity. Spin-flip

methods begin from the single reference which is the highest multiplicity state of low en-

ergy. This reference is naturally |HS⟩ in our case. From the high-spin reference, spin-flipping

excitations (α → β) are then performed to generate superpositions of lower spin determi-

nants.

While the |AF⟩ state could be computed directly using SF if all possible spins are flipped,

(and recent SF-CI methods, such as RAS-SF,48,49,54 SF-CAS(h,p),55 and SF-CAS(S),56 are,

in fact, designed for flipping multiple spins), the computational cost of flipping all spins

increases exponentially with number of unpaired electrons. However, if only the Ms = S−1
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TABLE I: Magnetic couplings, J , (cm−1) for the dichromium complex, A, as computed with the

SF-CAS method and different numbers of spin flips. The spin states used to compute a given J

constant are specified in parentheses (S → S − 1). The 6-31G* basis set was used for all SF-CAS

calculations.

Number of Configurations Multiplicities Accessible J(3 → 2) J(2 → 1) J(1 → 0)

ROHF 1 7 – – –

1SF-CAS 36 5,7 -46.80 – –

2SF-CAS 225 3,5,7 -46.80 -46.93 –

3SF-CAS 400 1,3,5,7 -46.80 -46.93 -46.97

component of the |HS-1⟩ state is sought, it suffices to perform a single excitation spin-flip

(1SF) calculation, of which several realizations are already implemented.43–45,50,52,53,57 Single

spin-flips describe the least entangled wave functions obtainable from |HS⟩ at vastly lower

computational cost than accessing |AF⟩ by multiple spin flips.

The general result that a 1SF calculation might be used in place of an n-spin-flip calcu-

lation coincides with the strategy used within the multireference community in which only

the two highest spin multiplets are used for computing J (when the HDVV Hamiltonian

is valid).42 This reveals a slightly more general interpretation of the spin-flip methodol-

ogy altogether. While the SF-CIS method (1SF) can be described as full CI for the “two

electrons-in-two orbitals” problem, requiring only a single electron excitation as opposed

to two excitations with non-spin-flip CI, the correspondence with multireference methods

described above illustrates that SF-CIS might just as well be described as full CI for the

⟨S2⟩ = n(n− 2)/4 state of the “n electrons-in-n orbitals” problem.

To summarize, by properly exploiting the HDVV Hamiltonian for a bimetallic complex,

one can use a single excitation spin-flip method to extract the J constant, regardless of the

number of electrons on each metal. A schematic representation of this approach is depicted

in Fig. 1, using an example with three unpaired electrons on each metal center.
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FIG. 2: Bimetallic complex structures. A [Cr2(NH3)10(O)]4+ has six unpaired electrons,

with three on each metal. B [FeII2 OCl6]
−2 has ten unpaired electrons, with five on each

metal. C [Cr2(NH3)10(OH)]5+ has six unpaired electrons, with three on each metal. D

[GaCr(tren)2(CA
sq,cat)](BPh4)2(BF4) has four unpaired electrons, three on Cr(III) and one on

the oxidized ligand, L. E [Mn(3-MeOsalen)(H2O)(µ-NC)Cr(bipy)(CN)3]·H2O has seven unpaired

electrons, three on Cr(III) and four on Mn(III).
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TABLE II: Magnetic couplings, J , (cm−1) for the diiron complex, B, as computed with the SF-CAS

method and different numbers of spin flips. The spin states used to compute a given J constant

are specified in parentheses (S → S − 1). Because the SF-CAS calculations grow very quickly in

size for a (10,10) active space, calculations larger than 2SF-CAS were not done for this system.

The 6-31G* basis set was used for all SF-CAS calculations.

Configurations Multiplicities Accessible J(5 → 4) J(4 → 3) J(3 → 2) J(2 → 1) J(1 → 0)

ROHF 1 11 – – – – –

1SF-CAS 100 9,11 -30.9 – – – –

2SF-CAS 2025 7,9,11 -30.9 -31.1 – – –

3SF-CAS 14400 5,7,9,11 N/A N/A N/A – –

4SF-CAS 44100 3,5,7,9,11 N/A N/A N/A N/A –

5SF-CAS 63504 1,3,5,7,9,11 N/A N/A N/A N/A N/A

III. EXAMPLE CALCULATIONS

To illustrate the concepts put forth in this paper, we consider five bimetallic complexes.

The experimental nuclear coordinates are used, and the structures are shown in Fig. 2. All

calculations were performed with the Q-Chem program.64,65

A. Configuration space size versus J value

In Tables I and II, we demonstrate how the number of spins flipped has a negligible effect

on the resulting J couplings using the simplest spin-pure method, SF-CAS.

The first structure in Fig. 2, A, is a dichromium complex, which has two antiferromag-

netically coupled oxo-bridged Cr(III) centers, each harboring three unpaired electrons. A

direct calculation of the ground state requires one to move from the high spin heptet to the

low spin singlet via three spin flips. In this way, the J value for this complex has previ-

ously been computed using several active-space 3SF-CI methods.49,56 However, as discussed

above, if the HDVV Hamiltonian is a good model of the system, a simple 1SF calculation

should be sufficient for extracting J . This is numerically demonstrated in Table I, where

the 1SF-CAS, 2SF-CAS, and 3SF-CAS calculations are shown. Negligibly different J values

are obtained from each pair of adjacent spin states. Given the dimensionality differences
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TABLE III: Application of explicitly single spin flip methods to the five complexes shown in Fig. 2.

Magnetic coupling constants, J , are given in cm−1. SC indicates that results could not be obtained

due to spin-contamination. The 6-31G* basis set was used for all but the DMRG results, which

used customized basis sets as specified in Ref. 58

J A: Cr-O-Cr B: Fe-O-Fe C: Cr-OH-Cr D: Cr-L E: Cr-CN-Mn

Spin-Complete

SF-CAS -46.8 -30.9 -2.6 -41.8 -0.2

SF-CAS(S) -117.2 -145.2 -7.9 -160.8 -1.0

Spin-Incomplete

SF-CIS -56.5 -33.2 -3.6 SC SC

SF-CIS(D) -111.6 -78.8 -6.7 SC SC

EOM-SF-CCSD -158.1 -118.4 -9.3 SC SC

SF-DFT (50/50) -165.5 -156.1 -10.0 SC SC

DMRG -165.9a -117.4b – – –

Experiment -225c -112d -15.8e < -243f -2.8g

aActive space = (12,32) Reference 58.

bActive space = (16,26) Reference 58.

cReference 59.

dReference 60.

eReference 61.

fReference 62.

gReference 63.

between the different values of ms (see Table I), it is clearly preferable to diagonalize the ab

initio Hamiltonian in the ms = n− 1 = 2 sub-block (1SF), rather than the ms = n− n = 0

sub-block (3SF). The scheme in Fig. 1 illustrates the presented strategy for complex A.

The second molecule, B, is an antiferromagnetically coupled, oxo-bridged diiron complex.
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Each iron center contains five unpaired electrons. Because the high spin reference has ten

alpha electrons, accessing the singlet ground state requires five spin flips. This is a quintuple

excitation operator, which, even if only performed within an active space as in SF-CAS,

becomes a rather large number of configurations. The size of the configuration space for each

number of spin flips is shown in Table II. This diiron complex provides an excellent example

of the computational advantages afforded by being able to leverage the HDVV Hamiltonian

assumption. Although the number of configurations required to directly compute the ground

state in the 5SF-CAS method is 63504, the J constant can, alternatively, be obtained from a

calculation comprised of only 100 determinants via a single spin flip from the 11-et reference.

B. Comparison of 1SF methods to experiment

To demonstrate the ability to obtain reasonably accurate results, we have used a variety

of single spin-flip methods to compute the J-couplings for all the complexes shown in Fig.

2. In addition to complexes A and B, three additional complexes are included for the

comparison to experiment. These are also shown in Fig. 2.

Complex C contains an antiferromagnetically coupled pair of Cr(III) centers. Compared

to A, C has a weaker J-coupling due to the protonation of the oxo-bridge. The protonated

oxygen disrupts the linearity of the bridge, resulting in decreased spin-coupling.

ComplexD contains a Cr(III) center with three unpaired electrons, coupled to an oxidized

ligand which contains a single unpaired electron. This example is different from the other

systems in that one of the radical bearing units is neither a metal, nor a single atom.

Nonetheless, the Heisenberg model can be used to understand the electronic structure of

this complex.

The heterometallic complex E contains both a Cr(III) and a Mn(III), bridged by a cyano

group. The extended separation between the metal centers reduces the spin-coupling.

In Table III, the J-couplings are given for the complexes in Fig. 2 using a variety of single

spin-flip methods. The first two methods are based on ROHF orbitals and are completely

spin-pure, while the remaining methods are based on UHF orbitals, and are not generally

spin-pure. The spin-pure and non-spin pure methods will be discussed in turn.

The first two spin-pure methods, SF-CAS and SF-CAS(S),56 are actually capable of

performing multiple spin-flips. However, the results here only include calculations in which
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one spin was flipped. Thus, the computational advantage of only flipping one spin made these

calculations very efficient. For each of the complexes, SF-CAS significantly underestimated

the J values. Containing only excitations within the unpaired orbitals, SF-CAS provides a

poor description of the ionic configurations, a fact which is well documented.42 SF-CAS(S)

is a perturbative extension of SF-CAS in which single excitations outside of the singly-

occupied orbitals are allowed to couple to the determinants in the SF-CAS perturbatively.56

For SF-CAS(S) calculations consisting of only a single spin-flip, this represents a second-

order approximation to the SF-XCIS method. As seen in Table III, the perturbative singles

correction has a significant effect, and enhances all the J-couplings considered. With the

exception of B, the SF-CAS(S) still underestimates the experimental values, but to a much

lesser degree than SF-CAS.

The remaining wavefunction methods, SF-CIS, SF-CIS(D), and EOM-SF-CCSD, have

neither spin-pure orbitals, nor spin-complete determinant expansions. As a result, spin-

contamination can become a problem, making it difficult or impossible to obtain J-couplings,

since it can become impossible to label a given state as being to a single spin multiplicity.73

For complexes A-C, the observed levels of spin-contamination happened to be negligible.

This allowed the spin-incomplete methods to be used for computing J . For complexes D

and E, spin-contamination was extensive and prevented J from being obtained.

The SF-CIS method is a purely one electron transition method, being comprised of single

excitations from all occupied α orbitals, to all unoccupied β orbitals. This includes the

subset of configurations that are present in the 1SF-CAS, in addition to excitations which

move α electrons out of the magnetic orbitals, and β electrons into the magnetic orbitals.

However, it is clear that these additional excitations should not contribute too significantly.

As such, the SF-CIS results for A-C are quite similar to the SF-CAS results. Furthermore,

inspection of the ⟨S2⟩ expectation values for the SF-CIS wavefunctions indicate minimal

mixing of this non-spin-complemented excitations. For A, the J constant is determined

from the energy gap between the heptet and the quintet. Proper spin eigenstates have ⟨S2⟩

values of 12 and 6, respectively. In comparison, the computed SF-CIS ⟨S2⟩ values are 12.07

and 6.04, indicating nearly zero spin contamination. Similarly, C has high spin and low spin

⟨S2⟩ values of 30.05 and 20.03, respectively, an almost perfect comparison with the expected

values of 30 and 20. Unfortunately, the spin-incomplete models could not be used with D

and E due to high levels of spin-contamination.
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For systems capable of being qualitatively described by SF-CIS, the SF-CIS(D) method

can be used to perturbatively include dynamical correlation energy to refine J . In A-C,

dynamical correlation from SF-CIS(D), brings the experimental and theoretical J values

into better agreement. A comparison of the SF-CIS(D) results with EOM-SF-CCSD,44,45,50

provides insight into the accuracy of the perturbative SF-CIS(D) correction. Table III reveals

that while SF-CIS(D) recovers a fair amount of the electron correlation component of J , there

is still a non-trivial difference between SF-CIS(D) and EOM-SF-CCSD. However, even at

the EOM-SF-CCSD level, complex A is still underestimated, compared to the experimental

values. This is likely due to the small, 6-31G* basis set used for these results.

Although this paper focuses primarily on the application of wavefunction methods for

computing J constants, the spin-flip framework admits a DFT formulation as well.52,53,57

Because time-dependent DFT contains only single excitations, SF-DFT has been limited

to computing only singlet/triplet or doublet/quartet energy gaps directly.66–69 However, as

we have already demonstrated, with the help of a HDVV Hamiltonian, J constants can

be computed from single spin-flip calculations. SF-DFT is no exception, and as a simple

example, we also report SF-DFT results in Table III using the 50% exact exchange functional

recommended in the original SF-DFT paper.57 For the molecules which are not plagued

by spin-contamination, SF-DFT offers similar accuracy to the more expensive SF-CIS(D).

However, as with BS-DFT, the choice-of-functional degree of freedom is still present.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we highlight a dramatic shortcut that can be taken when using spin-flip

methods for computing magnetic coupling constants of bimetallic complexes. For cases

where a Heisenberg Hamiltonian applies, the well known Landé interval rule allows J to be

computed from any two adjacent spin-states. This enables one to compute J from the energy

gap between the highest spin, S, state, and the S − 1 state. These are exactly the states

described from a one spin-flip excitation, which are the simplest and least computationally

demanding SF methods. Consequently, one spin-flip CI calculations can be used to compute

J , regardless of the number of electrons on the spin-coupled metal sites, with no need to

flip larger numbers of spins at exponentially increasing cost. This approach is a well defined

analog of the popular BS-DFT approaches that is spin-pure (if the corresponding SF methods

12



are also spin-pure).

The results in this paper have the immediate consequence that currently developed spin-

flip methods can be used for a broader range of problems, and provides a renewed motivation

for the development of new spin-pure spin-flip methods, the most obvious of which would

be an extension of the SF-XCIS method47 for dealing with asymmetric spin determinants.74

The need for spin-pure spin-flip methods is especially highlighted by the problems with

spin-contamination in complexes D and E.

An additional benefit of this approach is that the extrapolated ground state |AF⟩ energy

can be written as a linear combination of the reference |HS⟩ energy and the 1SF-CI energy,

which makes geometry optimizations of the ground state |AF⟩ state immediately possible,

provided that the 1SF-CI method has gradients available.

Of course, since the Heisenberg Hamiltonian is only a phenomenological model, there

may be interactions missing in Eq. 1, but present in the ab initio Hamiltonian (low-lying

non-Hund states, zero-field splitting), which create deviations from the Landé predicted

energy gaps. Although, the ability of experimentalists to successfully obtain quality fits

of the HDVV Hamiltonian to experimental data is supportive of the underlying model, if

an adequate fit cannot be obtained, additional interactions (such as those with non-Hund

states), which define a biquadratic Heisenberg Hamiltonian,70–72 can be included into the

HDVV Hamiltonian which depend quadratically on the local spin moments.

H = −2JŜaŜb + j(ŜaŜb)
2 (5)

This contains two parameters, and so one would minimally need to perform a 2SF-CI

calculation, to have enough equations (three spin states) to fully parameterize the Hamil-

tonian. A 2SF-CI calculation is still computationally efficient compared to flipping all

spins when large active spaces are needed, and multiple two spin-flip methods have been

implemented.48,51 However, the motivation for the current paper draws on the ubiquity of

the simple HDVV Hamiltonian. As such, we put off a detailed consideration of non-Landé

behavior for future work. Another very interesting topic is the generalization to larger

numbers of radical sites.
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