
Computational REST:

A new model for Decentralized,

Internet-Scale Applications

Justin R. Erenkrantz

Final Defense

September 3, 2009

This material is based upon work supported by the National Science Foundation

under Grant Numbers 0438996 and 0820222. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the author

and do not necessarily reflect the views of the National Science Foundation.

Runaway success of the Web

Netcraft Site Count History

http://news.netcraft.com/archives/2009/07/site_count_history.png

Netcraft

239 million sites

30% are “active”
July 2009

http://www.worldwidewebsize.com/: 21.8 billion pages

The Nielsen Company

Average home user views

1,591 pages/month
May 2009

http://www.nielsen-online.com/resources.jsp?section=pr_netv

http://news.netcraft.com/archives/2007/08/site_count_history.gif
http://news.netcraft.com/archives/2007/08/site_count_history.gif

How did we get here?

In the early-to-mid-90s, the Web faced a

crossroads: how could the Web scale?

Software architecture, in particular, the

REpresentation State Transfer (REST)

style [Fielding, 2000] guided crucial

reformations introduced in HTTP/1.1

Permitted the superscaling of the Web

3

Puzzling web apps: Google Maps

4

Research Question

What happens when dynamism is

introduced into the Web?

5

Dynamism: Phenomena that must be explained

as a manifestation of change, whether through

interpretation or alteration of the interpreter.

Dramatis personae of the Web

REST: architectural style

HTTP/1.1: protocol governed by REST

URI: naming convention (http://...)

Apache HTTP Server: origin server

Squid: gateway and proxy

Firefox, Safari, Internet Explorer: user agent

6

REpresentation State Transfer

Started in mid ‘90s; captured in Fielding’s

dissertation (2000) and TOIT (2002)

Guided the reformations introduced in

HTTP/1.1 and URI specifications

Designed for Internet-scale distributed

hypermedia

Few (if any) clarifications since then...

7

REST Axioms

1. The key abstraction of information is a resource, named

by an URL.

2. The representation of a resource is a sequence of bytes,

plus representation metadata to describe those bytes.

3. All interactions are context-free.

4. Only a few primitive operations are available.

5. Idempotent operations and representation metadata are

encouraged in support of caching.

6. The presence of intermediaries is promoted.
8

Approach

Examine evolution of key infrastructure applications

Identify the root causes of dissonance in Web applications

which are not fully explained by REST

Introduce a named set of architectural principles (style)

that provide more applicable guidance for web applications

Assess the effectiveness of these principles by:

characterizing the dissonance seen in existing systems

against new style

creating a framework based on the new style that

demonstrates novel web applications
9

Insight: Apache modules &

Browser plugins

With little explicit coordination among

developers during this period, critical web

infrastructure applications evolved rapidly

to support dynamism - both architectural

and content-focused.

10

Insight: mod_mbox/Subversion

Even for knowledgeable practitioners of REST,

REST, in isolation, does not provide enough

design guidance for architects to understand

why applications fall into architectural

dissonance.

11

Insight: Web Services

Due to implementation deficiencies, SOAP-

based Web Services (and its sibling Service

Oriented Architectures) are incapable of

realizing the promise of fine-grained,

composable services without fundamentally

violating the REST axioms that permitted

the web to scale.

12

Insight: RESTful Services

Even for hypermedia-related services - such

as document management (via WebDAV) -

the construction of “RESTful” services has

produced inconsistent and incomplete

interfaces. Non-content related services

have proven even more difficult to create.

13

Insight: New Web Apps

14

In some emerging

Web applications,

computation has

appeared as a

first-class concept.

Mobile code

Mobile agents did not succeed, but code on

demand and remote evaluation have found

niches [Carzaniga, ICSE 2007]

Remote evaluation via exchange of

expressions: Scheme in Tubes [Halls, 1997]

15

Insight: Mobile Code

Due to the improvements in the JavaScript

engines, the modern browser is far more

powerful and capable today than it was in

the mid-’90s. Distributed mobile code

systems can be built on top of existing Web

infrastructure.

16

Hypothesis

We can construct a set of axioms that more

precisely and effectively guide the architecture

of Web applications. These axioms can also

further facilitate new and fundamentally

different classes of applications to be deployed

on the Web than the originally intended

distributed hypermedia applications.

17

CREST Design Considerations

18

Computations and their expressions are explicitly named.

Services may be exposed through a variety of URLs which offer perspectives on

the same computation; interfaces may offer complementary supervisory

functionality such as debugging or management.

Functions may be added to or removed from the binding environment over time

or their semantics may change.

Computational loci may be stateful (and thus permit indirect interactions

between computations), but must also support stateless computations.

Potentially autonomous computations exchange and maintain state;

 A rich set of stateful relationships exist among a set of distinct URLs.

The computation is transparent and can be inspected, routed, and cached.

The migration of the computation to be physically closer to the data store is

supported thereby reducing the impact of network latency.

CREST Axioms

1. A resource is a locus of computations, named by an URL.

2. The representation of a computation is an expression

plus metadata to describe the expression.

3. All computations are context-free.

4. Only a few primitive operations are always available, but

additional per-resource and per-computation operations

are also encouraged.

5. The presence of intermediaries is promoted.

19

CREST Design Considerations

20

Computations and their expressions are explicitly named. (CA1, CA2)

Services may be exposed through a variety of URLs which offer perspectives on

the same computation. (CA1); interfaces may offer complementary supervisory

functionality such as debugging or management. (CA4)

Functions may be added to or removed from the binding environment over time

or their semantics may change. (CA4)

Computational loci may be stateful (and thus permit indirect interactions

between computations), but must also support stateless computations. (CA3)

Potentially autonomous computations exchange and maintain state (CA2, CA3);

A rich set of stateful relationships exist among a set of distinct URLs. (CA1)

The computation is transparent and can be inspected, routed, and cached. (CA5)

The migration of the computation to be physically closer to the data store is

supported thereby reducing the impact of network latency. (CA2)

Validation

Characterizing the dissonance seen in

existing systems against new style

Creating a framework based on the new

style that demonstrates novel applications

21

Dissonance redux: AJAX

Migration and latency: Moving

computation from server to client results

in visually-rich low-latency applications.

Mashups: Goggles, AP News feeds, etc.

CREST also predicts as yet unseen forms

of mashups.

22

New types of mashups

Derived mashups: Source of a mashup is

a mashup itself; combination happens on

an intermediary rather than a browser

Higher-order mashups: a mashup that

accepts one or more mashups as input

and outputs a mashup itself

23

Novel applications on the Web

CREST can serve as the foundation for new

classes of decentralized, Internet-based

applications.

24

Demo

Thanks to Michael Gorlick, Yongjie Zheng, and Alegria

Baquero.

CREST Overview

26

C
C

C

C

C

Weak (Browser) Peer

Weak (Browser) Peer

Weak (Browser) Peer

Weak (Browser) Peer

Safari

Firefox

iPhone

Android Phone

Exemplary Peer

Exemplary Peer

JSON via HTTP

C

CC

C C

CREST Peers

27

SISC Scheme
Interpreter

Sham
(HTTP/1.1 server)

Imposter
(HTTP/1.1 client)

Apache HC
(HTTP components)

Java Virtual Machine

Apache Abdera
(ATOM syndication)

CREST
computations

C-1

C-2
C-3

JavaScript
Interpreter

Dojo Framework

Browser

CREST (weak)
computationsC-4

C-5
C-6

C-7

Weak

Peers

Exemplary

Peers

CREST Computations

28

MANAGER

URL

SELECTOR
CALENDAR

QR CODESPARKLINE

TAG CLOUD

Google NEWS

RSS READER

MANAGER

Artist

URL SELECTOR

Artist

CALENDAR

Artist

Google NEWS

Artist

RSS READER

Artist

MIRROR

Artist

QR CODE

Artist

SPARKLINE

Artist

TAG CLOUD

Artist

RSS Source

Weak

Peer

Exemplary

Peer

Demo (redux)

Demo FAQs

Isn’t this Google Wave?

Wave is just a shared XML document.

Isn’t this web services?

Yes, but far more powerful than SOA.

Composability is free.

Nano-services can be installed.

30

Research Question redux

What happens when dynamism is

introduced into the Web?

31

The underlying architecture of the Web

shifts, from a focus on the exchange of

static content to the exchange of active

computations.

Future Work

Gorlick: Streaming

state kinematics

Recombinant services

Smart (power) grid,

smart cargo, etc....

Bring framework to

Apache

32

Contributions

Analysis of the essential architectural decisions of the web,

followed by generalization, opens up an entirely new space

of decentralized, Internet-based applications

Recasting the web as a mechanism for computational

exchange instead of content exchange

A new architectural style to support this recasting (CREST)

Demonstrating how CREST better explains dissonance

A framework for building applications backed by CREST

33

Questions?

