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COMPUTATIONAL SCALES OF SOBOLEV NORMS
WITH APPLICATION TO PRECONDITIONING

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND PANAYOT S. VASSILEVSKI

Abstract. This paper provides a framework for developing computation-
ally efficient multilevel preconditioners and representations for Sobolev norms.
Specifically, given a Hilbert space V and a nested sequence of subspaces
V1 ⊂ V2 ⊂ . . . ⊂ V , we construct operators which are spectrally equiva-
lent to those of the form A =

∑
k µk(Qk −Qk−1). Here µk , k = 1, 2, . . . , are

positive numbers and Qk is the orthogonal projector onto Vk with Q0 = 0. We
first present abstract results which show when A is spectrally equivalent to a

similarly constructed operator Ã defined in terms of an approximation Q̃k of
Qk , for k = 1, 2, . . . .

We show that these results lead to efficient preconditioners for discretiza-
tions of differential and pseudo-differential operators of positive and negative
order. These results extend to sums of operators. For example, singularly per-
turbed problems such as I−ε∆ can be preconditioned uniformly independently
of the parameter ε. We also show how to precondition an operator which re-
sults from Tikhonov regularization of a problem with noisy data. Finally, we
describe how the technique provides computationally efficient bounded discrete
extensions which have applications to domain decomposition.

1. Introduction

Multilevel subspace decompositions provide tools for the construction of pre-
conditioners. One of the first examples of such a construction was provided in
[3], where a simple additive multilevel operator (BPX) was developed for precon-
ditioning second order elliptic boundary value problems. This preconditioner was
defined in terms of a nested sequence of multilevel piecewise linear and continuous
approximation spaces V1 ⊂ V2 ⊂ . . . ⊂ VJ . The analysis of the BPX preconditioner
involves the verification of norm equivalences of the form

‖u‖2H1(Ω) '
J∑
k=1

h−2
k ‖(Qk −Qk−1)u‖2L2(Ω), for all u ∈ VJ .(1.1)

The above norms are those corresponding to the Sobolev space H1(Ω) and L2(Ω)
respectively; Qk denotes the L2(Ω) orthogonal projection onto Vk and Q0 = 0.
The quantity hk is the approximation parameter associated with Vk. The original
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results in [3] were sharpened by [13] and [20] to show that (1.1) holds with constants
of equivalence independent of J . Practical preconditioners involve the replacement
of the operator Qk −Qk−1 by easily computable operators, as discussed in [3].

In addition to the above application, there are other practical applications of
multilevel decompositions. In particular, for boundary element methods, it is im-
portant to have computationally simple operators which are equivalent to pseudo-
differential operators of order one and minus one. In addition, multilevel decom-
positions which provide norm equivalences for H1/2(∂Ω) can be used to construct
bounded extension operators used in nonoverlapping domain decomposition with
inexact subdomain solves.

The equivalence (1.1) is the starting point of the multilevel analysis. This in-
equality is valid for J =∞, in which case we get a norm equivalence on H1(Ω). It
follows from (1.1) that

‖v‖2Hs(Ω) '
∞∑
k=1

h−2s
k ‖(Qk −Qk−1)v‖2L2(Ω),

for s ∈ [0, 1]. Here ‖ ·‖Hs(Ω) denotes the norm on the Sobolev space Hs(Ω) of order
s. This means that the operator

As =
∞∑
k=1

h−2s
k (Qk −Qk−1)(1.2)

can be used in preconditioning applications. However, As is somewhat expensive to
evaluate, since the evaluation of the projector Qk requires the solution of a Gram
matrix problem. Thus, many researchers have sought computationally efficient
operators which are equivalent to As.

Some techniques for constructing such operators based on wavelet or wavelet–
like space decompositions are given by [5], [9], [10], [15], [16], [18], [19] and others.
In the domain decomposition literature, extension operators that exploit multilevel
decomposition were used in [4], [8], and [12].

In this paper, we construct simple multilevel decomposition preconditioning op-
erators which can also be used to define norms equivalent to the usual norms on
Sobolev spaces. Specifically, we develop computationally efficient operators which
are uniformly equivalent to the more general operator

AJ =
J∑
k=1

µk(Qk −Qk−1),(1.3)

where 1 ≤ J ≤ ∞ and {µk} are positive constants. We start by proving an abstract
theorem. Let {Q̃k}, with Q̃k : VJ → Vk, be another sequence of linear operators.
The theorem shows that the operators AJ and

ÃJ =
J∑
k=1

µk(Q̃tk − Q̃tk−1)(Q̃k − Q̃k−1)(1.4)

are spectrally equivalent under appropriate assumptions on the spaces Vk, the oper-
ators Q̃k and the sequence {µk}. Here Q̃tk is the adjoint of Q̃k. The abstract results
are subsequently applied to develop efficient preconditioners when Q̃k is defined in
terms of a simple averaging operator. Some partial results involving the operator
used here were stated by Nepomnyaschikh [12].
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Because of the generality of the abstract results, they can be applied to pre-
conditioning sums of operators. An example of this is the so-called “singularly
perturbed” problem resulting from preconditioning parabolic time stepping prob-
lems, which leads to

µk = (εh−2
k + 1)−1.

Here ε is the time step size. Our results give rise to preconditioned systems with
uniformly bounded condition numbers independent of the parameter ε.

Note that an L2-stable local basis for the spaces {Range(Qk−Qk−1)} is provided
in [16]. With such a construction it is possible to obtain preconditioners for the
applications considered in this paper. However, our approach is somewhat simpler
to implement. In addition, our abstract framework allows for easy application to
other situations such as function spaces which are piecewise quadratic.

An outline of the remainder of the paper is as follows. Section 2 gives an ab-
stract framework for norm approximation in a Hilbert space setting, along with an
abstract theorem which provides equivalence estimates comparing (1.3) and (1.4).
In Section 3 we give an example of a sequence {Q̃k} of computationally efficient
operators in the case of polygonal domains, and verify that they satisfy the hy-
potheses required for application of the abstract theory. In Section 4 we discuss
some applications. Finally, the results of numerical experiments which illustrate
the effectiveness of the preconditioners are reported in Section 5.

2. A norm equivalence theorem

In this section, we provide abstract conditions which imply the spectral equiva-
lence of (1.3) and (1.4). We start by introducing the multilevel spaces. Let V be
a Hilbert space with inner product (·, ·). We assume that we are given a nested
sequence of approximation subspaces,

V1 ⊂ V2 ⊂ . . . ⊂ V,
and that this sequence is dense in V . Let θj , j = 1, 2, . . . , be a non-decreasing
sequence of positive real numbers. Define H to be the subspace of V such that the
norm

|||v||| =
( ∞∑
j=1

θj‖(Qj −Qj−1)v‖2
)1/2

is finite. Here ‖ · ‖ denotes the norm in V , Qj for j > 0 denotes the orthogonal
projection onto Vj , and Q0 = 0. Clearly, H is a Hilbert space and {Vk} is dense in
H .

The following properties are obvious from the construction.
1. The “inverse inequality” holds for Vj , i.e.,

|||v||| ≤ θ1/2
j ‖v‖, for all v ∈ Vj .(2.1)

2. The “approximation property” holds for Vj , i.e.,

‖(Qj −Qj−1)v‖ ≤ θ−1/2
j |||v||| , for all v ∈ H.(2.2)

As discussed in the introduction, the abstract results will be stated in terms of
an additional sequence of “approximation” operators, Q̃k : V → Vk for k > 0 and
Q̃0 = 0. These operators are assumed to satisfy the following three conditions, for
k = 1, 2, . . . .
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1. An “approximation property”: There exists a constant CA such that

‖(Qk − Q̃k)v‖ ≤ CAθ−1/2
k |||v||| , for all v ∈ H.(2.3)

2. Uniform coercivity of Q̃k: There exists a δ > 0 such that

δ‖vk‖2 ≤ (Q̃kvk, vk), for all vk ∈ Vk.(2.4)

3. The range of Q̃tk, the adjoint of Q̃k, is contained in Vk. This condition is
equivalent to

Q̃kQk = QkQ̃k.(2.5)

Remark 2.1. Let {φi}mi=1 be a basis for Vk. It is not difficult to see that there exists
{fi}mi=1 with fi ∈ V such that

Q̃kv =
m∑
i=1

(v, fi) φi for all v ∈ V.

Then

Q̃tkw =
m∑
i=1

(w, φi) fi for all w ∈ Vk.

Thus Condition 3 above holds if and only if fi ∈ Vk, for i = 1, . . . ,m.

The purpose of this section is to provide abstract conditions which guarantee
that the symmetric operators AJ and ÃJ , defined respectively by (1.3) and (1.4),
are spectrally equivalent. Let L = (`k,j) be the lower triangular (infinite) matrix
with nonzero entries

`k,j =
(
θjµk
θkµj

)1/2

, k ≥ j.(2.6)

We assume that L has bounded l2 norm, i.e.,

‖L‖`2 ≡ sup
{ξk}, {ζk}

∞∑
k=1

∑
j≤k

`k,j ξkζj( ∞∑
k=1

ξ2
k

)1/2 ( ∞∑
k=1

ζ2
k

)1/2
≤ CL.(2.7)

The above condition implies that

µk ≤ Cθk
for C = C2

Lµ1/θ1. Thus, (AJv, v) <∞ for all v ∈ H .
We introduce one final condition: There exists a constant α such that

µk + µk+1 ≤ αµk, for k = 1, 2, . . . .(2.8)

We can now state the main abstract theorem.

Theorem 2.1. Assume that conditions (2.3)–(2.5), (2.7), and (2.8) are satisfied.
Then the operator ÃJ defined by (1.4), with 1 ≤ J ≤ ∞, satisfies

[3(1 + αδ−2C2
AC

2
L)]−1(AJv, v) ≤ (ÃJv, v)

≤ 3(1 + αC2
AC

2
L) (AJv, v), for all v ∈ H.

Remark 2.2. If W is the completion of H under the norm ‖v‖A = (A∞v, v)1/2,
then the estimate of Theorem 2.1 extends to all of W by density.
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For the purpose of proving the theorem, we now prove the following lemma.

Lemma 2.1. Assume that conditions (2.3)–(2.5), and (2.7) are satisfied. Then,
for all u ∈ H,

J∑
k=1

µk‖(Qk − Q̃k)u‖2 ≤ C2
AC

2
L (AJu, u)(2.9)

and
J∑
k=1

µk‖(Qk − Q̃k)u‖2 ≤ δ−2C2
AC

2
L (ÃJu, u).(2.10)

Proof. By (2.5), for all u ∈ H ,
J∑
k=1

µk‖(Qk − Q̃k)u‖2 =
J∑
k=1

µk ((Qk − Q̃k)Qku, (Qk − Q̃k)u)

=
J∑
k=1

k∑
j=1

µk ((Qk − Q̃k)(Qj −Qj−1)u, (Qk − Q̃k)u).

(2.11)

In addition, by (2.4) and (2.5),

J∑
k=1

µk‖(Qk − Q̃k)u‖2 ≤ δ−1
J∑
k=1

µk (Q̃k(Qk − Q̃k)u, (Qk − Q̃k)u)

= δ−1
J∑
k=1

µk ((Qk − Q̃k)Q̃ku, (Qk − Q̃k)u)

= δ−1
J∑
k=1

k∑
j=1

µk ((Qk − Q̃k)(Q̃j − Q̃j−1)u, (Qk − Q̃k)u).

(2.12)

The quantities on the right hand side of (2.11) and of (2.12) can be written as
J∑
k=1

k∑
j=1

µk ((Qk − Q̃k)vj , (Qk − Q̃k)u)(2.13)

by setting vj equal to (Qj − Qj−1)u and (Q̃j − Q̃j−1)u, respectively. Using (2.1)
and (2.3), the quantity (2.13) is bounded by

J∑
k=1

k∑
j=1

µk ((Qk − Q̃k)vj , (Qk − Q̃k)u)

≤ CA
J∑
k=1

k∑
j=1

µkθ
−1/2
k |||vj ||| ‖(Qk − Q̃k)u‖

≤ CA
J∑
k=1

k∑
j=1

µk(θj/θk)1/2‖vj‖‖(Qk − Q̃k)u‖

= CA

J∑
k=1

k∑
j=1

`k,j (µ1/2
j ‖vj‖)(µ

1/2
k ‖(Qk − Q̃k)u‖).

(2.14)
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It immediately follows from (2.7) that
J∑
k=1

k∑
j=1

µk ((Qk − Q̃k)vj , (Qk − Q̃k)u)

≤ CACL
( J∑
k=1

µk‖vk‖2
)1/2( J∑

k=1

µk‖(Qk − Q̃k)u‖2
)1/2

.

(2.15)

Combining (2.11) and (2.15) gives
J∑
k=1

µk‖(Qk − Q̃k)u‖2

≤ CACL
( J∑
k=1

µk‖(Qk −Qk−1)u‖2
)1/2( J∑

k=1

µk‖(Qk − Q̃k)u‖2
)1/2

.

The inequality (2.9) follows by obvious manipulations, and (2.10) follows in a similar
manner.

Proof of Theorem 2.1. Note that

(Q̃k − Q̃k−1) = (Qk −Qk−1)− (Qk − Q̃k) + (Qk−1 − Q̃k−1).

Thus, for v ∈ H ,

(ÃJv, v) =
J∑
k=1

µk‖(Q̃k − Q̃k−1)v‖2

≤ 3
( J∑
k=1

µk‖(Qk −Qk−1)v‖2 +
J∑
k=1

(µk + µk+1)‖(Qk − Q̃k)v‖2
)

≤ 3(1 + αC2
AC

2
L) (AJv, v).

We used (2.8) and Lemma 2.1 for the last inequality above. The proof for the other
inequality is essentially the same. This completes the proof of the theorem.

2.1. Development of preconditioners. The above results can be applied to the
development of preconditioners. Indeed, consider preconditioning an operator on
VJ which is spectrally equivalent to

LJ =
J∑
k=1

µ−1
k (Qk −Qk−1).(2.16)

Our preconditioner BJ is to be spectrally equivalent to the operator

AJ ≡ L−1
J =

J∑
k=1

µk(Qk −Qk−1).

Let

BJ =
J∑
k=1

µk(Q̃k − Q̃k−1)t(Q̃k − Q̃k−1).(2.17)

Then BJ and AJ are spectrally equivalent provided that {µk} and {Q̃k} satisfy the
hypothesis of the theorem. It follows that BJLJ is well conditioned.
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2.2. Preconditioning sums of operators. We next consider the case of pre-
conditioning sums of operators. Suppose {µ̂k} is another sequence which satisfies
conditions (2.7) and (2.8). Then the operator

L̂J =
J∑
k=1

µ̂−1
k (Qk −Qk−1)(2.18)

can be preconditioned by the operator defined by replacing µk by µ̂k in (2.17)
above. The following corollary shows that the result can be extended to non-
negative combinations of LJ and L̂J .

Corollary 2.1. Assume that conditions (2.3)–(2.5) are satisfied and that (2.7) and
(2.8) hold for both {µk} and {µ̂k}. For nonnegative c1, c2 with c1 + c2 > 0 define

BJ =
J∑
k=1

(c1µ−1
k + c2µ̂

−1
k )−1(Q̃k − Q̃k−1)t(Q̃k − Q̃k−1).(2.19)

Then, for 1 ≤ J ≤ ∞,

[3(1 + 4αδ−2C2
AC

2
L)]−1((c1LJ + c2L̂J)−1v, v) ≤ (BJv, v)

≤ 3(1 + 4αC2
AC

2
L) ((c1LJ + c2L̂J)−1v, v), for all v ∈ H.

The above corollary shows that BJ is spectrally equivalent to (c1LJ + c2L̂J)−1

and hence provides a uniform preconditioner for c1LJ +c2L̂J . Moreover, the result-
ing condition number (for the preconditioned system) is bounded independently of
the parameters c1 and c2.

Proof. Note that

(c1LJ + c2L̂J)−1 =
J∑
k=1

(c1µ−1
k + c2µ̂

−1
k )−1(Qk −Qk−1).

To apply the theorem to this operator, we simply must check the conditions on the
sequence µ̃k = (c1µ−1

k + c2µ̂
−1
k )−1. The corresponding lower triangular matrix has

entries

(L̃)k,j =
(
θjµ̃k
θkµ̃j

)1/2

=

(
θj(c1µ−1

j + c2µ̂
−1
j )

θk(c1µ−1
k + c2µ̂

−1
k )

)1/2

≤
(
θj
θk

(
µk
µj

+
µ̂k
µ̂j

))1/2

≤
(
θjµk
θkµj

)1/2

+
(
θjµ̂k
θkµ̂j

)1/2

= (L+ L̂)k,j .

Since 0 ≤ (L̃)k,j ≤ (L+ L̂)k,j , for every pair k, j, it follows that

‖L̃‖`2 ≤ ‖L+ L̂‖`2 ≤ 2CL.

Because (2.8) holds for both {µk} and {µ̂k}, it clearly holds for {µ̃k}. The corollary
follows by application of the theorem.

3. A simple approximation operator Q̃k

In this section, we define and analyze a simple approximation operator Q̃k. Our
applications involve Sobolev spaces with possibly mixed boundary conditions.

Let Ω be a polygonal domain in R2 with boundary ∂Ω = ΓD∪ΓN , where ΓD and
ΓN are essentially disjoint. Dirichlet boundary conditions are imposed on ΓD. We
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consider domains in R2 for convenience. Generalizations of the results to domains
in Rd, with d > 2, at least for rectangular parallelepipeds, are straightforward.

For non-negative integers s, let Hs(Ω) denote the Sobolev space of order s on Ω
(see, e.g. [6],[7]). The corresponding norm and semi-norm are denoted ‖ · ‖Hs(Ω)

and | · |Hs(Ω) respectively. The space H1
D(Ω) is defined to be the functions in H1(Ω)

which vanish on ΓD, and, for s > 1, Hs
D(Ω) = Hs(Ω) ∩ H1

D(Ω). For positive
non-integers s, the spaces Hs(Ω) and Hs

D(Ω) are defined by interpolation between
the neighboring integers using the real method of Lions and Peetre (cf. [7]). For
negative s, Hs(Ω) is defined to be the space of linear functionals for which the norm

‖u‖Hs(Ω) = sup
φ∈H−sD (Ω)

〈u, φ〉
‖φ‖H−sD (Ω)

is finite. Here 〈·, ·〉 denotes the duality pairing. Clearly, for s < 0 we have L2(Ω) ⊆
Hs(Ω) if we identify u ∈ L2(Ω) with the functional 〈u, φ〉 ≡ (u, φ).

3.1. Some basic approximation properties. Let T be a locally quasi-uniform
triangulation of Ω, and let τ be a closed triangle in T with diameter hτ . Let τ̃
be the subset of the triangles in T whose boundaries intersect τ , and define Vτ̃
to be the finite element approximation subspace consisting of functions which are
continuous on τ̃ and piecewise linear with respect to the triangles of τ̃ . Note that
there are no boundary conditions imposed on the elements of Vτ̃ . We restrict the
discussion in this paper to piecewise linear subspaces. Extensions to more general
nodal finite element subspaces pose no significant additional difficulties.

The following facts are well known.
1. Given u ∈ H1(τ̃ ), there exists a constant ũ such that

‖u− ũ‖Hs(τ̃) ≤ Ch1−s
τ |u|H1(τ̃), s = 0, 1.(3.1)

2. Given u ∈ H2(τ̃ ), there exists a linear function ũ such that

‖u− ũ‖Hs(τ̃) ≤ Ch2−s
τ |u|H2(τ̃), s = 0, 1, 2.(3.2)

The best constants satisfying the above inequalities clearly depend on the shape
of the domain τ̃ . However, under the assumption that the triangulation is locally
quasi-uniform, it is possible to show that the above inequalities hold with constants
only depending on s and on the quasi-uniformity constants.

For the purpose of analyzing our multilevel example we define the following local
approximation operator Q̃τ̃ : L2(Ω) → Vτ̃ . Let φi, i = 1, 2, . . . ,m, be the nodal
basis for Vτ̃ . The operator Q̃τ̃ is given by

Q̃τ̃u =
m∑
i=1

(u, φi)τ̃
(1, φi)τ̃

φi,(3.3)

with (·, ·)τ̃ the inner product in L2(τ̃ ). For u, v ∈ L2(τ̃ ) we have

(Q̃τ̃u, v)τ̃ =
m∑
i=1

(u, φi)τ̃ (v, φi)τ̃
(1, φi)τ̃

,

and hence it immediately follows that Q̃τ̃ is symmetric on L2(τ̃ ). Moreover, Q̃τ̃ is
positive definite when restricted to Vτ̃ (see Lemma 3.4). The next lemma provides
a basic approximation property for Q̃τ̃ .
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Lemma 3.1. Let τ be in T . Then for s = 0, 1, there exists a constant C, indepen-
dent of τ , such that

‖u− Q̃τ̃u‖L2(τ̃) ≤ Chsτ‖u‖Hs(τ̃), for all u ∈ Hs(τ̃ ).(3.4)

Proof. A simple computation shows that

‖Q̃τ̃u‖L2(τ̃) ≤ C‖u‖L2(τ̃),

from which (3.4) immediately follows for s = 0. For s = 1, let ũ be the constant
function satisfying (3.1). Using the previous estimate, since Q̃τ̃ ũ = ũ, we have

‖u− Q̃τ̃u‖L2(τ̃) ≤ ‖u− ũ‖L2(τ̃) + ‖Q̃τ̃ (u− ũ)‖L2(τ̃) ≤ C‖u− ũ‖L2(τ̃).

Combining the above inequalities and (3.1) completes the proof of (3.4) for s =
1.

3.2. Approximation properties: the multilevel case. We provide stronger
approximation properties in the case when the mesh results from a multilevel re-
finement strategy. Again we describe the case of d = 2. The analogous constructions
for d > 2, at least for the case of rectangular parallelepipeds, are straightforward
generalizations. Assume that an initial coarse triangulation T1 of Ω has been pro-
vided with ΓD aligning with the mesh T1. By this we mean that any edge of T1 on
∂Ω is either contained in ΓD or intersects ΓD at most at the endpoints of the edge.
Multilevel triangulations are defined recursively. For k > 1, the triangulation Tk is
defined by breaking each triangle in Tk−1 into four, by connecting the centers of the
edges. The finite element space Vk consists of the functions which are continuous
on Ω, piecewise linear with respect to Tk and vanish on ΓD. Let hk = maxτ∈Tk hτ .
Clearly, hk = 2−k+1h1.

We now define a sequence of approximation operators Q̃k : L2(Ω)→ Vk. Let φi,
i = 1, . . . ,m, be the nodal basis for Vk. We define Q̃k by

Q̃ku =
m∑
i=1

(u, φi)
(1, φi)

φi.(3.5)

Remark 3.1. Let τ be a triangle of Tk. It is easy to see that Q̃τ̃u and Q̃ku agree
on τ as long as τ ∩ ΓD = ∅.

In the multilevel case, we have the following stronger version of Lemma 3.1.

Lemma 3.2. Let s be in [0, 3/2). There exists a constant Cs, not depending on
hk, such that

‖u− Q̃ku‖L2(Ω) ≤ Cshsk‖u‖Hs(Ω), for all u ∈ Hs
D(Ω).

For the proof of the lemma we will use the following lemma, which is a slight
modification of Lemma 6.1 of [1]. Its proof is contained in the proof of Lemma 6.1
of [1].

Lemma 3.3. Let Ωη denote the strip {x ∈ Ω | dist(x, ∂Ω) < η}, and let 0 ≤ s <
1/2. Then, for all v ∈ H1+s(Ω),

‖v‖H1(Ωη) ≤ Cηs‖v‖H1+s(Ω).(3.6)

In addition, let ΩηD denote the strip {x ∈ Ω | dist(x,ΓD) < η}. Then, for all v in
H1
D(Ω),

‖v‖L2(ΩηD) ≤ Cη ‖v‖H1(Ωη).(3.7)
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Proof of Lemma 3.2. The proof for s = 0 is trivial (see Lemma 3.1). For positive s,
we consider two cases. First we examine triangles whose boundaries do not intersect
the boundary of any triangle in T1. We shall denote this set by τ ∩ T1 = ∅ and the
remaining set of triangles by τ ∩ T1 6= ∅.

Let φi be the nodal basis function in the space Vk associated with the node xki .
Assume that xki does not lie on the boundary of any triangle τ ∈ T1. Because of the
multilevel construction, the mesh Tk is symmetric with respect to reflection through
the point xki . It follows that the nodal basis function φi, restricted to a line passing
through xki , is an even function with respect to xki . Let xki = (p1, p2). Then, both
of the functions x− p1 and y − p2 are odd on each such line. Consequently,

(x − p1, φi) = (y − p2, φi) = 0.

Thus, it follows from Remark 3.1 that Q̃kũ(xki ) = ũ(xki ) for any linear function ũ.
Let τ be a triangle whose boundary does not intersect the boundary of any

triangle of T1. Applying the above argument to each node of τ shows that Q̃kũ = ũ
on τ for any linear function ũ. Let τ̃ be as in Lemma 3.1. Given u ∈ H2(τ̃ ), let ũ
be the linear function satisfying (3.2). As in the proof of Lemma 3.1, we get

‖u− Q̃ku‖L2(τ) = ‖u− Q̃τ̃u‖L2(τ) ≤ C‖u− ũ‖L2(τ̃) ≤ Chsk‖u‖Hs(τ̃)

for s = 0, 1, 2. Summing the above inequality and interpolating gives( ∑
τ∩T1=∅

‖u− Q̃ku‖2L2(τ)

)1/2

≤ Chsk‖u‖Hs(Ω)(3.8)

for s ∈ [0, 2].
We next consider the case when τ intersects an edge in the triangulation T1.

Suppose that τ intersects ΓD. We clearly have that

‖Q̃ku‖L2(τ) ≤ C‖u‖L2(τ̃).(3.9)

Thus,

‖u− Q̃ku‖L2(τ) ≤ C‖u‖L2(τ̃).

Summing the above inequality and applying (3.7) gives( ∑
τ∩ΓD 6=∅

‖u− Q̃ku‖2L2(τ)

)1/2

≤ Chk‖u‖H1(Ω2hk ).(3.10)

Finally, we consider the case when τ intersects an edge in the triangulation T1

and does not intersect ΓD. By Remark 3.1 and Lemma 3.1,

‖u− Q̃ku‖L2(τ) ≤ Chk‖u‖H1(τ̃).

Summing the above inequality and using (3.10) gives( ∑
τ∩T1 6=∅

‖u− Q̃ku‖2L2(τ)

)1/2

≤ Chk‖u‖H1(E2hk ).(3.11)

Here E2hk denotes the strip of width O(2hk) around all element edges from the
initial triangulation T1.
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The lemma for s = 1 follows by combining (3.8) and (3.11). The result for
s ∈ (0, 1) follows by interpolation. For 1 < s < 3/2, (3.6) and (3.11) imply( ∑

τ∩T1 6=∅
‖u− Q̃ku‖2L2(τ)

)1/2

≤ Chsk‖u‖Hs(Ω).

The lemma for 1 < s < 3/2 follows by combining the above inequality with (3.8).
This completes the proof of the lemma.

Remark 3.2. We can extend these arguments to the case when Vk consists of piece-
wise quadratic functions with respect to the k’th triangulation. Again {φk} denotes
the nodal basis for Vk. Then Q̃k defined by (3.5) satisfies Lemma 3.2. The proof is
identical to the case of linears.

3.3. The coercivity estimate. We next show that the coercivity estimate (2.4)
holds for Q̃k. Actually, we only require that the triangulation Th be locally quasi-
uniform. We assume that ΓD aligns with this triangulation and let Vh be the
functions which are piecewise linear with respect to this triangulation, continuous
on Ω and vanish on ΓD. We consider the linear operator Q̃h defined analogously
to Q̃k in (3.5) and show that

‖v‖2 ≤ C(Q̃hv, v), for all v ∈ Vh.

The constant C above only depends on the quasi-uniformity constant (or minimal
angle).

Let {xi} for i = 1, . . . ,m be the nodes of the triangulation and {φi} the corre-
sponding nodal basis functions. The mesh is quasi-uniform, so for each φi, there is
a parameter hi such that

hτ ' hi(3.12)

for all triangles τ which have the node xi as a vertex. Here we define a ' b to mean
that

a ≤ Cb and b ≤ Ca

with constant C independent of the triangulation. It is well known that

(v, v) '
∑
τ∈Th

h2
τ

∑
xl∈τ

v(xl)2, for all v ∈ Vh.(3.13)

It follows from (3.12) that

(v, v) '
m∑
i=1

h2
i v(xi)2, for all v ∈ Vh.(3.14)

We can now prove the coercivity estimate. This result was essentially given in [3]
for the case of a globally quasi-uniform triangulation.

Lemma 3.4. Assume that the mesh Th is locally quasi-uniform. There is a con-
stant C, depending only on the quasi-uniformity condition, such that

C−1(v, v) ≤ (Q̃hv, v) ≤ C (v, v), for all v ∈ Vh.
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Proof. Let G be the Gram matrix, i.e.

Gij = (φi, φj), i, j = 1, . . . ,m,

and let D be the diagonal matrix with entries Dii = h2
i . Let v be in Vh, and let w

be the coefficient vector satisfying

v =
m∑
i=1

wiφi.

Note that (3.14) can be rewritten as

C−1((Gw,w)) ≤ ((Dw,w)) ≤ C((Gw,w)), for all w ∈ Rm.
Here ((·, ·)) denotes the inner product on Rm. This is equivalent to

C−1((D−1Gw,Gw)) ≤ ((Gw,w)) ≤ C((D−1Gw,Gw)), for all w ∈ Rm.
Since

(1, φi) ' h2
i ,

it follows that

(Q̃hv, v) =
m∑
i=1

(v, φi)2

(1, φi)
=

m∑
i=1

((Gw)i)2

(1, φi)

' ((D−1Gw,Gw)) ' ((Gw,w)) = (v, v).

This completes the proof of the lemma.

4. Applications

In this section, we apply some of the above results. As we have seen in the
previous section, the operator Q̃k satisfies the approximation and coercivity esti-
mates required for application of the abstract results. Throughout this section, we
assume that V1 ⊂ V2 ⊂ . . . is a sequence of nested piecewise linear and continuous
multilevel spaces, as described earlier. We take V = L2(Ω), and (·, ·) is the corre-
sponding inner product. With a slight abuse of notation we also use (·, ·) to denote
the obvious duality pairing.

Remark 4.1. Since Vk ⊂ Hs(Ω), for 0 ≤ s < 3/2, Qk and Q̃k extend naturally to
all of H−s(Ω). Let −3/2 < s < 3/2 and define As as in (1.2). It is known that the
norm (Asu, u)1/2 is equivalent to ‖ · ‖Hs(Ω); cf. [14].

Fix γ < 3/2. By Lemma 3.2, the triangle inequality and well known properties
of Qk

‖(Qk − Q̃k)u‖L2(Ω) ≤ Cθ−1/2
k ‖u‖Hγ(Ω),

where θk = h−2γ
k . Let s < γ and set µk = h−2s

k . Then,

`k,j =
(
hk
hj

)γ−s
decays exponentially as a function of k− j. An elementary computation gives that

‖L‖ ≤ CL =
(

1−
(

1
2

)γ−s)−1

.

The next theorem immediately follows from Remark 4.1, Remark 2.2 and Theo-
rem 2.1.
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Theorem 4.1. Let −3/2 < s < 3/2. Then (Ã(s)u, u)1/2 provides a norm on
Hs
D(Ω) which is equivalent to the usual Sobolev norm. Here

Ã(s)u =
∞∑
k=1

h−2s
k (Q̃k − Q̃k−1)2u.

4.1. A preconditioning example. We consider applying the earlier results to
develop a preconditioner for an example involving a pseudo-differential operator of
order minus one. The canonical example of such an application is associated with
a form

V(u, v) =
∫

Ω

∫
Ω

u(s1)v(s2)
|s1 − s2|

ds1ds2.

For this application, ΓD is empty and we seek preconditioners for the problem:
Find U ∈ VJ satisfying

V(U, φ) = F (φ) for all φ ∈ VJ .

Here F is a given functional. It is shown in [2] that

V(u, u) ' ‖u‖2H−1/2(Ω) for all u ∈ VJ .(4.1)

It is convenient to consider the problem of preconditioning in terms of operators.
Specifically, let V : VJ → VJ be defined by

(Vv, w) = V(v, w) for all v, w ∈ VJ .

We shall see that Ã(1/2)
J defined by

Ã(1/2)
J =

J∑
k=1

h−1
k (Q̃k − Q̃k−1)2

provides a computationally efficient preconditioner for V . Indeed, by Theorem 2.1,

(Ã(1/2)
J u, u) ' (A1/2u, u) for all u ∈ VJ .

Applying Remark 4.1 and (4.1) gives us

(VA1/2u,A1/2u) ' (A−1/2A1/2u,A1/2u) = (u,A1/2u)

for all u ∈ VJ . Thus, Ã(1/2)
J V has a bounded spectral condition number.

It is easy to evaluate the action of Ã(1/2)
J in a preconditioned iteration procedure.

For k = 1, 2, . . . , J , let {φki } denote the nodal basis for Vk. In typical precondi-
tioning applications, one is required to evaluate the action of the preconditioner on
a function v where only the quantities {(v, φJi )} are known. One could, of course,
compute v from {(v, φJi )}, but this would require solving a Gram matrix problem.
Our preconditioner avoids the Gram matrix problem. To evaluate the action of Q̃k,
for 1 ≤ k ≤ J , one is only required to take linear combinations of the quantities
{(v, φki )}. Note that (v, φki ) is a simple linear combination of {(v, φk+1

i )}. Thus, we
see that all of the Q̃k’s can be computed efficiently (with work proportional to the
number of unknowns on the finest level J) by a V-cycle-like algorithm.
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4.2. Examples involving sums of operators. We next consider preconditioning
a sum of operators. The first example involves preconditioning the discrete systems
which result from time stepping a parabolic initial value problem. The second
example considers a Tikhonov regularization of a problem with noisy data.

Fully discrete time stepping schemes for parabolic problems often lead to prob-
lems of the form: Find u ∈ Sh satisfying

(u, φ) + εD(u, φ) = F (φ) for all φ ∈ Sh.(4.2)

Here D(·, ·) denotes the Dirichlet form on Ω and Sh is the finite element approxi-
mation. The parameter ε is related to the time step size and is often small. Assume
that Sh = VJ , where VJ is a multilevel approximation space as developed earlier.
Let µk = 1 and µ̂k = h2

k, for k = 1, 2, . . . . For convenience, we assume that ΓD is
non-empty, so that D(v, v) ' ‖v‖21 for all v ∈ H1

D(Ω). Then for LJ and L̂J defined
respectively by (2.16) and (2.18), we have

(LJv, v) ' (v, v) and (L̂Jv, v) ' D(v, v)

for all v ∈ VJ . Applying Corollary 2.1 we see that the operator

BJ =
J∑
k=1

(µ−1
k + εµ̂−1

k )−1(Q̃k − Q̃k−1)2(4.3)

provides a uniform preconditioner for the discrete operator associated with (4.2).
The resulting condition number for the preconditioned system can be bounded
independently of the time step size ε and the number of levels J .

We next consider an example which results from Tikhonov regularization of a
problem with noisy data. We consider approximating the solution of the problem

Tv = f,

where T denotes the inverse of the Laplacian and f ∈ L2(Ω). This is replaced by
the discrete problem

Thv = fh,

where Th is the Galerkin solution operator, i.e., Thv = w, where w ∈ VJ satisfies

D(w, θ) = (v, θ) for all θ ∈ VJ
and fh is the L2(Ω) orthogonal projection onto VJ . If it is known that v is smooth
but f is noisy, better approximations result from regularization [11], [17]. We
consider the regularized solution w̃ ∈ VJ satisfying

(Th + αAh)w̃ = fh.(4.4)

Here Ah : VJ → VJ is defined by

(Ahv, w) = D(v, w) for all v, w ∈ VJ .
The regularization parameter α is often small (see [17]), and can be chosen optimally
in terms of the magnitude of the noise in f .

Preconditioners for the sum in (4.4) of the form of (4.3) result from the appli-
cation of Corollary 2.1. In this case, µk = h−2

h , µ̂k = h2
k. The condition numbers

for the resulting preconditioned systems can be bounded independently of the reg-
ularization parameter α.

Preconditioners for systems like (4.4) are generally not easily developed. The
problem is that the operator applied to the higher frequencies (depending on the
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size of α) behaves like a differential operator, while on the lower frequencies it
behaves like the inverse of a differential operator. This causes difficulty in most
multilevel methods.

4.3. H1(Ω) bounded extensions. As a final application, we consider the con-
struction of H1(Ω) bounded extensions. Such extensions are useful in development
of domain decomposition preconditioners with inexact subdomain solves. The con-
struction given here is essentially the same as that in [12]. We include it here in
detail as an application of Theorem 4.1.

With {Vj} as above, let Ṽk (for k = 1, 2, . . . , J) be the functions defined on ∂Ω
which are restrictions of those in Vk. This gives a multilevel structure on the finest
space ṼJ . These spaces inherit a nodal basis from the original nodal basis on Vk.
The nodal basis function associated with a boundary node xi is just the restriction
of the basis function for Vk associated with xi. Denoting this basis by {ψki }, we
define

q̃k(f) =
∑ 〈f, ψki 〉
〈1, ψki 〉

ψki .

The above sum is taken over the nodal basis elements for Ṽk, and 〈·, ·〉 denotes the
L2(∂Ω) inner product. We note that it is known [14] that

‖θ‖2H1/2(∂Ω) '
J∑
k=1

h−1
k ‖(qk − qk−1)θ‖2L2(∂Ω),

where qk denotes the L2-projection onto Ṽk. It is easy to see that Theorem 4.1
holds for these spaces. Thus

‖θ‖2H1/2(∂Ω) '
J∑
k=1

h−1
k ‖(q̃k − q̃k−1)θ‖2L2(∂Ω),(4.5)

with q̃Jθ = θ and q̃0θ = 0.
Now, given a function θ ∈ ṼJ , we define EJθ ∈ VJ by EJθ =

∑J
k=1 ωk, with ωk

defined as follows. Let θ̄ be the mean value of θ on ∂Ω. Then ω1 is the function in
V1 satisfying

ω1(xi) =

{{
q̃1(xi) if xi is a node of V1 on ∂Ω,
θ̄ if xi is a node of V1 in the interior of Ω.

For J ≥ k > 1, ωk is the function in Vk satisfying

ωk(xi) =

{{
[q̃kθ − q̃k−1θ](xi) if xi is a node of Vk on ∂Ω,

0 if xi is a node of Vk in the interior of Ω.

Note that EJθ = θ on ∂Ω, so that EJ is an extension operator.
Recall that | · |H1(Ω) denotes the semi-norm on H1(Ω). Then

|EJθ|H1(Ω) = |EJθ − θ̄|H1(Ω) = |EJ (θ − θ̄)|H1(Ω) ≤ ‖EJ(θ − θ̄)‖H1(Ω).

We now use the following well known multilevel characterization of the H1(Ω) norm
on VJ :

‖v‖2H1(Ω) ' inf
J∑
k=1

h−2
k ‖vk‖

2
L2(Ω),
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where the infimum is taken over all splittings v =
∑J
k=1 vk with vk ∈ Vk. Applying

this with v = EJ(θ − θ̄) = (ω1 − θ̄) +
∑J

k=2 ωk and using (4.5), we conclude that

‖EJ(θ − θ̄)‖2H1(Ω) ≤ C
[ J∑
k=2

h−2
k ‖ωk‖

2
L2(Ω) + h−2

1 ‖ω1 − θ̄‖2L2(Ω)

]
≤ C

J∑
k=1

h−1
k ‖(q̃k − q̃k−1)(θ − θ̄)‖2L2(∂Ω) ≤ C‖θ − θ̄‖2H1/2(∂Ω) ≤ C|θ|

2
H1/2(∂Ω),

where | · |H1/2(∂Ω) denotes the H1/2(∂Ω) semi-norm. Thus we see that

|EJθ|H1(Ω) ≤ C|θ|H1/2(∂Ω).

This type of bounded extension operator is precisely what is required for the devel-
opment of non-overlapping domain decomposition algorithms which do not involve
the exact solution of subproblems.

5. Numerical results

We present the results of some numerical experiments using the operator ÃJ
defined by (1.4) applied as a preconditioner for various discrete differential and
pseudo-differential operators. The first example is a standard one and involves pre-
conditioning the finite element discretization of a second order problem. Although
there are many methods available for this problem, we consider it here since it is
the best-studied problem. The second problem involves using (4.3) to precondition
a sum of operators similar to (4.4).

We start with preconditioning the Laplace operator with Neumann boundary
conditions. To make this problem definite, we consider both the finite element
operator and the preconditioner on the L2-orthogonal complement of the one di-
mensional subspace of constants. The finite element space Ṽk consists of piecewise
linear functions defined with respect to a uniform triangulation of the square which
results when an equally spaced nk × nk mesh of smaller squares is partitioned into
triangles by connecting the lower left and upper right hand vertices. Here we take
nk = 2k and define Ṽk to be the functions in Vk which are orthogonal to constants.
Let Q̃k be defined as in (3.5) with respect to the space Ṽk.

The BPX-like preconditioner

B̃J =
J∑
k=0

h2
kQ̃k

provides a uniform preconditioner for the Galerkin discretization of the problem
u−∆u = f in Ω,

∂u

∂n
= 0 on ∂Ω,

using the approximation subspace ṼJ . Here n denotes the outward normal direction
on ∂Ω. Let QJ denote the L2(Ω)-orthogonal projector onto VJ . The operatorQJB̃J
is symmetric and positive definite on VJ and is a uniform preconditioner for the
Galerkin approximation Ah to

−∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω,

(5.1)

based on the approximation subspace VJ .
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Table 1. Condition numbers for BPX and BJ applied to (5.1).

hJ K(BPX) K(BJ )

1/8 9.8 5.9
1/16 11.3 7.3
1/32 12.1 8.4
1/64 12.9 9.1
1/128 13.4 9.6
1/256 13.7 10.1
1/512 13.9 10.4

Table 1 reports the condition number of QJB̃J as a function of hJ for both the
BPX preconditioner and the preconditioner defined by

BJ =
J∑
k=2

h2
k(Q̃k − Q̃k−1)2.

Note that BJ annihilates constants, since we have omitted the k = 1 term in the
above sum. We see that in this simple case, the new preconditioner is somewhat
better than the BPX-like preconditioner although it is slightly more complicated
to apply.

The second example illustrates the performance of a preconditioner of the form
of (2.19) applied to the problem αAh + Th. Specifically,

BJ =
J∑
k=2

(αh−2
k + h2

k)−1(Q̃k − Q̃k−1)2.(5.2)

The operator Th used here is an operator which is spectrally very close to A−1
h . It

is defined to be the solution operator of the problem: Find w ∈ VJ satisfying

D(w, φ) = (v, φ)∗ for all φ ∈ VJ ,
i.e., Thv = w. The inner product (·, ·)∗ is a minor perturbation of (·, ·) which makes
the computation of Th feasible via the fast Fourier transform.

We report the condition numbers for hJ between 1/8 and 1/512 and for α = hγJ ,
γ = 0, 1, 2, 4 (see Table 2). Although there are some values of γ for which αAh+Th
can be preconditioned by other methods, (5.2) provides good preconditioning for
all choices of the parameter as guaranteed by Corollary 2.1. Note in particular the
examples γ = 1 and γ = 2. For these cases, the operator behaves like a differential
operator on the higher frequencies and like a pseudo-differential operator of negative
order on the lower frequencies. As far as we know, methods for preconditioning such
an operator are not available in the literature.

Table 2. Condition numbers when preconditioning hγJAh + Th.

hJ γ = 0 γ = 1 γ = 2 γ = 4

1/8 5.9 12.0 21.6 14.9
1/16 7.2 17.6 35.8 15.5
1/32 8.1 24.3 43.2 16.4
1/64 8.9 34.2 46.8 16.9
1/128 9.5 45.9 50.8 17.1
1/256 10.0 55.2 54.5 17.3
1/512 10.4 61.1 57.6 17.4
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