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ABSTRACT

Background Pathologists use visual classification of glomerular lesions to assess samples from patients

with diabetic nephropathy (DN). The results may vary among pathologists. Digital algorithms may reduce

this variability and provide more consistent image structure interpretation.

MethodsWe developed a digital pipeline to classify renal biopsies from patients with DN. We combined

traditional image analysis with modern machine learning to efficiently capture important structures,

minimize manual effort and supervision, and enforce biologic prior information onto our model. To com-

putationally quantify glomerular structure despite its complexity, we simplified it to three components

consisting of nuclei, capillary lumina and Bowman spaces; and Periodic Acid-Schiff positive structures. We

detected glomerular boundaries and nuclei from whole slide images using convolutional neural networks,

and the remaining glomerular structures using an unsupervised technique developed expressly for this

purpose. We defined a set of digital features which quantify the structural progression of DN, and a re-

current network architecture which processes these features into a classification.

ResultsOur digital classification agreed with a senior pathologist whose classifications were used as ground

truth with moderate Cohen’s kappa k 5 0.55 and 95% confidence interval [0.50, 0.60]. Two other renal pa-

thologists agreed with the digital classification with k15 0.68, 95% interval [0.50, 0.86] and k25 0.48, 95% in-

terval [0.32, 0.64]. Our results suggest computational approaches are comparable to human visual

classification methods, and can offer improved precision in clinical decision workflows. We detected glomer-

ular boundaries from whole slide images with 0.9360.04 balanced accuracy, glomerular nuclei with 0.94

sensitivity and 0.93 specificity, andglomerular structural componentswith 0.95 sensitivity and 0.99 specificity.

Conclusions Computationally derived, histologic image features hold significant diagnostic information

that may augment clinical diagnostics.

JASN 30: 1953–1967, 2019. doi: https://doi.org/10.1681/ASN.2018121259

In the United States, an estimated 9.4% of the

population has diabetes mellitus (DM), and

over one-third will develop diabetic nephropathy

(DN), making diabetes the leading cause of CKD

and ESKD. The effect of diabetes and DNon pub-

lic health will only intensify, because the Centers

for Disease Control predicts one in three Amer-

icans will have diabetes by 2050 if current trends

continue.1

Although confirmatory biopsies are rarely per-

formed to definitively establish the diagnosis of

DN, there is typically good correlation between

the clinical stages of DN and the renal morpho-

logic changes seen on biopsy. A consensus patho-

logic classification system has been developed
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which divides DN into four hierarchic categories on the

basis of glomerular morphologic findings. An important

strength for this DN classification system is that the mor-

phologic variables are well defined, which results in im-

proved interobserver reproducibility. However, in practice,

reproducibility remains an issue, and a broad morphologic

spectrum of glomerular lesions can still be seen within each

class.

In this study, our goal was to engineer an automated com-

putational pipeline to classify digitized human renal biopsy

samples according to the scheme by Tervaert and collegues.2

We also subsequently validated the pipeline for an alterna-

tive DN classification scheme defined by A.B.F. and also for a

streptozotocin (STZ) mouse model of DM. This pipeline has

four subtasks: (1) identify glomerular locations in digitized

biopsy sample slides, (2) identify and discretize glomerular

components, (3) quantify glomerular components, and (4)

classify glomerular features. To accomplish these tasks, we

integrated several computational methods, combining tra-

ditional image analysis and machine learning with modern

machine learning. We have done this for two distinct rea-

sons: (1) to superimpose biologic prior information onto

our modeling, and (2) to capture important glomerular

structures and their associated changes while minimizing

the burden of human annotation. Our most important con-

tributions to this pipeline are a set of computationally de-

fined glomerular features which reflect DN glomerulopathic

structural alteration, and a recurrent neural network (RNN)

architecture which analyzes sequences of these glomerular

features to yield the final biopsy diagnosis. Moreover, the

output of the network is a continuous estimate between 1

and 5, which can be rounded to conform to the discrete

Tervaert classes, but can also motivate the shift of diagnoses

from discrete stages to continuous risk models. We com-

pared this technique against the staging of three renal pa-

thologists for n ¼ 54 patients, and found that it was reaching

human levels of agreement with pathologist annotations.

With the most experienced pathologist set as ground truth,

the computational method agreed with k ¼ 0:55 (95% con-

fidence interval [95% CI], 0.50 to 0.60), as compared with

two renal pathologists (k1 ¼ 0:68; 95% CI, 0.50 to 0.86; and

k2 ¼ 0:48; 95% CI, 0.32 to 0.64). When splitting multiple

sections of patients into separate cases, the computational k

rose to k ¼ 0:9;   (95% CI, 0.87 to 0.93). The result suggests

that the computational approach has the potential to im-

prove precision in a clinical workflow assisting humans.

The framework we apply is exceptionally flexible and could

be extended for application to many other glomerular dis-

eases with histologic changes, such as FSGS, lupus nephritis,

and IgA nephropathy, as well as other histologic studies

where a sparse set of compartments are quantified. Our

study suggests that image-based features derived computa-

tionally from histologic images hold significant diagnostic

information that can be further explored for clinical

applications.

METHODS

Human data collection followed protocols approved by the

Institutional Review Board at the University at Buffalo (UB)

and Vanderbilt University. All methods were performed ac-

cording to federal guidelines and regulations. All animal stud-

ies were performed according to protocols approved by the UB

Animal Studies Committee Procedures and the Institutional

Animal Care and Use Committee.

Image Data

Image data consisted of whole-slide images (WSIs) of renal

tissue sections from n ¼ 54 human patients and n ¼ 25

mice. Human tissues consisted of needle biopsy samples

from patients with DN as disease data and nontumoral pa-

renchyma of carcinoma nephrectomies as control. Although

nephrectomy samples were rapidly processed after resection,

we cannot measure significant differences due to biopsy or

nephrectomy procedures in our results. Further, there is no

readily available normal kidney biopsy tissue that can be

ethically obtained from healthy volunteers or living donors.

Our patients were sourced from two different institutions,

some from the Kidney and Translational Research Core

(KTRC) at Washington University in Saint Louis School of

Medicine, and some from the Vanderbilt University Medical

Center (VUMC). We will refer to the institutes anonymously

as institute-1 and -2 throughout the manuscript. The tissues

were also prepared in three separate laboratories, some at UB’s

Pathology and Anatomical Science department’s histology core,

some at the histology core in the local Roswell Park Cancer In-

stitute, and some at VUMC. We chose to prepare the tissues

separately in order to model stain variation. We will anony-

mously refer to these preparations as preparation-1, -2, and

-3. All tissues were scanned using awhole-slide scanner (Aperio;

Leica) at 340 apparent magnification, resulting in images with

resolution 0.25mmper pixel. The analysis presented in this work

is only valid for imageswhich are scanned at a similar resolution.

Glomerular Detection and Boundary Segmentation
To develop a robust glomerular detection and boundary seg-

mentationmodel, we used our iterative convolutional learning

Significance Statement

Pathologists usually classify diabetic nephropathy on the basis of a
visual assessment of glomerular pathology. Although diagnostic
guidelines are well established, results may vary among patholo-
gists. Modern machine learning has the potential to automate and
augment accurate and precise classification of diabetic nephropa-
thy. Digital algorithms may also be able to extract novel features
relevant to disease progression and prognosis. The authors used
image analysis and machine learning algorithms to digitally classify
biopsy samples from 54 patients with diabetic nephropathy and
found substantial agreement between digital classifications and
those by three different pathologists. The study demonstrates that
digital processingof renal tissuemayprovideuseful information that
may augment traditional clinical diagnostics.
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interface, human-artificial-intelligence-loop (HAIL4), which

uses the DeepLab V2 ResNet3 network to detect and segment

glomerular boundaries on WSIs. We applied HAIL using

a multipass approach, which uses a low- and high-

resolution network in tandem to improve speed and accuracy

of glomerular acquisition, described more in depth in our

previous work.4 The glomerular detection models trained in

that work were used as pretrained starting models. These

models were trained on WSIs from n ¼ 37 human patients

with DN, n ¼ 4 human control patients, n ¼ 12 STZ mice,

and n ¼ 8 control mice. WSIs from n ¼ 9 human patients

with DN, n ¼ 4 human control patients, n ¼ 3 STZ mice,

and n ¼ 2 control mice were reserved for holdout testing.

The high-resolution network was trained for 906 K steps,

and the low-resolution network was trained for 607 K steps,

at which point the training loss curves for both networks

had plateaued. For both networks, initial learning rate was

0:00025; batch size was 2; and input image size was 4503450:
Remaining hyper-parameter values were left at DeepLab

default.

Glomerular Component Detection

To simplify glomerular compartmentalization, glomerular

structures were assigned to one of three components on

the basis of their appearance in periodic acid–Schiff (PAS)

stains: (1) a nuclear component; (2) a PAS-positive (PAS+)

component consisting of mesangium, glomerular base-

ment membranes, and Bowman’s capsule; and (3) a luminal

component consisting of Bowman’s space and capillary

lumina.

Nuclear Component
For the detection of nuclei in human tissues, the DeepLab V2

ResNet convolutional neural network (CNN) was trained on

three distinct sets of annotated images pooled into one. The

first set of images contained n ¼ 400 glomeruli, which had the

majority of nuclei annotated with computational assistance by

automatic thresholding5,6 of stain deconvolution7 for hema-

toxylin. Missed nuclei were added by manual annotation, and

clumped nuclei split using a distance transform–based

marker-controlled watershed8 (described in the Supplemental

Material). We used computational assistance so that we could

annotate a large number of images cheaply, and used them to

form the bulk of network training. To improve the network’s

identification of exact nuclear boundary as perceived by the

human eye, which was not always identified by color decon-

volution, we added another set of n ¼ 216 glomerulus images

which were annotated entirely by a manual annotator. The

third dataset consisted of six rectangular images with dimen-

sions between 600 and 1600 pixels, selected to include large

patches of inflammation. These images were selected so that

the network had more diverse examples to learn nuclear

splitting, and were annotated manually. From the second

dataset (manual annotations of whole glomeruli), ~10%

ðn ¼ 22Þ of the images were reserved, randomly, for holdout

performance testing. We split the training and testing sets at

the patch level because the annotation cost for nuclei is very

high and we only had a limited amount of annotations for

training use.

All remaining training images were chopped into

1283128-pixel overlapping patches (50% overlap), resulting

in close to 100 K images. We initialized our nuclear detection

network training on the trained network model used for

high-resolution glomerular detection. This was done with

the assumption that the glomerular segmentation network

had already been extensively exposed to nuclei, and would

likely have developed some form of filters used to detect their

presence. Starting with this pretrained model should theoret-

ically improve convergence time of the network. We trained

with a batch size of 20 for 300 K steps of training (~66 epochs)

using an initial learning rate of 0:0025; and remaining hyper-

parameters were left at DeepLab default values. The resulting

output may have still contained clumped nuclei because there

was physically very little or no space between them at the

0:25-mm resolution. Therefore, we split the remaining clum-

ped nuclei via a morphologic postprocessing step. First, the

output of the neural network segmentation was processed

by estimating and removing single object clumps with the

distance transform.9–11 Single objects were defined as binary

regions that contained only one estimated peak region (see

watershed splitting in the Supplemental Material). Then, re-

maining clumps were split using a distance transform–based

marker-controlled watershed.8Other groups have shown suc-

cess using the watershed technique for histopathologic nu-

cleus splitting in the past.12

To modulate and investigate the sensitivity and specificity

of the network, we applied weighting to the network’s raw

output probabilities. The raw network output is a vector at

each pixel with length equal to the number of classes, contain-

ing probabilities that correspond to the likelihood of each re-

spective class assignment. We used a normalized weight,

w ∈½0; 1� for the nuclear class and 1-w for the background

class, and computed a normalized weighted average proba-

bility to bias the network probabilities toward the nuclear

class or background class. At each pixel, the class with max-

imum weighted probability value was selected as the class

assignment. Weight values were sampled uniformly in inter-

vals of 0:01 in the range (0, 1). We plotted the results of

this weighting as a receiver operating curve describing sen-

sitivity and specificity for a holdout set of glomeruli; see

Figure 3G.

PAS+ and Luminal Components
The luminal and PAS+ components were each identified

using a two-step procedure. First, a rough mask of each com-

ponent was defined by thresholding grayscale images. To

identify a grayscale image that reflected PAS+ regions, we

used the HSV (hue, saturation, value) transformation.13 Spe-

cifically, we divided the saturation channel by the value chan-

nel, which resulted in an image that had high intensity where

JASN 30: 1953–1967, 2019 Digital Classification of DN 1955

www.jasn.org CLINICAL RESEARCH

http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2018121259/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2018121259/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2018121259/-/DCSupplemental


there was darkly saturatedmaterial (such as mesangium). This

image was thresholded at a fixed value of 0:5;we will call it the
PAS+ precursor mask. To identify a grayscale image that re-

flected luminal regions, the L* component of the L*a*b

color space14 was used. This grayscale image was threshol-

ded with Otsu’s method5 to yield the luminal precursor

mask. In the combined precursor mask, some pixels were

unlabeled, and some had a double label. To achieve a final

mask without double-labeled or unlabeled pixels, the

Red-Green-Blue (RGB) values that underlie the precur-

sor masks were used to train a two-class naïve Bayesian

classifier15 (MathWorks, Natick, MA). This trained classifier

was then used to predict a label for all pixels in the glomerular

region.

Detection Performance Analysis

All object detection performances were assessed at the pixel

level. Performance for glomerular detection in WSIs was cal-

culated againstmanual annotation of holdoutWSIs.We report

sensitivity and specificity, but also balanced accuracy, because

the number of glomerular class pixels is extremely imbalanced

with respect to the number of background class pixels. Per-

formance for glomerular nucleus detection was assessed

againstmanual annotation of nuclei fromholdout glomerulus

images. PAS+ and lumina detection was assessed against sparse

manual annotation of 123 holdout images, sampled to repre-

sent each Tervaert disease stage I–IVas well as each category of

the DM mouse model described in the Supplemental

Material.

Feature Extraction
We defined six types of features for classification of glomerular

structures: color, textural, morphologic, containment, inter-

structural distance, and intrastructural distance.Color features

included the mean and SDs of R, G, and B values observed in

PAS+, luminal, andnuclear regions. Textural features (entropy,

contrast, correlation, homogeneity), which reflect subvisual com-

partment changes, were computed via gray-level co-occurrence16

computed on each respective component. Morphologic

features included number, area, and convexity of component

objects (measures expansion or reduction of components).

Containment features quantified the relative amount of one

component within another and describe how components

are expanding or reducing relative to each other (e.g., nuclear

area contained within a mesangial segment). To calculate con-

tainment, first, each unique object in each component was

identified. Then, for each identified object, the convex hull of

the region was taken. The containment feature was defined

as the area in this convex hull, divided by the area of other

components contained within its boundaries (e.g., nuclear

area). Interstructural distance features assessed the distance

between same-class objects (e.g., nuclei) and their distance to

glomerular landmarks (e.g., distance to glomerular boundary),

describing a measure of how components move relative to one

another. Intrastructural distance features assessed the thickness

of objects, such as mesangial width. They were assessed by

taking histogram data on distance-transformed glomerular

components, such as the PAS+ precursor mask (see Figure 5).

The total number of features we defined was 232; and a full list
of exact names of these features is available as Supplemental

Table 1.

Recurrent DN Classification

Wecomputationally classifiedDNbiopsy samples according to

two different staging systems, one being the Tervaert classifi-

cation scheme,2 and the other being a classification scheme

defined by coauthor A.B.F.; the latter scheme has the follow-

ing classes: normal, no significant DN-related changes;

mild, up to 25% tubulointerstitial fibrosis/glomerular scle-

rosis; moderate, 25%–50%; and severe,.50%. We have also

compared our technique against the grading of three renal

pathologists for the Tervaert scheme. For grading, all glo-

meruli with sufficient cross-sectional area of the glomerular

tuft (two or more visualized mesangial regions) were

evaluated.

Although the tubulointerstitial compartment is an impor-

tant component of both of these grading systems, and is a key

prognostic indicator in many glomerular diseases, we did not

utilize this information in our computational grading system.

Identification of this compartment requires extensive work

in its own right and we will be pursuing its quantification

in a separate work.

Training
We computationally classified tissues of 54 patients, 48 of

which were biopsy samples taken with the suspicion of DN,

and six control tissues. Control tissues were not classed by

pathologists because they were nephrectomies, containing

an extensive portion of a whole kidney section. Such an

extent of tissue would make it very difficult to blind the

annotators as to the source of the tissue. These tissues

were independently validated by the pathology core at

KTRC for use as control tissue. Contained within these pa-

tient data were ~1900 glomerulus images from patients with

DN, and, in the control data, another ~2000 glomerulus

images.

To transform the glomerular features that we crafted into

the final diagnosis, we designed a simple RNN architecture17

(Figure 1) which treats a sequence of glomerular features

from a renal biopsy sample as its temporal data. The quantified

glomerular features were normalized by mean and SD before

input to the network. The network architecture can be de-

scribed as follows: First, input features were passed to a

densely connected layer with output size equal to the number

of input features. This layer was connected to a long short-

term memory (LSTM17) unit with 50 hidden features, which

was connected to a second LSTMunit with 25 hidden features.

For experiments run using individual patients as cases, both

LSTMs had an input sequence length of 30: For experiments

run using individual sections as separate cases, there was a
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smaller pool of glomeruli in each case, so the LSTMs had input

sequence length of 10: There was a 50% dropout between the

LSTM units. The output of the second LSTM unit was fed

into a dense layer with one output, which is the predicted

diagnostic value, a continuous number between 1 and the

number of classes. The activation function for both dense

layers was a leaky rectified linear unit,18 and for both LSTM

units, a hyperbolic tangent.We defined our loss function as the

absolute distance of the predicted labels from the true labels.

This loss function, combined with the single-valued output

structure, allowed us to enforce the continuous nature of the

task onto the network. Namely, classifying a class IV biopsy

sample as class I is considerably more erroneous than

classifying a class IIa biopsy sample as class IIb (and, therefore,

the latter should be rewarded more than the former). An

Adam optimizer19 was used to schedule the learning rate.

As previously mentioned, the network accepts fixed-length

sequences of glomerular features drawn from a single bi-

opsy sample. A single batch of training data consisted of

256 of these feature sequence sets. We used identical hyper-

parameters for all experiments within this work; namely, we

used initial learning rate 0:001; batch size 256; and 1000 training
steps. Reported agreement statistics were obtained by taking

the accumulated prediction results of 10 trials of 10-fold

crossvalidation.

Prediction
One reason recurrent networks are advantageous is because

they do not requirefixed-length input sequences for prediction

as they do for training. They can predict on sequences of any

length, and, therefore, each prediction sequence had length

equal to the number of observed glomeruli in the case. To
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Figure 1. General overview of our computational pipeline and recurrent architecture. ReLU, rectified linear unit.
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prevent the resultant prediction from being dependent on the

particular order in which the glomeruli were extracted, each

full-length prediction sequence was shuffled 1024 times. This

block of 1024 shuffled sequences of glomeruli represented one

set of sequences to be predicted for a single case. The final

classification for that particular case was made by taking the

average of predicted values on the 1024 sequences and round-

ing this to the closest whole number.

Feature Ranking

To investigate which features the network depended on most

for its diagnostic decisions, we sequentially dropped features

from thenetwork input, and recordedhowmuch the network’s

prediction changed when each feature was removed. The

model for this experiment was trained on 50 cases. Four cases

were reserved as holdout (one case each fromDN classes I, IIb,

III, and IV) to ensure the model was not overfitting. Note that

class IIa was excluded because there were only two cases in this

class. Themodel was trained for 1000 iterations with batch size

256 and learning rate 0:001: After training, the network was

run for prediction once on all 54 cases, to get a base reference

of how the network was functioning without losing any fea-

tures. After this, the network was run for prediction 232 times

(which is equal to the total number of features), and, on each

run, a different feature value was set to zero before prediction.

The predicted output value is likely to shift when a feature is

lost, and the amount that this value changes is a reflection of

how dependent the network was on that feature. Wemeasured

this prediction drift for all features, and for all of the cases

ðn ¼ 54Þ: The final score of dependence for each feature was

measured as the average prediction drift across all 54 cases.

Mathematically, the function we used can be described as

Equation 1 below:

 SðfjÞ ¼
1

c
∑
c

i¼1

ðrij 2 tiÞ2 ðrf∅ 2 tiÞ; (1)

where SðfjÞ is the score for the dropped feature j such that

fjjj∈ℕ; 0,j#232g; c is the number of cases, pij is the network’s

predicted label for case i given feature j has been dropped, ti
is the true label for case i, and pf∅ is the network’s predicted

label given no features have been dropped. This function is

defined in such a way that a large negative score would

indicate a feature with an obfuscating influence on the net-

work’s classification ability. Conversely, a large positive score

would mean that the network was highly dependent on that

feature to get the correct diagnosis, and suffered from its loss.

Statistical Analyses

To compare the performance of our algorithm against ground

truth, we calculated the agreement between our method and

human pathologists using a linear weighted k, which is most

useful to describe agreement when order is important. k ,0

indicates no agreement, 02 0:2slight agreement, 0:212 0:4
fair agreement, 0:42 0:6 moderate agreement, 0:612 0:8

substantial agreement, and 0:812 1 almost perfect agree-

ment.20 For all comparisons, we computed the condi-

tional probability of class assignment given ground truth,

the proportion of agreement, and the 95% CIs for both of

these sets of statistics. For calculation of 95% CIs on condi-

tional probabilities, we used the Clopper–Pearson exact

method.21

Data Sharing

Codes used to perform this study are made openly available at

GitHub at https://github.com/SarderLab/DN_classification.

We also provide our WSIs used for this analysis at https://

buffalo.box.com/s/e40wzg2flb3p0r73zyhelhqvhle46vvr.

RESULTS

Anoverviewof the computational scheme is provided inFigure

1. The pipeline consisted of: (1) glomerular boundary detec-

tion (Begin-A), (2) glomerular nucleus boundary detection

(A–B), (3) detection of glomerular components (B–C), (4)

glomerular feature extraction (C–D, C–E), and (5) biopsy

sample classification (D-stop, E-stop). Classification of an

STZ DM mouse model is available in our Supplemental Ma-

terial. See Supplemental Figure 1 and Supplemental Tables 2

and 3.

Glomerular Boundary Identification

The first step in automating analysis of glomerular disease is

to automate glomerular identification. Much work has al-

ready been done in this area, and other groups have shown

detection of glomeruli using CNNs.22,23 We developed

the glomerular detection network in this work using our

iterative whole-slide CNN training interface, HAIL. HAIL

enables image data transmission to and from the DeepLab

network by directly annotating and displaying predictions

on WSIs.

High performance was achieved for glomerular boundary

detection on a set of 11 holdout biopsy samples. The network

scored balanced accuracy 0:936 0:04 (sensitivity 0:886 0:08;
specificity 0:99956 0:0004). We reported balanced accuracy

because the number of pixels in each class was extremely

imbalanced. The network’s predicted glomerular bound-

aries are displayed in green in Figure 2. The network has

learned an efficient representation of glomeruli such that it

can recognize glomeruli from different disease stages (scle-

rotic and not), different source institutions (institute-1,

Figure 2A, versus institute-2, Figure 2, B and C), staining

preparations (preparation-1, Figure 2A, preparation-2,

Figure 2B, preparation-3, Figure 2C), and species (human,

Figure 2, A–C, mouse, Figure 2D).

Glomerular Component Analysis

We developed a glomerular component analysis technique

to describe glomerular structure; see Figures 3 and 4 for a
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demonstration on select glomeruli. We simplified the glomer-

ulus into three components: (1) the nuclear component, (2)

the PAS+ component, and (3) the luminal component.

These components were selected because they simplify the

complex glomerular system, facilitating computational detec-

tion in widely varying phenotypes and stain presentations (see

Figure 4, D andH). Althoughwe are sacrificing some technical

accuracy, we will still show that the delineation of exact glo-

merular compartments is not required to classify glomerular

structure.

Nuclear Detection
Figure 3 shows nuclei segmentation performance for different

institutes and preparations.We assessed network performance

on n ¼ 22 holdout glomeruli. A receiver operator curve for

this strategy is shown in Figure 3G, along with examples of the

network’s predictions. The red star marks the network’s

default unweighted predictions, 0:8 sensitivity and 0:98 spec-
ificity, and the black star marks a weighting of 0:9 which op-

timized the network’s sensitivity and specificity to 0:94 and

0:93, respectively. As demonstrated, the network efficiently

identified nuclei in widely varying stains and disease

phenotypes.

Luminal and PAS+ Image Analysis
Figure 4 shows detection of glomerular components. The lu-

minal component identified capillaries and Bowman’s space

(shown in green). The PAS+ component identified mesan-

gium and basement membranes (red). Combining these

with nuclear predictions from DeepLab resulted in the pre-

cursor glomerular component maps shown in Figure 4, B

and F, which were corrupted with double predictions (yellow

pixels, estimated as both luminal and PAS+) or missing pre-

dictions (black pixels, no predicted label). Corrupted pixels

are shown as a binary mask in Figure 4, C and G. A naïve

Bayesian classifier was trained on the RGB pixels which un-

derlie the luminal and PAS+ pixels of the precursormasks, and

was used to predict the pixel labels of the final masks (Figure 4,

D and H). This method identified PAS+ components with

average sensitivity/specificity 0:98=0:99 and luminal compo-

nents 0:98=0:99; against sparse manual annotations of 123

glomeruli.

Glomerular Feature Extraction

We designed hand-crafted features to target pathologic pro-

gression of glomerular structure in DN, and allowed a neural

network to combine these features and determine the final

diagnosis. This allowed us to enforce biologic prior informa-

tion onto the model without sacrificing the state-of-the-art

performance of network learning. Supplemental Table 1 lists

the 232 features explicitly. Our features can be categorized into

six types: color, textural, morphologic, containment, inter-

structural distance, and intrastructural distance. One feature

class which is easily interpretable is the intrastructural distance

features. These were computed by performing a distance

transform on a glomerular component and then obtaining a

histogram of the result. Adistance transform assigns each pixel

in a binary image with the distance it has from the back-

ground. Examples are shown in Figure 5, C and F, where

blue regions are low valued (close to background), and red

are high valued (far from background). The glomerulus in

Figure 5A, having only mild mesangial thickening, had max-

imumvalue in distance transform of 18; but the glomerulus in

Figure 5D, where significantly more thickening was present,

A B

C D

Figure 2. Accurate detection of glomerular boundaries from WSIs depicting PAS stained renal tissue. (A) Detection of glomeruli in
human biopsy sample sourced and prepared in institute-2, with a purple appearance. (B) Detection of human glomeruli sourced from
institute-2, prepared in a different institute than (A and C), with a pink appearance. Occasionally, two closely abutting glomeruli will
be identified as one doublet object. (C) Detection of human glomeruli sourced from institute-2, prepared in a different institute than
(A and B), with reddish-pink appearance. (D) Detection of glomeruli in mouse kidney sections. Scale bars, 400 mm.
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had maximum value 42: Further, clusters of high values

corresponded to the thickest structures, such as Kimmelstiel–

Wilson nodules in the glomerulus of Figure 5D. As mesangium

progressively thickens over disease course, it is slowly reflected

by shifts in the values of the distance transform.

Classification of Biopsy Sample Structure

To incorporate all glomerular features of a single patient into a

single output value,weused anRNN.RNNs are used to process

sequential data, such as a time-series24–26 or written lan-

guage.27–29 In our case, we used an RNN to process the glo-

merular features of a patient as a sequence, and funneled the

output into a single, continuous number. We found that this

method works exceptionally well to classify human DN biopsy

samples. We compared this method against three pathologists,

for n ¼ 48 patients with DN (n ¼ 1989 individual glomeruli)

and n ¼ 6 control tissues, using multiple schema. We also clas-

sified STZ mouse tissues in our Supplemental Material.
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Figure 3. Nuclear boundaries detected from varied, PAS stained glomerulus images with high accuracy. (A) Detection of nuclei from
institute- 1 and preparation-1 in a glomerulus. Green boundaries in images indicate the perimeter of the detected nuclear region. (B)
Detection of nuclei from institute-1, preparation-1, in a sclerotic glomerulus. (C and D) Detection of nuclei in glomeruli from institute-2,
preparation-2, for a glomerulus and a sclerotic glomerulus. (E and F) Detection of nuclei in glomeruli from institute-2, preparation-3, for
a glomerulus and a sclerotic glomerulus. (G) Receiver operating curve for the nuclear detection method calculated as the average,
minimum, and maximum of a 22-image holdout set. Red dot indicates the network’s performance without any weighting on the
network’s output. Black dot indicates the network’s performance when the network’s output is weighted toward the nuclear class with
weight 0.9 (a weight of 1 would result in every pixel in the image detected as nuclear). Scale bars, 100 mm.
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To train the algorithm, we took the renal pathologist with

most experience as ground truth, and compared against two

other renal pathologists. The second renal pathologist agreed

with the ground truth with Cohen’s k 0.48 (0.32 to 0.64)

(brackets indicate 95%CI), and the third renal pathologist

agreed with Cohen’s k 0.68 (0.50 to 0.86) (Table 1). We first

assessed a baseline classifier which selected predictions ran-

domly with probability equal to the provided ground truth

label distributions (p ¼ 0:20=0:04=0:22=0:43=0:11 for classes
I, IIa, IIb, III, and IV, respectively). The Cohen’s k for this

baseline classifier was less than zero; that is, no agreement

over random chance. This proves that random guessing can-

not agree with pathologist classification when continuity is

taken into account. On the other hand, our RNN strategy

agreed with the ground truth renal pathologist with Cohen’s

k 0.55 (0.50 to 0.6). This result was almost exactly between the

other two human renal pathologists, suggesting that the net-

work developed its own opinion on the interpretation of cases,

without overfitting to the particular interpretation provided

by the ground truth. Further, the 95% CIs suggest that the

computational method was more precise when averaging

over many trials (something not reasonable to request of a

time-pressed clinician). To further validate, we computed

two statistics describing per-class agreement, the proportions

of agreement per class, and the conditional probability of class

assignment given the ground truth assignment. We computed

these measures between human annotators and ground

truth as well as the computational method and ground truth

(Table 2). Because our data were limited, we lacked sufficient

data in some classes, making them difficult to learn and re-

sulting in poor performance. The only class convincingly con-

curring to human levels with the ground truth was class III,

which, not coincidentally, was the class with most data points.

To increase our dataset’s size, we next investigated taking each

available section of a given patient as a single data point. The

biopsy samples contained anywhere between 1 and 4 adjacent

sections that could be split into separate cases. We acknowl-

edge that assuming each section as a separate case is biased, but

it is motivated on the basis of a similar ideology in a recent

work done by colleagues.30 Computational renal pathology is

still in its genesis, and large, well curated image datasets for

specific diseases are not available. In other computational his-

topathology studies,31 authors have shown excellent k values

for network approaches when using larger datasets (n ¼ 1634

WSIs). We do not have the same magnitude of dataset avail-

able; however, by enforcing our biologic prior information, we

were able to achieve a moderate k in a small dataset nonethe-

less. Further, improved performance obtained as a result of

case splitting would help us confirm that our technique was

valid and that the patient-level analysis was not obtained by

A B C D

E F G H

Figure 4. Glomerular components are detected consistently in images with varying presentation. (B) Glomerular component precursor
mask. Red, PAS+ precursor mask; green, luminal precursor mask; blue, nuclear detections from DeepLab V2. (C) White pixels indi-
cate regions from the glomerular component precursor mask which either have no detected label or are detected as both luminal and
PAS+. (D) Naïve Bayesian classification correction of the glomerular component precursor mask, where every pixel has specifically one
class label belonging to one of PAS+ (red), lumina (green), or nuclei (blue). (E–H) Identical computation as that shown in (A–D), but with
a glomerulus from institute-2, preparation-3. Scale bars, 100 mm.
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chance. Splitting the data increased the size to n ¼ 121 cases.

Looking again to Tables 1 and 2, it can be observed that in-

creasing the number of cases via sectioning enabled the net-

work to learn a much higher level of agreement.

As secondary validation we also tested our method to clas-

sify data on the basis of a classification scheme defined by

coauthor A.B.F. (see Methods). We did not have any cases

classed as severe. Using patient-level holdout, the computa-

tional method agreed with k 0.31 (0.17 to 0.45); however, we

only had n ¼ 33 biopsy samples available whichwere classified

according to this scheme. When we split the cases, the perfor-

mance rose significantly to 0.98 (0.94 to 1), which was likely a

result of increased homogeneity between data preparation and

sections, and the reduced number of total classes (3).

Table 3 demonstrates the network’s continuous nature of

prediction by measurement of distance from true label. It was

rare for either of the pathologists to overcall as compared with

the ground truth, despite overall levels of agreement being

quite different. The network took a more balanced approach

of overcalls and undercalls. This was likely because
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Figure 5. Intracompartmental distance features continuously quantitate mesangial thickening on PAS1 regions of DN glomeruli.
(A) Example of glomerulus with mild mesangial thickening. (B) PAS+ precursor mask for glomerulus in image (A), used as an estimate for
mesangial regions. (C) Distance transform of the image shown in (B), resulting in maximum value calculated at 18.4. (D) Example
of glomerulus with extensive mesangial thickening, including Kimmelstiel–Wilson nodules. (E) PAS+ precursor mask for glomerulus in
(D). (F) Distance transform of the image shown in (E), with maximum value calculated at 42. Compared with (C), it can be seen that this
analysis yields higher values for thicker PAS+ structures, and lower values for thinner ones. Scale bars, 100 mm.

Table 1. Agreement statistics for human annotators and computational technique

Comparison n Observed k Lower 95% CI Upper 95% CI

RP1 versus GT, scheme: T, data: patients 48 0.48 0.32 0.64

RP2 versus GT, scheme: T, data: patients 48 0.68 0.50 0.86

C versus GT, scheme: T, data: patients 54 0.55 0.50 0.60

C versus GT, scheme: T, data: sections 121 0.9 0.87 0.93

C versus GT, scheme: F, data: patients 33 0.31 0.17 0.45

C versus GT, scheme: F, data: sections 85 0.98 0.94 1

Baseline versus GT, scheme: T, data: patients 54 ,0 n/a n/a

Reported values include linear weighted Cohen’s k and upper and lower 95% CIs. T refers to classifications according to the Tervaert scheme; F refers to classi-
fications according to the Fogo scheme. Data description identifies whether the experiment was performed using separate patients or separate sections as in-
dividual data. RP, renal pathologist; GT, ground truth; C, computer; n/a, not applicable.
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Table 2. Conditional probability of class assignment, proportions of agreement, and 95% CIs for reported experiments

Experiment Description Comparison Proportions of Agreement (95% CIs)

I (n=11) IIa (n=2) IIb (n=12) III (n=23) IV (n=6)

RP1 versus GT, scheme: T, data: patients Proportion of agreement 1 (0.03 to 1) 0.07 (0.004 to 0.34) 0.26 (0.13 to 0.45) 0.63 (0.44 to 0.78) 0.13 (0.007 to 0.53)

P(RP1|GT) 1 (0.29 to 1) 0.5 (0.01 to 0.99) 0.4 (0.19 to 0.64) 0.71 (0.51 to 0.87) 0.13 (0.003 to 0.53)

RP2 versus GT, scheme: T, data: patients Proportion of agreement 1 (0.31 to 1) 0.33 (0.02 to 0.87) 0.64 (0.44 to 0.81) 0.80 (0.61 to 0.92) 0.33 (0.09 to 0.69)

P(RP2|GT) 1 (0.29 to 1) 0.50 (0.01 to 0.99) 0.90 (0.68 to 0.99) 0.86 (0.67 to 0.96) 0.38 (0.09 to 0.76)

C versus GT, scheme: T, data: patients Proportion of agreement 0.67 (0.58 to 0.76) 0.03 (0.005 to 0.12) 0.11 (0.07 to 0.17) 0.47 (0.42 to 0.52) 0.04 (0.01 to 0.13)

P(C|GT) 0.67 (0.58 to 0.76) 0.10 (0.01 to 0.32) 0.18 (0.12 to 0.26) 0.76 (0.66 to 0.81) 0.05 (0.01 to 0.14)

I (n=18) IIa (n=6) IIb (n=27) III (n=58) IV (n=12)

C versus GT, scheme: T, data: sections Proportion of agreement 0.90 (0.80 to 0.96) 0.69 (0.48 to 0.85) 0.72 (0.63 to 0.79) 0.9 (0.85 to 0.93) 0.70 (0.60 to 0.85)

P(C|GT) 0.90 (0.81 to 0.96) 0.75 (0.53 to 0.90) 0.84 (0.76 to 0.91) 0.97 (0.94 to 0.99) 0.83 (0.70 to 0.93)

Normal (n=2) Mild (n=18) Moderate (n=13) Severe (n=0)

C versus GT, scheme: F, data: patients Proportion of agreement 0 (0 to 0.37) 0.52 (0.42 to 0.62) 0.43 (0.31 to 0.55) X

P(C|GT) 0 (0 to 0.26) 0.75 (0.66 to 0.83) 0.60 (0.49 to 0.71)

Normal (n=6) Mild (n=46) Moderate (n=33) Severe (n=0)

C versus GT, scheme: F, data: sections Proportion of agreement 1 (0.78 to 1) 0.97 (0.93 to 0.99) 0.96 (0.89 to 0.99) X

P(C|GT) 1 (0.84 to 1) 1 (0.97 to 1) 0.96 (0.90 to 0.99)

T refers to classifications according to the Tervaert scheme; F refers to classifications according to the Fogo scheme. Data description identifies whether the experiment was performed using separate patients or
separate sections as individual data. Each value is reported with the format observed value (lower 95% CI to upper 95% CI). Columns also indicate the number of samples in each class. GT, ground truth; RP, renal
pathologist; P(RP1|GT), conditional probability of the class selection by the RP1 given the GT class; P(C|GT), conditional probability of the class prediction by the C given the GT class; X, not applicable.
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pathologists have a conceptualization of the diagnostic trade-

off between undercalling and overcalling a case, and prefer to

err on the lower side, whereas the network does not. This

provided evidence that the network was learning a balanced

approach to prediction of class, and a continuous progression

through the data.

Feature Relevance

We defined a study to identify which features were most im-

portant for classification, by sequentially removing features

from the network at prediction time and comparing how

the output changed at each step. The scoring function SðzÞ
defined in Equation 1 indicates with what magnitude the net-

work’s predictions were deviated from baseline (baseline

meaning no features dropped), after each feature had been

dropped. That is, when looking at the average of diagnostic

decisions across all of the patient data in this study, Equation 1

measured whether the loss of a feature improved the ability of

the network to get the correct answer. Negative values would

imply that the loss of a feature improved the network’s average

performance, and positive values would imply the opposite.

The raw numeric output from Equation 1 was difficult to in-

terpret, so we standardized the features according to their

mean and SD, and also normalized them by minimum

and maximum. These numbers are available in Supplemental

Table 1. The most important feature was the SD of red values

in PAS+ regions (likely targets variability in staining intensity),

with standardized value 9 deviations greater than average. The

next two most important features, each with a standardized

score near 5 deviations greater than average, were the mean

nuclear blue values (likely decreases as nuclei become ob-

scured by mesangium) and the deviation of PAS+ blue

values (likely increases with increased nuclear stain in me-

sangium). A scatterplot of the raw deviation values (SðzÞ) is
also provided in Supplemental Figure 2, demonstrating

that the network was most dependent on the color features

(feature indices 215–232).

Time and Space Complexity Analysis

Experiments were performed on a Linux distribution (Ubuntu

16.04) computer with an Intel Xeon E5–2630 CPU with 40

cores at 2.20 GHz, 64 GB of RAM, and 64 GB of swapmemory,

and an NVIDIA Titan X GPU with 12 GB of memory.

WSI chopping and prediction scaled with complexityOðnÞ;
where nwas number of pixels contained in aWSI. Glomerular

component detection and feature extraction also scaled with

OðnÞ; however, here n was number of glomeruli. The pairwise

distance feature calculations scaled withOðn2Þ;with n as num-

ber of objects to be compared; however, the number of glo-

merular compartments is assumed to be bounded finitely. The

amount of time taken to provide a diagnosis for a biopsy sam-

ple took approximately 2minutes for the smallestWSI, and up

to 15 minutes for the largest. Memory use was most dictated

by the size of image regions used to chop the WSIs, as can be

seen by comparing the plots in Supplemental Figure 3, A andC

(chopping image size 4503450, maximum memory 25 and

15 GB, respectively) against Supplemental Figure 3B (chop-

ping size 150031500; maximum memory 40 GB). Altering

the chopping image size provided moderate time savings for

increased memory usage, although we did not find this signif-

icant enough to warrant complete adoption of large chopping

blocks.

Comparing these results with humans, the ground truth

renal pathologist took an average of 1036 46 seconds to

classify a biopsy sample case, the second renal pathologist

216 10 seconds, and the third 256 16 seconds. However,

we do not believe we need to achieve these speeds to be effec-

tive. As an example, many clinical facilities are understaffed

with respect to renal pathologists, especially on weekends and

nights, and on-call pathologist readings are not as accurate or

prognostic as those done by a renal pathologist.32We envision

one potential effect for our algorithm would be providing re-

nal-pathologist–calibrated structural analysis to on-call pa-

thologists to improve their structural readings. On a separate

note, often, pathologists do not read digitized images the mo-

ment they are prepared. There is typically a turnaround time

between specimen collection, preparation, and image digiti-

zation. The algorithm could easily be run on the digitized

image during this turnaround time, and the prediction would

be available before the pathologist reads the case. Therefore,

the amount of space and time used by the algorithm is reason-

able with respect to the computational resources accessible by

Table 3. Distance metrics for human annotators and computational technique

Comparison Case Number Fraction=GT Average Distance <GT Average Distance >GT

RP1 versus GT, scheme: T, data: patients 48 0.56 21.1960.48 260 (1 case)

RP2 versus GT, scheme: T, data: patients 48 0.8 21.460.52 260 (2 cases)

C versus GT, scheme: T, data: patients 54 0.5 20.6160.57 0.5760.60

C versus GT, scheme: T, data: sections 121 0.52 20.6560.63 0.6660.71

C versus GT, scheme: F, data: patients 33 0.65 20.3660.4 0.4060.47

C versus GT, scheme: F, data: sections 85 0.98 20.0860.2 0.0160.04

Baseline versus GT, scheme: T, data: patients 54 0.27 21.7960.88 1.960.96

Distance is defined as the difference of the assigned label minus the ground truth label. Negative distances indicate undercalling; positive distances indicate
overcalling. T refers to classifications according to the Tervaert scheme; F refers to classifications according to the Fogo scheme. Values are reported as mean6SD
taken over all of the cases. Data description identifies whether the experiment was performed using separate patients or separate sections as individual data. GT,
ground truth; RP, renal pathologist; C, computer.
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large medical centers, and the relatively cheap cost of memory

and computing power of modern hardware.

DISCUSSION

Predictive capacity of automated digital quantitation is dic-

tated first by preanalytic variance contributing to structural

differences from image to image, and second by computational

model. The mutability of algorithmic pipelines can be lever-

aged to conform to the amount of control one has over pre-

analytic variance. Given the extreme amount of heterogeneity

embedded within the field of pathology, it is unlikely that any

one-size-fits-all approaches will be fruitful, and selection of

algorithmic pipelines to efficiently acquire and explore data

will become increasingly important. With this theme in mind,

we fused traditional and modern machine learning and image

analysis to acquire glomerular morphometric data efficiently,

and applied this strategy to evaluateDNclassification as a proof

of concept. Given the complexity of glomerular compartment

distinction in PAS+ images, we simplified the glomerulus

into three components on the basis of their appearance in

PAS stains. In future work with more data, possibly anno-

tated by modern imaging techniques such as multicolor im-

munofluorescence, we will be able to extend our method to

detect actual glomerular compartments, which will likely

increase performance and disease-relevant feature

discovery.

Our developed pipeline is flexible for extension to any

glomerular disease that is interpreted histologically, such

as IgAnephropathyor lupus nephritis, and can also be trained

to predict any numeric outcome label, e.g., proteinuria. This

work was only a pilot study to understand whether compu-

tational diagnosis of renal tissue is possible as compared

with a specific pathologist. However, our ultimate goal

is to use pooled annotations to train a generalized net-

work that represents the balanced opinion of many renal

professionals.

Our work motivates the shift of pathologic diagnoses from

discrete categories extrapolated from visual characterizations

to continuous risk models derived from structural quantifica-

tion. Continuous riskmodels could improve the precisionwith

which disease is described, prompting improved prognostica-

tions. Combining high-level structural analysis withmolecular

or genomic information could help create next-generation in-

dividualized renal therapy, not only in detecting those with

diabetes who are at risk of developing DN, but possibly also for

many other difficult-to-treat diseases such as allograft

nephropathy.
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