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Abstract. Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and
cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of col-
lagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen
in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we
have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and
curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included
a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using
an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by com-
paring length, angle and position of the automatically extracted fibers with those of manually extracted fibers in
twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process
we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied
to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer. © 2014 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.1.016007]
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1 Introduction

The extracellular collagen matrix (ECM) has been found to pro-

mote the progression of many types of cancer. However, the

underlying mechanism behind this relationship is not fully

understood, and is the subject of intense biomedical research.

Much of this research has benefited from the capabilities of

laser-scanning microscopy techniques, in particular second-har-

monic generation (SHG) imaging1 to capture high-resolution,

high-contrast images of individual collagen fibers in tissue

and in in vitro tissue models.2–6 For example, Conklin et al.7

showed that patterns in SHG images of collagen can predict

breast cancer patient outcome. Raub et al.8 showed that SHG

image characteristics can be used to predict bulk mechanical

properties of collagen hydrogels, a common in vitro tissue

model for studying cancer cell motility. Nadiarnykh et al.9

and Watson et al.10 found that SHG image characteristics in

ovarian tissue provide quantitative discrimination between

tumor and benign tissues. Although SHG has been used success-

fully in these and many other studies, quantification of collagen

fiber shape changes remains a difficult challenge, in part due to

large heterogeneities in the patterns observed in SHG images of

tissue. For example, in the breast tissue images shown in Fig. 1,

collagen fibers can be described as wavy or straight [Figs. 1(a)

and 1(b)], high or low density [Figs. 1(c) and 1(d)], and with

thick bundles or thin strands [Figs. 1(e) and 1(f)]. These

descriptions are consistent with previously published observa-

tions of common collagen structures in tissues.7,11,12 In addition,

depending on imaging parameters such as depth within the tis-

sue, images can have low signal-to-noise ratio (SNR) and poten-

tially low-dynamic range [Figs. 1(g)–1(j)]. Quantitative analysis

techniques for SHG images of collagen need to provide robust

and informative features within this heterogeneous collection of

patterns and image qualities. Also, in order to elucidate the inter-

actions between cells and individual collagen fibers, effective

quantitative analysis techniques should be able to extract infor-

mation about individual fibers such as fiber number, length,

angle, and curvature. The work reported here is motivated by

these two requirements: the need for robust performance and

the need for fiber-level information in SHG image analysis of

collagen.

While these two requirements may be met by manual analy-

sis,13 inter- and intra-observer variance can be significant and

time requirements can be prohibitive. Computer-assisted image

feature extraction is poised to help meet these requirements in an

automated fashion. Transform or filter-based methods have been

used for SHG collagen analysis such as the Fourier transform

method published by Falzon et al.,14 the combined Fourier

and Hough transforms method by Bayan et al.,15 the curvelet

transform (CT) method by Pehlke et al.,16 the Fourier and

fractal-based methods reported by Frisch et al.,17 the directional

gradient technique suggested by Altendorf et al.,18 and the gray-

level co-occurrence method published by Hu et al.19 These tech-

niques can be highly robust, often able to detect important

features in a diversity of image settings. However, since these

techniques do not extract individual fibers, they lack the ability
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to identify fiber-level information. For example, transform-

based methods can provide general information about fiber

size and direction at each point in an image but cannot determine

the actual fiber number nor the length or curvature of the fibers.

Since pixels are not grouped into individual fibers, these meth-

ods may not sense the difference between many randomly ori-

ented, straight fibers and long curvy fibers, features that may

help classify patients into high- and low-risk groups for ovarian9

and other cancers. In addition, angle distributions generated by

these algorithms would generally produce bias toward longer

and potentially thicker or brighter fibers, since more pixels

are present in longer and thicker fibers and distributions are

based on pixels and not fibers. These errors must be avoided

in order to appropriately test the biological hypothesis that

fiber angle distribution can help predict the metastatic potential

of cancer cells.4,5,7,20

Fortunately, fiber tracking and extraction methods, such as

those published by Wu et al.21,22 and Stein et al.,23 have been

developed to extract fiber-level information from images of

in vitro collagen matrices. These methods can enable the

automated measurement of important fiber-level parameters

such as fiber length, number, and curvature, and have been

used to estimate collagen gel mechanical properties based on

confocal images of stained gels. However, they have not

been applied to SHG images of collagen in situ. While these

approaches are powerful, perhaps they have not been applied

in situ because they often fail to properly segment fibers in

the dense or low SNR situations commonly encountered in

SHG images of tissue. Examples of two SHG images are

shown in Figs. 2(a) and 2(d) with corresponding manual

fiber extractions shown in Figs. 2(b) and 2(e). The fiber extrac-

tion (FIRE) algorithm, developed and made available by

Stein et al.,23 produces the overly complex fiber network

shown in Fig. 2(c) and an erroneous star pattern in Fig. 2(f),

and in both cases fails to identify many of the fibers extracted

by the human observer.

Instead of using transform-based methods or fiber-extraction

methods alone, a more strategic approach would be to combine

complimentary methods and to use transform-/filter-based meth-

ods as a preprocessing step to fiber extraction. This combined

approach has potential for robust performance in a wide range of

challenging imaging situations commonly seen in cancer imag-

ing, while simultaneously allowing for fiber-level information to

be extracted from images. In this study, we present an approach

for integrating transform-/filter-based preprocessing techniques

with fiber extraction and evaluating the performance of our

combined approach with the ultimate goal of improving the

fiber extraction accuracy of an algorithm such as FIRE. Our

hypothesis is that the application of appropriate pre- and

post-image processing algorithms can significantly improve

fiber extraction in SHG images. This will enable, for example,

more accurate fiber angle distributions, thus allowing for

increased sensitivity to detect collagen alignment changes

related to cancer progression.

We evaluate four candidate preprocessing techniques includ-

ing the simple Gaussian filter (GF), the SPIRAL-TV filter,24 the

tubeness filter,25 and a CT-based denoising filter.26,27 Other than

the GF, these filters were chosen based on their published ability

to highlight edge information in images, while simultaneously

suppressing spatially uniform structures and noise. We have

chosen to use the FIRE algorithm based on the evidence of its

ability to extract fibers from in vitro collagen gel networks and

its availability;28 however, other fiber extraction tools may be

substituted for the FIRE algorithm. We focus our analysis on

two-dimensional (2-D) SHG images, because the effective

nonlinear susceptibility declines sharply when fibers are tipped

out of the imaging plane;29–31 however, our methods may naturally

extend to three-dimensional (3-D) without significant alteration.

Fig. 1 Representative collagen patterns observed in human breast cancer tissue sections demonstrating
the heterogeneous nature of collagen structure. Wavy (a) and straight (b). High (c) and low (d) densities.
Thick bundles (e) and thin strands (f). Discontinuous (g) and continuous (h). Crossing (i) and parallel (j).
Scale bar is 10 μm.
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2 Materials and Methods

Our experimental approach for the evaluation of quantitative

collagen fiber extraction is illustrated in Fig. 3. Twenty-five

images were annotated by three human observers, who traced

each fiber within each image to create a surrogate for ground

truth. The same images are then filtered with one of four

image filters, which are described in the following sections.

Fiber tracking and extraction is then performed using the FIRE

algorithm. We evaluate the automated fiber extraction accuracy

by comparing the length, angle, and position of each fiber

extracted by the FIRE algorithm with each fiber that was man-

ually extracted to determine if fibers can be considered detected,

missed, or falsely detected. F-measure scores are created based

on these rates, and a single parameter in each image filter was

adjusted to optimize the F-measure score for each algorithm.

The details of each step in this process are given in the following

sections. After algorithm evaluation, we applied the best per-

forming technique to quantify collagen fiber shape changes

during tumor progression in an in vivo mouse model for breast

cancer.

2.1 Sample Preparation

To evaluate algorithm accuracy, we chose to use images of

both human and mouse tissues, as they are both routinely

used by our group and others for studying stromal interactions

during breast cancer development. Human ductal carcinoma in

situ biopsy samples were obtained from two completely uniden-

tified patients, paraffin processed, sectioned to 5 μm, hematoxy-

lin and eosin (H&E) stained, and coverslipped. In addition,

tumor-bearing mouse mammary glands from 8-week-old

MMTV-polyoma middle-T (PyMT)13 mice were harvested and

imaged fresh, intact, and unstained. All human tissue images

were collected following institutional review board approval

at the University of Wisconsin at Madison. Mouse tissue images

were obtained using protocols approved by the University of

Wisconsin at Madison institutional animal use and care commit-

tee. We demonstrate an application of our method by measuring

fiber curvature in an in vivo tumor model. In vivo images were

captured through a glass intravital imaging window that was

surgically placed immediately superficial to palpable tumors

within the mammary gland32 in live 8-week-old PyMT mice.

Animals were anesthetized while imaging was performed at 8

and 12 weeks of age.

2.2 SHG Imaging

The SHG images were captured with an excitation wavelength

of 890 nm, a pulse length of approximately 100 fs, and an

emission filter centered at 445 nm with a 20-nm bandwidth

(Semrock, Rochester, New York). The excitation light was

Fig. 2 Fibers extracted by the FIRE algorithm alone without preprocessing. (a) and (d) are the original
images, (b) and (e) show manual segmentations of the fibers, and (c) and (f) show the automatic fiber
segmentations that are extracted by the FIRE algorithm and show many falsely segmented fibers. Scale
bar is 25 μm.

Fig. 3 Diagram of the approach for quantitative collagen analysis
showing the iterative process for optimizing the performance of a sin-
gle image-processing filter for fiber tracking. The raw image is proc-
essed by the image filter using an initial normalization parameter, the
result of which is sent to the FIRE fiber-tracking algorithm. Automated
fiber extractions are compared against manually performed fiber
extractions. Several normalization parameters are evaluated, and
one optimal parameter is selected for each filter based on the fiber
evaluation result.
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focused onto the sample using a 10 × ðNA ¼ 0.5Þ objective.

Pixel size was approximately 0.75 μm, and pixel dwell time

was approximately 10 μs per pixel. Average laser power at

the sample was adjusted to approximately 15 mW for slide im-

aging and 30 mW for intact tissue and in vivo imaging using a

Pockel’s cell and a polarizer. Forward SHG (FSHG) was used to

image slides, and backward SHG (BSHG) was used to image

intact and in vivomouse tissues. The emission light was detected

with a 7422-40P (Hamamatsu, Hamamatsu, Japan) photomulti-

plier tube in both FSHG and BSHG cases. All SHG images of

collagen were captured in regions adjacent to mammary ductal

epithelium verified by white-light images of H&E in the slides

and by cellular autofluorescence from metabolic coenzyme fla-

vin adenine dinucleotide (FAD) in the intact tissue and in vivo

cases.13 Single images were captured of the slides, and z-series

were captured for the intact tissue and in vivo imaging experi-

ments. For intact tissue imaging, representative images were

selected from each z-series for quantitative analysis. For in

vivo imaging, Z-stacks at three imaging locations were captured

at each time point. Three images at depths of approximately 5,

10, and 15 μm below the imaging window were selected for

analysis at each location for a total of nine images per time point.

2.3 FIRE Algorithm

We briefly review the FIRE process here. A more detailed

description of the algorithm can be found in Ref. 23. FIRE is

an automated tracking method that can extract the geometric

structure of 3-D collagen images and is capable of generating

information about the number, length, and curvature of the col-

lagen fibers in an image. The first step of this method is to apply

a threshold to form a binary image such that foreground pixels

represent potential fibers and background pixels represent pixels

where no fiber is present. Next, the distance transform on the

binary image is performed to yield the distance from each fore-

ground pixel to the nearest background pixel. Then, the maximal

ridges of the smoothed image formed by the distance transform

are searched to create a list of nucleation points. Branches are

formed by extending the fiber from each nucleation point based

on fiber trajectory. Short fiber branches are then pruned, and

closely associated fibers are finally linked based on the fiber

length, fiber direction, and the distance between adjacent fibers.

In the associated FIRE software,28 there are about 20 adjustable

parameters initialized with default values. There are usually only

a few parameters that need to be adjusted such as those

impacting the binary image generation, the search for nucleation

points, and fiber linkage. To our knowledge, the FIRE method

has only been tested on confocal reflectance and confocal

fluorescence images of in vitro collagen gels, but has not been

applied to extract collagen fibers from SHG images of tissue.

Each preprocessing technique described in this article was

followed by nearly identical implementations of the FIRE algo-

rithm. The only difference is in the threshold used for creating

the initial binary image. This threshold was hand optimized to

produce the highest quality fiber extractions across all test cases

for each algorithm.

2.4 Preprocessing Algorithms

The four preprocessing algorithms evaluated here are described

briefly in the following sections. More detailed background

information on the advanced filters can be found in their respec-

tive references.

2.4.1 Gaussian filter

A simple 2-D GF was used as a baseline for comparison against

the other, more advanced filters. The standard deviation of

the simple GF was optimized to produce fiber extractions that

most closely matched the human observers using the iterative

approach diagramed in Fig. 3.

2.4.2 SPIRAL-TV filter

The SPIRAL-TV (SPTV) algorithm, by Harmany et al.,24 was

developed to accurately extract features from images where

Poisson noise dominates, a common occurrence in SHG imag-

ing of collagen in tissue or in vitro collagen gels due to the

low-signal levels often encountered in such imaging experi-

ments.33 This algorithm has applications in compressed sensing,

nuclear medicine tomographic reconstruction, and super-

resolution reconstruction in astronomy. The algorithm itera-

tively approximates a solution to the constrained optimization

problem given by

fkþ1 ¼ argmin
f∈Rn

FkðfÞ þ τ � penðfÞ subject to f ≥ 0;

where f is the approximation to the image of interest, FkðfÞ
is the negative Poisson log-likelihood function at iteration k,

and penðfÞ ¼ kfkTV is the total variation seminorm penalty

scheme.34 The scalar parameter τ was optimized to produce

the best match when comparing human and automated fiber

extractions. SPTV was shown to perform well at highlighting

strong edges in images and smooth noise in low-gradient

areas.24 The designers of this algorithm have tested it on noisy

computed tomography reconstruction data; however, it has not

been heretofore applied to preprocessing for fiber extraction

from SHG images.

2.4.3 Tubeness filter

The tubeness filter (TF) is an ImageJ plugin implemented

by Longair, Preibisch, and Schindelin35 and is based on the

work published by Sato et al.25 The algorithm highlights

fiber-like structures in images while attenuating homogeneous

or noisy regions, and has found application in processing images

of neurons and blood vessels.25,36 This filter was used to enhance

fiber structures by first applying a 2-D GF with the standard

deviation optimized to produce the best overall fiber extractions.

Next, the Hessian is computed at each point in the image and the

eigenvalues, λ1 and λ2 for the 2-D case, of the Hessian matrix are

found. The resulting pixel value is given by the following rule:

λg ¼

�

jλ2j; λ2 < 0

0; otherwise
:

To our knowledge, this filter has not been evaluated for its

ability to highlight collagen fibers in SHG images of tissue.

2.4.4 Curvelet filter

We have also implemented a denoising filter based on the 2-D

CT. The CT was developed by Candes and Donoho37 to over-

come the missing ability of the conventional wavelet transform

to highlight lines and edges. Our group has recently reported the

successful use of the CT for finding fiber alignment information

in SHG images of collagen.16 Here, we report on the use of the
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CT as a preprocessing step to fiber extraction. Briefly, the CT

represents images as superpositions of elements that are constant

along ridgelines and wavelets in the orthogonal direction.

Curvelet lengths and widths vary with scale and obey the rule

width ≈ length2. Simple curvelet coefficient thresholding has

been shown to be an improvement over advanced denoising

techniques based on wavelets such as decimated or undecimated

wavelet transforms.26 Our denoising implementation uses the

frequency-wrapping version of the fast discrete CT27 and recon-

structs images using the top x% of the curvelet coefficients from

the intermediate scales 4, 5, and 6 out of 7 total scales in our test

cases. The parameter x was optimized to produce the best over-

all results, as indicated in the block diagram in Fig. 3. Scale

selection may vary with different applications; however, we

chose to remove the finest scale (7th scale) due to the high-noise

content present at this scale. The coarser scales (scales 1 to 3)

did not represent the size of the fibers in our images and were

therefore discarded.

2.5 Algorithm Integration and Evaluation

As shown in Fig. 3, each filter was optimized in an iterative

manner to find the best performing normalization parameters.

The FIRE parameters could have also been iteratively opti-

mized; however, we decided to fix the FIRE parameters for

each of the preprocessing algorithms, except for the initial

threshold that separates fiber pixels from background pixels.

This threshold was hand optimized for each image as well as

for each algorithm. This was necessary because the image histo-

gram of the result of each algorithm was significantly different.

The method for evaluating the fiber segmentation was as fol-

lows: three human observers were asked to manually segment

all fibers in each of the test images into regions of interest (ROI).

The images were annotated using the ImageJ ROI Manager.

The ROIs for each of the test cases were saved for each of the

three observers. These ROIs were then read into MATLAB

(MathWorks, Natick, Massachusetts) using the Miji toolbox.38

The fibers extracted by each automated algorithm were then

compared with the manually extracted fibers for each test case

and each observer. Fiber angle agreement, fiber length agree-

ment, and distance between manual and automatically extracted

fibers were used to score the accuracy of the automated segmen-

tation. The average angle of a fiber was computed by finding the

absolute angle of the line connecting the end points of the fiber.

Fiber length was computed as the Euclidean distance traveled

along the fiber. Distance between manual and automatically

extracted fibers was computed using a k-nearest neighbor search

algorithm.39 Consider a set M of i manually segmented fibers

each with j points, and a set A of n automatically segmented

fibers each with m points. The function KNNðMi;j; An;mÞ pro-
duces Di;j;n, where D is the Euclidean distance from point j on

fiber i of setM to the nearest-neighbor point on the n’th fiber of

set A. The metric for the distance between manually segmented

fiber i and automatically segmented fiber n is then Ci;n ¼
P

jðDi;j;n∕LiÞ, where Li is the distance along the path of the

i’th manual fiber. A manually segmented fiber was associated

with an automated fiber, and vice versa, if the two had similar

average angles, lengths, and positions. The number of true pos-

itive (TP), false positive (FP), and false negative (FN) fibers was

then found by counting the number of associated manual fibers,

unassociated automated fibers, and unassociated manual fibers,

respectively, for each test case. Precision (also called positive

predictive value) and recall (also called sensitivity or true pos-

itive rate) were computed as Precision ¼ TP∕ðTPþ FPÞ and

Recall ¼ TP∕ðTPþ FNÞ, and the harmonic sum of the two

was computed as follows:

Fmeasure ¼ 2 �
Precision � Recall

Precisionþ Recall
:

The Fmeasure result for each of the preprocessing algo-

rithms was averaged over all test cases for a given observer,

producing Fmeasuren, where n represents observer number.

Then, the Fmeasuren result was averaged over all observers and

the standard deviation between observers was computed.

3 Results

Comparison of the four image-processing techniques to each

other, as shown in row 1 of Fig. 4, reveals that edge-preserving

filters, such as SPTV, although effective for denoising without

the loss of edge information, do not lend themselves well

to improving the fiber tracking results. On the other hand, the

TF and CT create ridges along fiber centers (Fig. 4, row 1), help-

ing to ease the difficulty of threshold selection and helping the

fiber-tracking algorithm to follow the centers of thick or noisy

fibers. Examination of fiber-tracking results in Fig. 4, row 2

Fig. 4 Output of the image-processing techniques (row 1) and output of the fiber-tracking algorithm (row
2) for a single test case. The first column is without a filter, column 2: GF, column 3: SPTV filter, column 4:
TF, and column 5: CT. Scale bar is 25 μm.
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shows many completely erroneous fiber tracks for the unproc-

essed, GF, and SPTV filtered cases (red arrows), whereas the TF

and CT filtered results show several properly segmented fibers

(green arrows). Each of the images in Fig. 4 is a representative

128 by 128 pixel region cropped out of larger images.

To further test the effect of preprocessing on collagen fiber

segmentation, the manual segmentation results were compared

with the automated fiber extraction results for two representative

test cases, shown in Fig. 5. Each row in the figure is a different

test case, while each column represents a different method of

fiber segmentation. Column 1 shows the original images with

no overlaid segmentations. Columns 2 through 6 show the

original image with overlays of the manual, GF, SPTV filter, TF,

and CT filter segmentations, respectively, where FIRE was

performed following each of the filter preprocessing steps.

Although we had three observers manually segment each of

the test cases, the manual segmentations shown in column 2 re-

present the segmentations of a single observer. Each tile in Fig. 5

is a 128 by 128 pixel crop of a larger image. The quality of

extraction of individual fibers under the various processing con-

ditions was compared [arrows in Figs. 5(a) and 5(b)], where

it was found that improperly segmented fibers as a result of

GF or SPTV filtering were accurately segmented using the

TF or CT filter.

In order to assess the accuracy of collagen fiber segmenta-

tion, the results of each of the fiber extraction preprocessing

algorithms were compared against each of the three segmenta-

tions performed by the independent observers using a collection

of custom scripts written in MATLAB. If a fiber segmented by

the automated process had a similar angle, close proximity, and

similar length to a manually segmented fiber, then an association

was made between the automated and manual fibers, indicating

a true positive. After all fibers were evaluated, all remaining

unassociated manual fibers were counted as false negatives

(misses), and all remaining unassociated automatic fibers

were counted as false positives (false hits). Precision, recall,

and their harmonic sum (F-measure) were computed and com-

piled for all test cases and all observers. Overall average F-mea-

sure scores for each of the preprocessing algorithms are shown

in Fig. 6. The average F-measure score for the CT filter was the

highest followed by the TF, SPTV, and GF. The error bars indi-

cate the standard deviation between the F-measure scores from

each of the three observers and show that the scores between

observers were very similar, meaning that the CT filter result

was the closest match to all three observers. Comparing the

computation time for each algorithm on identical images

resulted in respective times of 0.22, 225.05, 0.83, and 4.65 s

for the Gaussian, SPTV, Tubeness, and CT processing. Focusing

on the CT denoising filter, we can further validate its perfor-

mance combined with FIRE using a collection of computation-

ally generated images of collagen fibers that were designed to

mimic the length and curvature characteristics found in collagen

gels of approximately 1.0 mg∕mL.23 We processed these images

with the CT-FIRE algorithm to extract length and angle infor-

mation about the individual fibers. The results of this test are

shown in Fig. 7 and show that the CT-FIRE algorithm produces

accurate length and angle distribution measures in known

synthetic test cases.

After identifying the CT filter as the top-performing prepro-

cessing algorithm, we applied the combined CT-FIRE algorithm

to the measurement of collagen fiber shape changes in an in vivo

mouse model for breast cancer. The results of this study are

shown in Fig. 8. Representative images show clear differences

in waviness of fibers between the early [Fig. 8(a)] and late

Fig. 5 Two test cases (a and b), showing different processing methods in each column. The original
image (column 1) is shown overlaid with a manual segmentation (column 2), GF (column 3), SPTV
(column 4), TF (column 5), and CT filter (column 6), where each filter is followed by FIRE fiber extraction.
Scale bar is 25 μm.

Fig. 6 F -measure, recall, and precision results comparing the auto-
mated segmentation techniques with the manual segmentations of
three independent raters, for 25 test cases, representing a total of
9290 fiber evaluations. The error bars indicate the standard deviation
between average F -measure, recall, and precision scores of each of
the raters. Recall is the fraction of relevant fibers that were found.
Precision is the fraction of fibers found that was relevant. F -measure
is the harmonic sum of recall and precision.

Journal of Biomedical Optics 016007-6 January 2014 • Vol. 19(1)

Bredfeldt et al.: Computational segmentation of collagen fibers from second-harmonic generation images. . .



[Fig. 8(b)] time points. The colored lines overlaid on the

images are the automated fiber segmentations produced by

CT-FIRE. These overlays qualitatively illustrate the high-fiber

segmentation quality that can be expected from the CT-FIRE

algorithm. Fiber waviness (W) was quantified for each extracted

fiber by dividing the distance along the path of the fiber (d0) by

the distance between the end points of the fiber (dn).

W ¼
d0

dn
:

Thus, for perfectly straight fibers W ¼ 1.0 and for more

wavy fibers W > 1.0. We labeled a fiber as wavy if W was

greater than a threshold value of 1.08. Then, to compute the

wavy fraction per image, the number of wavy fibers was divided

by the total number of fibers found in each image. The resulting

wavy-fraction values were averaged over all images at each time

point and plotted in the bar graph shown in Fig. 8(c). We observe

that the fraction of curvy fibers at the 8-week time point was

approximately 0.19� 0.04 and 0.75� 0.03 at the 12-week

time point. The error terms given here and error bars in

Fig. 8(c) represent one standard deviation around the average

wavy fractions for the nine images analyzed at each time

point and indicate that there was close agreement between

all images within a given time point.

4 Discussion

In the present study, we compare preprocessing approaches prior

to the application of the FIRE algorithm to identify fiber-level

collagen characteristics in a series of SHG images of collagen in

mammary tissue. Fiber extraction facilitates automated analysis

of collagen features such as fiber number, length, and curvature.

These features are important to researchers studying the role of

the extracellular matrix in cancer progression. Computer-

assisted interpretation of these fiber-level collagen patterns

has the potential to generate more reliable and reproducible

results compared to manual or transform-/filter-based quantifi-

cation methods. Furthermore, an algorithm that identifies colla-

gen fiber characteristics in tissue samples may enable large-scale

studies of tumor-associated collagen signatures supporting the

manual analysis performed previously.7

To our knowledge, FIRE has not been applied to SHG

images of collagen in tissue. According to our testing, FIRE

Fig. 7 Distribution of angles (top row) and lengths (bottom row) of all fibers in all simulated test cases.
Ground-truth data is on the left, and the results of the automated CT-FIRE algorithm are shown on
the right.
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works well in some situations without any preprocessing or

prefiltering. However, the algorithm fails when collagen fibers

are densely packed or image quality is degraded, both of which

are common occurrences while imaging collagen in tissue. Our

work aims to extend FIRE’s application sphere to include com-

plicated SHG images in tissue and to quantitatively compare

the performance of a selection of preprocessing algorithms.

Our results show that both the CT and the TF approaches

are very promising and improve the fiber extraction accuracy

achieved by the FIRE algorithm in many key situations. In addi-

tion, we demonstrate the application of our top-performing algo-

rithm to extract in vivo fiber curvature changes during the

development of a mouse mammary tumor. Although FIRE is

used in our study for fiber extraction, other effective approaches

that have been developed for vessel segmentation or neural dif-

fusion mapping such as statistical tracking40–42 may be effective

in SHG image analysis. We believe the CT and TF methods

would generally improve these algorithms as well.

Recent articles43,44 have suggested that the CT method may

be successfully applied in combination with other approaches

for image processing such as fiber extraction, as we have dem-

onstrated here. By selecting and thresholding the most represen-

tative scales, the CT-based method shows the best performance

for both denoising the image and enhancing edge information,

producing a better fiber extraction among the proposed prepro-

cessing algorithms discussed in this article. Evidence supporting

this claim is presented in Fig. 6, where the overall F-measure

result was the highest for the CT method and notably a threefold

improvement over a standard GF when considering all 25 test

cases analyzed in this study. In addition, the CT-based method

simplifies the often-difficult choice of selecting a threshold to

binarize the image early in the FIRE process. Image threshold-

ing can be difficult in low SNR and nonstationary images but

may be alleviated through the application of more complicated

thresholding techniques45 or via the gray-level distance trans-

form.46 In our case, the inverse CT makes gray-level threshold

selection simple by placing the background on the negative side

of zero and the foreground on the positive side of zero, allowing

the threshold to always remain at zero. Although gray-level

thresholding is simplified, CT denoising adds the step of select-

ing how many curvelet coefficients to use. We chose a hard

thresholding approach since it had robust performance for all

cases we tested, though other soft thresholding or scale-adaptive

thresholding techniques may be adopted to finely adjust the

CT reconstruction. In addition, to take full advantage of the

multiscale analysis of CT-based approaches, an optimal scale

combination must be obtained according to the features of

the images to take into account different fiber width, length,

and dynamic intensity changes. The CurveAlign software16

previously developed in our group may be used to show the cur-

velet centers and directions of the fiber edges at a specified

scale, which may be helpful for choosing the optimal scales

and threshold of the curvelet coefficients.

The TF method produces slightly lower overall fiber segmen-

tation accuracy compared to the CT method, as shown by the

lower optimized F-measure score in Fig. 6. However, the opti-

mized recall score of the TF method was higher than that of the

CT method. This indicates the use of the TF method if recall is

most critical; in other words, if priority is placed on not missing

real fibers. In this study, we decided to balance recall and pre-

cision equally, therefore a missing fiber and a false alarm fiber

were considered equally important (see F-measure calculation).

When this is taken into account, although close, the CT method

produced higher accuracy segmentations on average compared

to the TF method.

The GF and SPTV methods produce similarly inferior seg-

mentations compared to the CTand TF methods. One reason for

this is that the GF and SPTV methods lack the ability to normal-

ize the fibers in the images, such that bright or dim, or thick or

thin fibers do not generate the same signal level in the output

image. This lack of image normalization in the GF and SPTV

methods causes difficulty in the threshold selection step. In addi-

tion, these filters do not enhance the ridges along the centers of

the fibers, which is an attractive feature of both the CT and TF

methods. The GF method is able to attenuate high-frequency

noise but does not preserve edges. The SPTV method filters

high-frequency noise and preserves edge information, however,

it allows plateaus of high-signal level to remain in the image,

such as those seen at the center of bright, thick fibers. For

these reasons, the GF and SPTV methods are not ideal for pre-

processing SHG images of collagen prior to fiber tracking.

Following our evaluation and comparison of these image-

processing algorithms, we applied our top-performing algorith-

mic approach, termed CT-FIRE, to quantify collagen fiber shape

changes over time in an in vivo mouse model for breast cancer.

We observed a significantly larger fraction of highly curved

Fig. 8 Demonstration of automated fiber segmentation feature extraction in an in vivo mouse model for
breast cancer. A mammary window was placed immediately superficial to a palpable mammary tumor,
and the collagen microenvironment was imaged in 8 and 12 weeks of age. Automated fiber extractions
are shown overlaid on representative images from the 8- (a) and 12- (b) week time points. The bar graph
(c) shows the ratio of the number of wavy fibers to total fibers found in the image. Fibers are labeled wavy
if the distance along the fiber divided by the distance between fiber endpoints is greater than 1.08. Error
bars indicate one standard deviation of the computed average wavy fractions among the nine images
analyzed for each time point. Scale bar is 25 μm.
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fibers at the late time point compared to the early time point,

indicating a quantifiable collagen matrix reorganization in the

vicinity of the developing mammary tumor. Although the precise

mechanisms underlying this observed matrix reorganization are

currently unknown, we have demonstrated the power of a tool

like CT-FIRE to quantify key aspects of these dynamic processes

and others like it, enabling further studies of ECM remodeling.

This article focuses on image processing as a technique for

quantifying structural information about collagen fibers in SHG

images. However, it should be noted that there are a number of

related techniques that use information about the polarization or

directionality of the SHG signal to make inferences about col-

lagen fiber orientation or estimates of the nonlinear susceptibil-

ity tensor.31,47–52 These techniques have the potential drawback

of adding costly components to the imaging system and often

require multiple images to be captured per imaging frame, limit-

ing their usefulness for applications such as in vivo imaging. Our

goal here was to establish a robust technique for quantitative

collagen architecture analysis of images captured with standard

SHG imaging techniques.

It is worth mentioning, too, that although the CT and TF pre-

processing methods can improve the results of the FIRE algo-

rithm to some degree, they may do little about some intrinsic

limitations of FIRE, such as the ability to properly segment

crossing or cross-linked fibers, extremely curvy fibers, or fibers

with gaps due to the fibers that travel in and out of the focal

plane, as we observed in our testing. However, with the

improvements provided by the combined approach of CT-FIRE,

we anticipate being able to more accurately measure collagen

fiber angle distributions in a highly automated fashion, thereby

leading to better understanding of the interactions between the

cells and collagen fibers. In order to link collagen architecture to

cellular features, SHG imaging and CT-FIRE may be combined

with complementary imaging techniques such as multiphoton-

excited fluorescence imaging53 and fluorescence lifetime imag-

ing,54 which allow imaging of both extrinsic and intrinsic

fluorescences of tumor and stromal cells. In the future, accurate

assessment of tumor–stromal interactions will help reveal prog-

nosis or treatment response in diseases such as breast cancer.

5 Conclusion

We demonstrate here an integrated approach for quantitative

SHG collagen image analysis and algorithm evaluation. We

show that the application of CT denoising as a preprocessing

step for FIRE, a process we call CT-FIRE, performs more accu-

rate fiber segmentations compared to other techniques we inves-

tigated in a variety of collagen images of human breast and

mouse mammary tissues. We then demonstrate that CT-FIRE

can automatically sense changes in collagen fiber curvature

from images captured in an in vivo breast cancer mouse model.

Our current work uses both MATLAB and Fiji35 image-process-

ing tools in combination. To make these approaches more

widely accessible, we plan to develop a single Fiji plugin to per-

form the CT-FIRE process to produce 2-D and 3-D collagen

fibers network extractions. Other future efforts will include

the evaluation of multiple fiber-tracking algorithms applied to

collagen fiber tracking in SHG images. Although this study

focused solely on breast cancer, the use of these fiber quantifi-

cation techniques should be easily adapted to SHG images of

other collagen-related diseases. A MATLAB implementation

of the CT-FIRE algorithm is available at http://loci.wisc.edu/

software/ctfire.
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