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Abstract 
Estimating the drag force on a metal mesh is important if the 
installed metal mesh area is large and wind speeds are moderate.  
Such a situation may arise if a metal mesh is used to protect a 
property from ember attacks in a bushfire prone area.  In this 
work, computational simulations are used to correlate the drag 
coefficient of a metal mesh in terms of its porosity and the 
Reynolds number for 10 ≤ Re ≤ 1000.  A benchmarking exercise 
suggests that the computational simulations may be in error by up 
to 13 % error for the level of discretization that could be achieved 
due to computer memory limitations.  The drag coefficient 
correlation we have obtained has a maximum error of only 6.5 % 
with respect to the results from the simulations. 
 
Introduction 
Metal meshes are used in many applications such as security 
screens, sport grounds, and roofs of car parks. They are made 
from different materials with different shapes, sizes and 
weavings. The wind-force on a metal mesh is particularly 
important if a large overall size mesh is deployed. However, 
there does not appear to be any experimental data or reliable 
analytical equation available to relate the wind-force to the 
geometry of the metal mesh.  An approximate method based on 
the diameter of the wires used in the metal mesh and the 
projected area of metal mesh might be used, but in the absence of 
specific data, a high safety factor would be needed. 
 
This work examines the problem of the wind-force on metal 
meshes which are used to protect windows and openings of 
buildings against ember attacks in bushfire prone areas. 
Australian standard (AS 3959-1999) [1] recommends using metal 
meshes with an opening of less than 1.8 mm in bushfire prone 
areas.  
 
Nine metal meshes operating at different Reynolds number are 
simulated using a commercially-available CFD package and the 
results are compared with an approximate calculation. Six of the 
metal meshes that were modelled satisfied Australian standard 
AS 3959-1999 and the other three meshes were modelled to 
assist in the deduction of a correlation between wind-force and 
the metal mesh geometry. All metal meshes were considered to 
be smooth and to have square metal mesh cells. 
 
The arrangement of the computational elements was achieved 
using GAMBIT, and the drag force coefficient was calculated 
using the FLUENT package. Due to computer memory 
limitations, the boundary layer around the metal mesh was 
incompletely resolved at the higher Reynolds number conditions 
and this introduces some errors in determining the drag.  These 
errors are estimated after the physical geometry and the 
arrangement of the computational elements are introduced in the 
following sections. 
 
 
 

Modelling 
Geometry of metal meshes
Metal meshes are manufactured in different shapes and sizes. All 
metal meshes modelled in this work have a square opening which 
is the most common shape in use. It is common practice to 
introduce the geometry of metal mesh as m × n × d where m and 
n are number of metal mesh cells per inch in two orthogonal 
directions and d is the diameter of wire in inches.  The nine metal 
meshes modelled in this work are based on 3 different mesh 
numbers (m = n = 10, 16, and 24) each in 3 different wire 
diameters d = 0.0092’’, 0.014’’ and 0.02’’.  In this work, we also 
refer to the size or length of a metal mesh cell, L = 1/m = 1/n if L 
is expressed in inches.  Metal meshes can be woven in different 
ways, but only the most common weaving is considered in this 
work as illustrated in figure 1. 
 
A computational domain with a length and width equal to the 
metal mesh cell size and a height of at least 20d (consisting in a 
distance of 10d above and 10d below the mesh location) was 
defined as illustrated in figure 2.  (For the metal mesh 24 × 24 × 
0.02’’, the height of the computational domain was actually 
100d.) For the arrangement illustrated in figure 2, the flow inlet is 
at the bottom of the domain (hidden on the view in figure 2) and 
the outlet is at the top.  The vertical sides of the domain, which 
pass through the centre of each wire, are planes through which no 
flow passes.  
 
Reynolds numbers
The range of Reynolds numbers investigated in this work is 
limited to between 10 and 1000.  Assuming ν = 1.4607 × 10-5 
m2/s (appropriate for air at standard sea level conditions) gives 
velocities of 225 km/h, 148 km/h and 104 km/h for the three wire 
diameters 0.0092’’, 0.014’’ and 0.02’’ respectively at Re = 1000.  
These flow speeds are representative of the highest wind speeds 
relevant to this work which is motivated by metal mesh 
protection of structures from bushfires. The wind force at very 
low wind speeds is not particularly important in this work, but we 
did want to investigate Re dependence, so we have selected a 
minimum Reynolds number of 10.  
 

 
Figure 1 Solid model of the metal mesh prior to defining the 
computational domain in the case: 24 × 24 × 0.0092’’ 



 
Figure 2 Illustration of the computational domain for the metal mesh 
case: 24 × 24 × 0.0092’’.  Air enters the domian at the lower horizontal 
face (hidden) and leaves from the upper horizontal face. 
 
Elements
The drag force on a metal mesh cannot be simulated reliably 
without proper modelling of the boundary layer around the metal 
mesh. In the case of flow around a wire (cylinder), the thickness 
of the boundary layer is related to the Reynolds number and wire 
diameter. In a two dimensional wire simulation, the number of 
elements required for accurate simulation is a function of the 
Reynolds number, or for a particular flow speed, the number of 
elements required is a function of the wire diameter.  
 
In the metal mesh case, a three dimensional simulation is 
required, and the length of wire within the metal mesh cell (L) 
also affects the number of elements required for an accurate 
simulation. Therefore, at a particular flow speed, the number of 
required elements increases with the ratio of L/d.  This ratio is 
related to the mesh number and wire diameter. For example, for 
the meshes considered in this work, the ratio L/d reaches a 
maximum value of 44 for the metal mesh: 10 ×10 × 0.0092’’, 
while it has a minimum value of 8 for the metal mesh: 24 ×24 × 
0.02’’.   
 
For the metal mesh 10 ×10 × 0.0092’’, 73 divisions were 
produced around the full circumference of the wire.  Each edge 
of the computational domain above and below the wire position 
was divided into 100 segments and the domain was filled with 
3D tetrahedral elements. The total number of elements was 
approximately 2,500,000 in this case.  For the other metal meshes 
it was possible to increase the number of division around the full 
circumference of the wires (up to a total of 300 in the case of the 
metal mesh 24 ×24 × 0.02’’) along with increasing the height of 
the computational domain. Figure 3 shows the elements in the 
immediate vicinity of the wires for the metal mesh 24 × 24 × 
0.0092’’. 
 
Boundary conditions
In the Reynolds number range from 10 to 1000, the metal mesh 
boundary layer should remain laminar [2]. It is also assumed that 
the air has a uniform speed and enters the domain in the upwards 
(y-direction) at the lower entrance; no special conditions are 

assumed for the flow at the upper exit which has a minimum 
distance of 10d from the plane of the metal mesh. The flow 
medium is air which is assumed to be at atmospheric pressure 
and room temperature, and is treated as incompressible. 
 
Only one metal mesh cell was modelled. The vertical sides of the 
computational domain are planes of symmetry plane – see figure 
1 – so no air can cross these planes.  This suggests the Cd for a 
metal mesh should be higher than the Cd for a single wire of the 
same diameter due to the effects of flow confinement.   
 
The performance of all nine metal meshes was simulated using at 
least 7 different Reynolds numbers: 10, 20, 50, 100, 200, 500 and 
1000. The total number of elements used in any simulation was 
between 2,000,000 and 2,500,000 and the run time was about 2-3 
hours at low Reynolds number, and to up to 16 hours at the high 
Reynolds number on a single processor machine speed 1.86 GHz. 
The combined run time of all the simulations reported here 
exceeded 400 hours. All metal meshes were assumed to be 
smooth and no heat transfer was considered. Figure 3 shows the 
elements immediately adjacent to the wires for the metal mesh 24 
×24 × 0.0092’’. 
 

 
Figure 3 Illustration of the fluid elements around the metal mesh to a 
depth of one element for the metal mesh: 24× 24 × 0.0092’’ 

 
Accuracy of modelling – Cylinder Calculations
The drag force can not be calculated reliably if the boundary 
layer around the wires is not modelled properly. The thickness of 
the boundary layer around a cylinder depends on the Reynolds 
number and can be calculated as following [2], 

 75.2=
ν

δ B  (1) 

where δ is the thickness of the velocity boundary layer and ν is 
the kinematic viscosity. B is the stagnation point velocity 
gradient which can be estimated using 

 
d
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where d is diameter of the cylinder and  is the far field 
velocity. We can derive the following equation by combining the 
above equations, 
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Equation 3 indicates that the thickness of the velocity boundary 
layer decreases with increasing Reynolds number. At the 



maximum Reynolds number of 1000, the ratio d/δ is 23, so the 
circumference of the cylinder is about 73δ .  
 
If we want to accurately simulate the boundary layer and hence 
model the problem adequately, we would like to have at least 10 
elements in the boundary layer and this translates to about 730 
elements around the perimeter of wires in the case of 
approximately square elements. 
 
For the metal mesh 10 ×10 × 0.0092’’, the length of wire around 
the perimeter of one metal mesh cell is about 44 times the wire 
diameter.  In the metal mesh simulation, only half of the suface 
of each wire appears, so the number of elements around this half 
circumference is 73δ/2. Assuming the thickness of velocity 
boundary layer is δ, the volume of flow around wire would be 
73δ/2 × (44 × 23δ) × δ = 36938 δ3.  If cubic elements are used 
and the size of each side is δ/10, about 37 millions elements are 
required to model only the boundary layer and this is beyond our 
present computational capacity.  If instead of requiring 10 
elements in the boundary layer, we accept a minimum of only 
one element at the highest Reynolds number, then the minimum 
number of required elements required for the boundary layer 
would be 36938 which is affordable. (A maximum of 2,500,000 
elements is possible in the computer we used.)  This means we 
have only 1 element spanning the stagnation point boundary layer 
at any point for the highest Re condition and hence assessing the 
accuracy of the simulation becomes an important aspect of our 
work. 
 
To estimate the errors associated with this rather coarse level of 
discretisation, cylinder flows are simulated and the results are 
compared with the well accepted experimental drag coefficient 
results for a cylinder.  The modelling is 2 dimensional and the 
results are compared with a correlation given by [3] as 
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In all cases, the discretization is fixed such that we have only one 
element spanning the stagnation point boundary layer for the 
highest Re condition.  The arrangement of elements in the 
vicinity of the cylinder is illustrated in figure 4, and in our chosen 
coordinate system, the flow direction is upwards, entering the 
domain at the lower edge.  Simulations were performed with 
different heights and widths of the computational domain, and 
results are summarised in table 1. 
 

 
Figure 4 Illustration of element density in the simulation of a single wire 
perpendicular to the flow 
 

Simulations were performed at the extremes of our Reynolds 
numbers.  The first two columns of Table 1 show that the 
simulation can give reasonable results with a maximum error of 6 
%.  In the case of Re = 10, the size of elements near the cylinder 
is about 10 % of the thickness of the stagnation point boundary 
layer and so this simulation was expected to have less error than 
the Re = 1000 case, but this did not occur – both cases have an 
error of 6 %.  The reason for this may be related to inaccuracy in 
the reference equation.  However, the thickness of velocity 
boundary layer at Re = 10 is much greater than the thickness at 
Re = 1000 so another possible reason may be related to the flow 
restrictions imposed by the finite computational domain.  While 
the effects of domain size in the transverse direction are relevant 
to the discussion of single wire (cylinder) simulations, they are 
not particularly important in the metal mesh simulation work.  
Flow restriction in the transverse direction is an essential physical 
feature of metal mesh operation. 
 

 
Figure 5  Illustration of the simulated flow around the cylinder at Re = 
10. (Colouring is according to the y-component of velocity.) 

 

 
Figure 6  Illustration of the simulated flow around the cylinder at Re = 
1000. (Colouring is according to the y-component of velocity.) 

 
In the second two columns of table 1 the total height of the 
computational domain (the size of the domain in the streamwise 
direction) was reduced to the 20d.  This modification does not 
have any effect on Cd for the case Re = 1000, but it increases the 
difference between the simulation result and the cylinder 
correlation (equation 4) in the case Re = 10.  Hence we conclude 
that the streamwise size of the domain affects results in the 



lowest Reynolds number case if streamwise domain size is 20d.  
For the metal mesh case 10 ×10 × 0.0092’’, the height of the 
domain was 20d due to computer memory limitations and so an 
error up to 13% is expected.   
 
The last two columns of table 1 provide results for the cylinder 
simulated using a domain consistent with the three dimensional 
domain used in the case of the metal mesh 10 ×10 × 0.0092’’.  At 
both Reynolds numbers, the simulated Cd value increases due to 
the decrease in the transverse size of the domain which causes a 
flow restriction effect, increasing the flow speed past the wire 
and hence increasing the drag.   
 

height 100d 100d 10.87d domain 
width 100d 20d 20d 

Re 10 1000 10 1000 10 1000 
Cd (simulations) 2.84 0.90 3.03 0.90 3.35 0.93 

Cd,cyl 2.67 0.96 2.67 0.96 2.67 0.96 
difference (%) 6% 6% 13% 6% 25% 3% 

Table 1 Results on the accuracy of the simulations of a single cylindrical 
wire in cross flow 

Results and Discussion 
Drag coefficient results from all of the metal mesh simulations 
are presented in table 2.  Representative results from the 
simulations of the metal meshes are presented in figures 7 to 9.  
The Reynolds numbers in these figures is based on the diameter 
of the wires in the metal mesh.  In this work, the drag coefficient 
of the metal meshes is defined by taking the flow speed well 
upstream of the metal mesh (at the entrance to the computational 
domain), and the reference area as the cross sectional area of one 
metal mesh cell.  (Using the total cross sectional area rather than 
the projected area of the wires in the metal mesh is convenient 
for later design work where the aerodynamic force on a particular 
installed area is required.) 
 

mesh Re 
m d (’’) 10 20 50 100 200 500 1000 
10 0.0092 0.7629 0.5438 0.3763 0.3021 0.2552 0.2232 0.2079
16 0.0092 1.5141 1.0620 0.7271 0.5832 0.4948 0.4313 0.3978
24 0.0092 3.2151 2.2235 1.5910 1.2420 1.0048 0.8414 0.7378
10 0.0140 1.5088 1.0314 0.6916 0.5505 0.4664 0.3851 0.3480
16 0.0140 3.3152 2.2868 1.5476 1.2383 1.0367 0.8489 0.7614
24 0.0140 8.7704 6.0119 4.0809 3.2508 2.6837 2.1592 1.8658
10 0.0200 2.7737 1.8440 1.2417 0.9898 0.8265 0.6920 0.6143
16 0.0200 7.6868 --* --* --* --* --* 1.6443
24 0.0200 29.314 19.743 12.921 9.851 7.8331 6.2140 5.1574

* Simulations for this case were not performed at precisely the given Reynolds numbers.   
   However the following results were obtained: (Re,Cd) = (14.286,6.2285), (28.571,4.4394),  
   (71.429,3.1464), (142.86, 2.5670), (285.71,2.1607) 

Table 2 Coefficient of drag simulation results for all of the metal mesh 
simulations  

Figures 7 to 9 indicate that Cd is largest at the low Reynolds 
number and sharply decreases with increasing Reynolds number, 
but at higher Reynolds numbers (say around 200), the change of 
the Cd with Re is relatively small and reaches an almost constant 
value up to the highest Reynolds number studied in this work (Re 
= 1000). This behaviour is very similar to the Cd for flow around 
a cylinder and is an expected result given the metal mesh is 
constructed using woven wires.  The result implies that the nodes 
of the weaving pattern do not dramatically alter the global fluid 
mechanics. 
 
In figures 7 to 9, an approximation for the metal mesh drag 
coefficient, Cda is also included.  This approximation was 
obtained from equation 4.  In effect, we determine the drag force 
on a single wire of the same diameter as the metal mesh wire, 
supposing this single wire is exposed to an unconstrained flow of 
the same speed seen well upstream of the metal mesh.  The 

length of wire in this single wire approximation was taken as that 
required for a reference area equal to the projected (solid) metal 
mesh area.  The single wire drag coefficient approximation (Cda) 
was then obtained by normalising the drag force using the cross 
sectional area of a single metal mesh cell, so that results are 
directly comparable to the simulated metal mesh results (Cd).   
 

 
Figure 7 Comparison of drag coefficient from the simulations (Cd), the 
approximate approach (Cda), and the proposed correlation (Cdc) for the 
mesh: 10 × 10 × 0.0092’’.   

 
Figure 8 Comparison of drag coefficient from the simulations (Cd), the 
approximate approach (Cda), and the proposed correlation (Cdc) for the 
mesh: 16 × 16 × 0.0140’’.   

 
Figure 8 Comparison of drag coefficient from the simulations (Cd), the 
approximate approach (Cda), and the proposed correlation (Cdc) for the 
mesh: 24 × 24 × 0.0200’’.   
 
From figures 7 to 9, it can be seen that the shape of the graph for 
Cda is similar to that of Cd for all metal meshes but the values of 



Cda are significantly smaller.  This is an expected result that 
reflects the constrained nature of the flow through the metal 
meshes.  These figues also show that the ratio Cd / Cda is greater 
at lower Reynolds numbers. For example, for the metal mesh 10 
×10 × 0.0092’’, the ratio Cd / Cda is about 1.6 at a Re = 10 but 
decreases to 1.2 at Re = 1000.  For metal mesh 24 ×24 × 
0.0092’’, which has the same wire diameter but a smaller 
opening, the ratio Cd / Cda is about 2.7 at Re = 10 and decreases 
to about 1.7 at Re = 1000.  This effect arises due to the thickness 
of boundary layer which increases when Reynolds number 
decreases (equation 3). Increasing the displacement thickness of 
the boundary layer has a similar effect to decreasing the width of 
the passage.  

given to flow effects at the edges of the mesh.  For example, at a 
free edge of the metal mesh, a lower drag force per unit area 
would be expected due to deflection of the upstream flow away 
from the mesh.  Conversely, a higher drag force may be 
experience in the vicinity of a mesh edge that is secured to a solid 
surface if the surface channels the air flow towards the mesh. 
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determined through computational simulation at Reynolds 
number from 10 to 1000. The metal meshes were assumed to be 
at the same temperature as the flowing air and no heat transfer 
was considered.  
 
The magnitude of

 
Dimensional analysis indicates that the wire diameter d relative 
to the metal mesh cell size L will probably be an important 
parameter.  The ratio of wire diameter and metal mesh cell length 
can be embodied in the metal mesh porosity which is the ratio of 
open area to total area which is therefore given by 

d
by comparing results for a circular cylinder at an equivalent level 
of discretization with accepted experimental data.  It was shown 
that provided the maximum radial dimension of computational 
elements adjacent to the cylinder did not exceed the thickness of 
the cylinder’s velocity boundary layer, the cylinder drag was 
simulated with a maximum error of 13%.   
 
For the three dimensional metal mesh cas
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The simulations confirm that porosity p is an appropriate 
nondimensional variable.  For example, consider Cd results from 
the two metal meshes: 16 ×16 × 0.0092’’ and 10 ×10 × 0.014’’ 
(table 2).  At Re = 10, Cd = 1.5141 and 1.5088 for the 16 × 16 
and 10 × 10 metal meshes respectively. These two metal meshes 
have different cell sizes and diameters but have an almost 
identical porosity (72.73% and 73.96% respectively).  

w
porosity of mesh and the Reynolds number.  Based on this result, 
a correlation for the drag coefficient with a maximum error of 
6.5% respect to the simulated results is proposed.   
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