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Abstract

Blunt-body configurations are the most common geometries adopted for non-lifting

re-entry vehicles. Hypersonic re-entry vehicles experience different flow regimes during

flight due to drastic changes in atmospheric density. The conventional Navier-Stokes-

Fourier equations with no-slip and no-jump boundary conditions may not provide

accurate information regarding the aerothermodynamic properties of blunt-bodies in

flow regimes away from the continuum. In addition, direct simulation Monte Carlo

method requires significant computational resources to analyze the near-continuum flow

regime. To overcome these shortcomings, the Navier-Stokes-Fourier equations with slip

and jump conditions were numerically solved. A mixed-type modal discontinuous

Galerkin method was employed to achieve the appropriate numerical accuracy. The

computational simulations were conducted for different blunt-body configurations with

varying freestream Mach and Knudsen numbers. The results show that the drag

coefficient decreases with an increased Mach number, while the heat flux coefficient

increases. On the other hand, both the drag and heat flux coefficients increase with a

larger Knudsen number. Moreover, for an Apollo-like blunt-body configuration, as the

flow enters into non-continuum regimes, there are considerable losses in the lift-to-drag

ratio and stability.

Keywords: Near-continuum flow, Discontinuous Galerkin method, Slip and jump

conditions

1 Introduction

Blunt-body configurations are considered to be the most common choice for re-entry

vehicles because of their ability to generate a high drag with reduced aerodynamic

heating [1, 2]. When axis-symmetric blunt-bodies accelerate into supersonic or hyper-

sonic speeds, they generate frontal bow shock with separated flows in the rear of the

body, which results in a high drag. Moreover, the use of blunt shapes tends to reduce

aerodynamic heating in the stagnation region compared with streamlined bodies [3–5].
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Besides these advantages, it has been observed that such geometries produce a small

amount of aerodynamic lift for maneuverability via slight offsets to the vehicle center-

of-gravity [2]. Therefore, there has been continued interest in the development of effi-

cient blunt-body re-entry vehicles [2, 6–9]. As the development of ground-level facil-

ities to simulate hypersonic flow conditions is expensive and technically challenging,

computational modeling and simulation is often considered as an alternative [10–12].

Blunt-body hypersonic vehicles experience different flow regimes as they travel

through the atmosphere. At high altitudes, the air density is drastically lower, which

leads to a significant reduction in the number of collisions between gas molecules in

the flow. Such regimes are characterized with a high degree of rarefaction, commonly

called the Knudsen number. Previous studies have shown that the conventional Navier-

Stokes-Fourier (NSF) equations without slip and jump boundary conditions cannot

handle rarefied regimes [4, 10, 13, 14]. Moreover, inaccurate predictions for the heat

transfer on the frontal surface of re-entry vehicles were shown to significantly affect de-

signs for thermal protection systems, which adversely impacts the aerodynamic forces

acting on re-entry vehicles [2, 15]. Gas kinetic models based on the Boltzmann trans-

port equations (BTE) have often been considered to resolve this issue.

To date, several computational methods have been developed to solve the kinetic equa-

tions. For example, the direct simulation Monte Carlo (DSMC) method based on the

probabilistic approach is widely used. However, the DSMC method becomes inefficient

for low Knudsen numbers because of its heavy demand for computational resources. The

gas kinetic method based on the deterministic approach is known to require additional

computational resources to compute gas flow in near-continuum regimes because of the

limitations in predicting the proper time step and cell size. Therefore, a computationally-

efficient approach based on the NSF equations with the modification of boundary condi-

tions from no-slip to velocity-slip and temperature-jump boundary conditions (hereafter

referred to as the ‘extended’ NSF equations) has often been adopted [10].

There has been considerable effort to derive proper slip and jump conditions to

model non-continuum regimes. In 1878, Maxwell [16] developed a first-order velocity-

slip condition for a flat plate, which depends on the normal velocity gradient at the sur-

face and a thermal creep term. Recently, modifications for generalization and an in-

creased accuracy have been proposed [17–20]. In 1898, Smoluchowski [21] developed

the temperature-jump condition by considering the normal heat flux at the surface.

The amount of momentum exchange and thermal accommodation coefficients between

the gas molecules and solid surface plays a crucial role in the Maxwell and Smolu-

chowski conditions [20].

To assign a physical meaning to the accommodation coefficients for these conditions,

Myong [22] developed another condition, called the Langmuir slip condition, based on

Langmuir’s theory of gas adsorption on solids. The heat of adsorption (or potential par-

ameter) representing the strength of the surface-molecular interaction plays an import-

ant role in the Langmuir slip condition. Due to the simplicity of Dirichlet, instead of

Neumann boundary conditions, we select the Langmuir slip condition for the extended

NSF equations here. In addition, we also compared the Maxwell slip and Smoluchowski

jump conditions for a portion of the test cases.

Among the several numerical methods developed to solve the NSF equations, we se-

lect the discontinuous Galerkin (DG) method because of its ability to inherit the key
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features of both the finite volume and finite element methods. In the DG method,

shape functions are chosen so that both the field variable and its derivatives are consid-

ered discontinuous across the element boundaries, while the overall continuity of the

computational domain is ensured [23, 24]. This feature avoids the need to assemble a

computationally expensive global matrix, which is in contrast with the continuous

Galerkin method [25]. However, the DG method was considered numerically difficult

to implement for the NSF equations until Bassi and Rebay [26] presented a novel tech-

nique, called the mixed DG method. In recent years, this mixed method has been suc-

cessfully applied to a variety of gas dynamics problems, such as dusty-gas flows, low-

Mach microscale flows, and rarefied flows [27–32].

This study investigates near-continuum gas flow over various blunt-bodies using the NSF

equations with slip and jump conditions based on the mixed modal DG method. This paper

is organized as follows. In Section 2, the computational domain for the blunt-body flow is de-

scribed, followed by a description of the governing equations and DG method. In Section 3,

studies for the grid independence and code verification are presented. In Section 4, a numer-

ical study of near-continuum flows over various blunt-body configurations is reported.

2 Mathematical formulation and numerical method

2.1 Problem statement

A sketch of the computational domain for external flows over a two-dimensional (2D) cir-

cular cylinder is shown in Fig. 1. The computational domain was split in half due to its ax-

ially symmetric geometry, which reduces the computational time. The far-field boundary

condition was applied to the far upstream and downstream boundaries and the symmetric

boundary condition was imposed at the centerline (y = 0). The temperature of the ambient

gas and wall of the cylinder was assumed to be 273 K. The wall boundary conditions were

imposed using the Langmuir slip/jump conditions and the Maxwell slip/Smoluchowski

jump conditions, respectively [16, 21, 22]. In the later, both the momentum and thermal

accommodation coefficients are considered to be unity.

This work considers monatomic argon with a shear viscosity index of 0.81 [33]. The

confined gas flow is characterized using the Knudsen and Mach numbers. The Knudsen

number is expressed as [34, 35].

Fig. 1 Sketch of the computational domain for an external flow over a two-dimensional circular cylinder
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Kn ¼ M

Re

ffiffiffiffiffiffi

γπ

2

r

; ð1Þ

Numerical simulations were performed for Knudsen numbers (Kn) of 0.001, 0.005,

and 0.01 in the near-continuum regime by keeping the Mach number a constant. In an-

other set of calculations, the Mach number was varied (5, 6, and 7) in the hypersonic

range and the Knudsen number was constant. These conditions were considered suffi-

cient to extend the gas flows into near-continuum regimes for low Kn. In addition, the

mean free path is calculated using the relation,

λ ¼ KBT
ffiffiffi

2
p

πd2p
ð2Þ

where KB is Boltzmann’s constant and d is the diameter of the gas molecule.

The aerothermodynamic properties of the axis-symmetric blunt-bodies are presented

in terms of non-dimensional coefficients, lift and drag coefficients (CL, CD), and the

heat flux coefficient (CQ) [33]. The total drag was obtained by integrating the pressure

and viscous stress distributions over the surface, and the wall heat flux was calculated

from its normalized value as measured along the surface [10, 22]. The force and heat

flux coefficients were obtained in reference to the dynamic pressure and associated

power of the freestream, respectively. In addition, the aerodynamic moments that act

on an Apollo-shaped blunt-body were calculated for non-zero angles of attack. Figure 2

shows a schematic view of an Apollo capsule detailing its outer mold and aerodynamic

forces and the moments that act on it. The pitching moment (CM, 0) and the x-coordin-

ate for the center of pressure (CP) of the body where the resultant force acts (XCP) are

plotted in Fig. 2b [33, 36]. It is noted that the offset center of gravity (cg) is considered

to be negligible in this work as we focus primarily on the effects of the flow parameters

on aerothermodynamic properties of the blunt-body configuration [33, 37, 38].

2.2 Governing equations

The Boltzmann kinetic equation for monatomic gas particles without an external field

is expressed as

∂

∂t
þ v � ∇

� �

f ðv; r; tÞ ¼ C½ f �; ð3Þ

where f, v, r, and C[f] represent the distribution function, velocity, position, and colli-

sion integral, respectively [39]. According to gas kinetic theory, macroscopic variables

can be either conserved variables (ρ, ρu, ρE) or non-conserved variables (Π,Q), where

ρ, u, E, Π, and Q represent the density, average velocity, total energy density, viscous

shear stress, and heat flux, respectively. These macroscopic variables can be statistically

defined as

ϕ kð Þ ¼ h kð Þ f
D E

: ð4Þ

In this expression, the angular brackets denote integration over the velocity space,

and the h(k) terms are the molecular expressions for the moments. The leading ele-

ments of the set for the conserved and non-conserved variables are written as
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ϕð1Þ ¼ ρ; ϕð2Þ ¼ ρu;ϕð3Þ ¼ ρE;

ϕð4Þ ¼ Π; ϕð5Þ ¼ Q:
ð5Þ

The molecular expressions corresponding to this set are

hð1Þ ¼ m; hð2Þ ¼ mv; hð3Þ ¼ 1

2
mc2;

hð4Þ ¼ ½mcc�ð2Þ; hð5Þ ¼ 1

2
mc2−mĥ:

ð6Þ

where, m, c, and ĥ are the molecular mass, peculiar velocity of the molecule, and en-

thalpy density per unit mass, respectively. The symbol [](2) denotes the traceless sym-

metric part of the second rank tensor. The viscous shear stress Π is related to the

stress tensor P through the relationship

Fig. 2 Schematic view of an Apollo capsule: a outer mold line, and b aerodynamic forces and moments
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P ¼ pIþΠ; ð7Þ

where p and I represent the pressure and unit second rank tensor, respectively.

The molecular expressions h(1, 2, 3) given in Eq. (6) are the collision invariants, which

lead to vanishing dissipation effects for the conserved variables. After differentiating the

statistical definition of the conserved variables in Eq. (6) with time and combining them

with the Boltzmann kinetic expression in Eq. (3), the following conservation laws of

mass, momentum, and total energy, all of which are exact consequences of the Boltz-

mann kinetic equation, are derived as

∂

∂t

ρ

ρu

ρE

2

6

4

3

7

5
þ ∇ �

ρu

ρuuþ pI

ðρE þ pÞu

2

6

4

3

7

5
þ ∇ �

0

Π

Π � uþQ

2

6

4

3

7

5
¼ 0: ð8Þ

These equations can be written in a non-dimensional vector form as

∂U

∂t
þ ∇ � Finv Uð Þ þ ∇ � Fvis U;∇Uð Þ ¼ 0; ð9Þ

where the conservative vector U, the inviscid flux vector Finv, and the viscous flux vec-

tor Fvis are given by

U ¼
ρ

ρu

ρE

2

4

3

5; Finv ¼

ρu

ρuuþ 1

γM2
pI

ρE þ 1

γM2
p

� �

u

2

6

6

6

6

4

3

7

7

7

7

5

; Fvis ¼
1

Re

0
Π

Π � uþ 1

Ec Pr
Q

2

6

4

3

7

5
: ð10Þ

In the derivation, the dimensionless Mach (M), Reynolds (Re), Eckert (Ec), and

Prandtl (Pr) numbers are introduced as

M ≡
ur
ffiffiffiffiffiffiffiffiffiffiffi

γRT r

p ; Re ≡
ρrurL

μr
; Ec ≡ γ−1ð ÞM2

; Pr ≡
cprμr
kr

: ð11Þ

The subscript r denotes the reference state of the gas, μ is the viscosity of the gas, R

is the gas constant, k is the thermal conductivity of the gas, and cp is the heat capacity

per mass at a constant pressure.

For the NSF model, the non-conserved viscous shear stress tensor and the heat flux

vector are determined based on the Newtonian law of shear and the Fourier law of heat

conduction, respectively, as

Π ¼ −2μ½∇u�ð2Þ; Q ¼ −k∇T : ð12Þ

The μ and k are expressed for monatomic gas molecules as

μ ¼ T s
; k ¼ T s

; s ¼ 1

2
þ 2

ν−1ð Þ ; ð13Þ

where ν denotes the exponent of the inverse power law for gas-particle interaction po-

tentials [40].

2.2.1 Langmuir slip and jump conditions

Gases in non-continuum regimes that interact with the solid walls are subjected to velocity

slip and temperature jump conditions [41]. In the description of gas-surface molecular
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interactions under Langmuir slip and jump conditions, the gas molecules (adsorbate) are

adsorbed onto the surface (adsorbent). Based on the Langmuir adsorption isotherm, the

amount of adsorbate on the adsorbent is proportional to the pressure when at a constant

temperature. This gas-surface interaction process can be described based on the fraction of

surface that is covered at equilibrium, α, which is expressed for monatomic gases as

α ¼ βp

1þ βp
; ð14Þ

where the equilibrium constant β is expressed as

β ¼ K

kBTW

; ð15Þ

where TW is the surface temperature and K is a function of the interfacial interaction

parameters. This can be reduced to an equilibrium constant given by

K ¼ Amλ exp
De

kBTW

� �

; ð16Þ

where De is the measured value of the heat of adsorption for argon at 5, 255 J/mol and

Am is the mean area of a site and can be approximated as NAπd
2/4(m2/mol) for gases

where d is the diameter of the gas-particle and NA = 6.022 × 1023mol−1 [20, 22].

Thus, the equilibrium constant β can be expressed as

β ¼ Amλ

kBTW

exp
De

kBTW

� �

: ð17Þ

Finally, combined with the information for the fraction of covered surface at equilib-

rium α, the velocity slip and temperature jump conditions can be expressed in dimen-

sional form as

u ¼ αuW þ 1−αð Þug ;

T ¼ αTW þ 1−αð ÞT g ;
ð18Þ

where the subscripts g and w denote the local values adjacent to the wall and at the

wall surface, respectively.

2.2.2 Maxwell slip condition

The Maxwell slip condition considers the diffuse reflection of gas molecules from a

solid surface. Consequently, the gas molecules may be grouped into either approaching

or receding streams. Furthermore, it is assumed that these gas molecule streams con-

tribute equally to the total shear stress that acts on the surface [16]. Thus, the overall

viscous stress on the wall surface is formed as the difference between the tangential

momentums of the approaching and receding streams. Moreover, a free parameter,

called the tangential momentum accommodation coefficient (σu), is introduced to re-

tain the conservation of momentum for the surface. Incorporating these assumptions

and introducing the thermal creep process based on the tangential temperature gradi-

ent at the surface allows expressing the Maxwell velocity slip condition as [33, 42, 43].

Chourushi et al. Advances in Aerodynamics             (2020) 2:8 Page 7 of 37



u ¼ uW−
2−σu
σu

� �

λ

μ
ΠW−

3

4

Prðγ−1Þ
γp

QW : ð19Þ

Here, ΠW and QW refer to the tangential shear stress and heat flux at the wall, re-

spectively, which can be defined in general coordinates as

ΠW ¼ ðn �ΠÞ � SW ;

QW ¼ Q � SW ;
ð20Þ

where n denotes the outward normal unit vector, and SW refers to the surface vector

written using the dyadic product (⊗) as

SW ¼ ðI−n� nÞ: ð21Þ

Finally, the velocity slip condition can be expressed in vector form as

u ¼ uW−
2−σu

σu

� �

λ

μ
ðn �ΠÞ � ðI−n� nÞ− 3

4

Prðγ−1Þ
γp

Q � ðI−n� nÞ: ð22Þ

When the contributions due to the tangential heat flux are negligible, the Maxwell

velocity slip condition reduces to

u ¼ uW−
2−σu
σu

� �

λ

μ
ðn �ΠÞ � ðI−n� nÞ: ð23Þ

2.2.3 Smoluchowski jump condition

By analogy with the Maxwell velocity slip condition, the Smoluchowski temperature

jump condition [21] also considers the diffuse reflection of gas molecules from the solid

surface. The approaching and receding streams of the gas molecules are assumed to

contribute equally to heat conduction within the region at a few orders of distance

from the surface. Furthermore, the conservation of energy is ensured by introducing

the thermal accommodation coefficient (σT) for solid surfaces. The heat conduction of

the approaching stream is related to the internal energy of the gas molecules. However,

the heat conduction of the receding stream is influenced not only by this internal en-

ergy but also by the surface [20, 42]. With these assumptions, the Smoluchowski

temperature jump condition is expressed as

T ¼ TW þ 2−σT

σT

� �

2γ

ðγ þ 1Þ
λ

Prk
QW : ð24Þ

From Eqs. (20) and (21), the Smoluchowski condition can be re-arranged as

T ¼ TW þ 2−σT

σT

� �

2γ

ðγ þ 1Þ
λ

Prk
Q � ðI−n� nÞ: ð25Þ

2.3 Discontinuous Galerkin method

The governing equations (Eq. (10)) are discretized over the computational domain

using a mixed modal DG method based on the Bassi and Rebay formulation [26]. This

formulation determines the value of the second-order derivatives that are present in

the viscous terms by adding the auxiliary variables S, as these derivatives cannot be ac-

commodated directly in a weak formulation using a discontinuous function space. The
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auxiliary variables S are defined as the derivatives of conservative variables U. Hence,

Eq. (10) can be reformulated into a coupled system of U and S as

∂U

∂t
þ ∇ � Finv Uð Þ þ ∇ � Fvis U; Sð Þ ¼ 0;

S−∇U ¼ 0:
ð26Þ

These coupled equations are solved over the computational domain, which is decom-

posed into the unstructured triangular and tetrahedral elements. The exact solutions

for U and S are approximated using the DG polynomial approximations for Uh and Sh,

respectively, as

Uh ¼
X

Nk

i¼0

uihðtÞbiðxÞ;

Sh ¼
X

Nk

i¼0

sihðtÞbiðxÞ; ∀x∈Ωe

ð27Þ

Here, uihðtÞ and sihðtÞ are the local degrees of freedom for U and S, respectively, bi(x)

is the basis function for the finite element space, and Nk is the number of basis func-

tions required for the k-exact DG approximation.

After multiplying the mixed system of Eq.(26) with the test function, which is taken

to be the same as the basis function bi(x), and then integrating by parts over an element

Ωe, the following weak formulation for the mixed system of Uh and Sh is derived as

∂

∂t

Z

Ωe

UhbdV þ
Z

∂Ωe

bFinv � ndΓ−
Z

Ωe

∇b � FinvdV þ
Z

∂Ωe

bFvis � ndΓ−
Z

Ωe

∇b � FvisdV ¼ 0;

Z

Ωe

ShbdV−

Z

∂Ωe

bUh � ndΓþ
Z

Ωe

∇b �UhdV ¼ 0:

ð28Þ

where V and Γ denote the volume and boundary integrals of the element, respectively.

2.3.1 Basis functions

The basis functions in this work are from on the orthogonal Jacobi polynomials and

used for the triangular and tetrahedral elements [44]. The Jacobi polynomials for the

transformation of a physical domain into a computational domain between the interval

[−1, 1] can be expressed as [33].

Pα;β
n ¼ −1ð Þn

2nn!
1þ ξð Þα 1þ ξð Þ−β dn

dξn
1−ξð Þαþn 1−ξð Þβþn

n o

⇒for α; βð Þ > −1: ð29Þ

Here, ξ refers to the coordinate of the computational space, α, β represent the coordi-

nates of the element, and n refers to the order of the polynomial. The Jacobi polyno-

mials satisfy the orthogonal property as

Z

1

−1

P
α;β
i ξð ÞPα;β

j ξð Þ 1þ ξð Þα 1þ ξð Þβdξ ¼ δij ¼ 1; i ¼ j

0; i≠ j

�

: ð30Þ

By setting the value of α = β = 0 in Eq. (29), the polynomial can be reduced to the fol-

lowing generalized form, known as the Legendre polynomial [25, 33],
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Ln ξð Þ ¼ P0;0
n ξð Þ ¼ −1ð Þn

2nn!

dn

dξn
1−ξ2
� �n

: ð31Þ

The total number of basis functions required for the k-th order polynomial can be re-

constructed using the formula [33].

Nk ¼ N k;Dð Þ ¼

Y

D

m¼1

k þmð Þ

D!
; ð32Þ

where D is the dimension. Hence, the number of basis functions required for k-th

order accuracy in an arbitrary-dimension is

Nk ¼ f k þ 1ð Þ; if D ¼ 1;
k þ 1ð Þ k þ 2ð Þ

2
; if D ¼ 2;

k þ 1ð Þ k þ 2ð Þ k þ 3ð Þ
6

; if D ¼ 3:

ð33Þ

Using these relationships, the number of basis functions required for the computa-

tional element is summarized with an accuracy up to the 5th order in Table 1.

The scaled Legendre polynomials for a one-dimensional element with an accuracy up

to the 5th order are outlined below:

P
0;0
i ξð Þ ¼ bi ξð Þ ¼

1;
ξ;

ξ2−
1

3
;

ξ3−
3

5
ξ;

ξ4−
6

7
ξ2 þ 3

35
;

ξ5−
10

9
ξ3 þ 5

21
ξ:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð34Þ

For a 2D element, the scaled Legendre polynomials depend on the type of element,

which can be either rectangular or triangular. The scaled Legendre basis functions are

built from the standard triangle elements with an accuracy up to the 2nd order and are

summarized as follows:

Table 1 Number of basis functions required for the computational element with accuracy up to

5th order [33]

Polynomial order One-dimensional Two-dimensional Three-dimensional

0 1 1 1

1 2 3 4

2 3 6 10

3 4 10 20

4 5 15 35

5 6 21 56
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bi ξ; ηð Þ ¼ f 1;
−1þ 2ξ þ η;

−1þ 3η;
6ξ2 þ 6ξ −1þ ηð Þ þ −1þ ηð Þ2;

−1þ 2ξ þ ηð Þ −1þ 5ηð Þ;
1þ 2η −4þ 5ηð Þ:

ð35Þ

Similarly, for three-dimensional tetrahedral elements, the basis functions are the same

as those for references [33, 45]. Furthermore, the number of quadrature points can be

selected from the information of the k-th order polynomial and the quadrature rule on

the finite element space [46, 47]. This work adopts the symmetric quadrature rule for

both boundary and volume integrals [33, 45].

2.3.2 Numerical fluxes

The integrals over the discontinuous space of an individual element are approximated

using numerical fluxes, which communicate the flow properties across the neighboring

elements. The numerical fluxes for an element can be written as [33].

∮∂Ωe
biUh � ndΓe ≈ ∮∂Ωe

biHauxiliaryðUL
h;U

R
hÞ � ndΓe;

∮∂Ωe
biF

invðUhÞ � ndΓe ≈ ∮∂Ωe
biHinviscidðUL

h;U
R
hÞ � ndΓe;

∮∂Ωe
biF

visðUh; ShÞ � ndΓe ≈ ∮∂Ωe
biHviscousðUL

h; S
L
h;U

R
h; S

R
hÞ � ndΓe:

ð36Þ

Here, (⋅)L and (⋅)R refer to the trace values taken from the interior and exterior of the

element, respectively, and the HauxiliaryðUL
h;U

R
hÞ , HinviscidðUL

h;U
R
hÞ , and HviscousðUL

h; S
L
h;

UR
h; S

R
hÞ terms represent the approximations for the auxiliary, inviscid, and viscous

fluxes, respectively. The auxiliary and viscous fluxes are solved using the central Bassi-

Rebay (BR1) scheme [26] as

HauxiliaryðUL
h;U

R
hÞ ¼

1

2
ðUL

h þUR
hÞ;

HviscousðUL
h; S

L
h;U

R
h; S

R
hÞ ¼

1

2
ðFvisðUL

h; S
L
hÞ þ FvisðUR

h; S
R
hÞÞ:

ð37Þ

On the other hand, the following Lax-Friedrichs flux [30] is used for the inviscid

fluxes:

HinviscidðUL
h;U

R
hÞ ¼

1

2
½FinvðUL

hÞ þ FinvðUR
hÞ� þ

1

2
λmaxðUL

h−U
R
hÞ; ð38Þ

where λmax is the spectral radius of the flux Jacobian along the direction of the normal

vector to the edge or surface and is given by

λmax ¼ V � nþ Cs ¼ ∣V j þCs; ð39Þ

where Cs is the speed of sound.

Assembling all the elemental information allows the mixed modal DG discretization

to be simplified into a system of semi-discrete ordinary differential equations in time as

dU

dt
¼ M−1R Uð Þ: ð40Þ

Here, M is the elemental orthogonal mass matrix and R(U) is the residual vector of

the system. The system of equations is then solved using an explicit time marching
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scheme. A third-order total variation diminishing Runge-Kutta (TVD-RK) method is

employed for this work [24].

2.3.3 Positivity preserving limiter

For the high-order scheme, spurious numerical oscillations in the solutions can be sup-

pressed using the positivity preserving limiter, which ensures that the pressure and

density fields are positive over each element [48]. This limiter computes a small value

ω ¼ minð10−13; ρ; pÞ based on the mean of the density and pressure fields for the tar-

get cell. The positivity is then checked using the minimum of the density field over dif-

ferent quadrature points of the local element to compute the limited coefficient as

θ1 ¼ min
ρ−ω

ρ−ρmin

; 1

� �

: ð41Þ

Using this information, the higher-order components of the density field are modified to

Uhðx; tÞ ¼ U0
j ðtÞϕ0ðxÞ þ θ1

X

n

i¼1

U i
jðtÞϕiðxÞ: ð42Þ

Once the positivity is satisfied over the density field, a similar procedure can be ap-

plied for the pressure field until positivity is ensured over the entire domain.

3 Verification and validation of DG method

3.1 Grid independent study

Grid independency is shown for the proposed method based on unstructured triangular

elements by considering four different grid resolutions. The grid was refined by increas-

ing the number of grid points on the walls of the 2D square cylinder, as illustrated in

Table 2. The temperature of the ambient gas and cylinder walls was assumed to be

constant (273 K). Figure 3 compares the shear stress and heat flux measured along the

surface of the cylinder for argon at M = 5.0 and Kn = 0.005 [33, 49]. It is seen that the

numerical errors consistently decrease with larger grid refinements. Moreover, meshes

3 and 4 both predict nearly the same profiles while additional mesh refinements do not

further impact the shear stress or heat flux. Thus, this work adopts mesh 3 where the

minimum size of the cell near the surface of the cylinder is taken as Δ ≈ 0.016. A simi-

lar strategy is applied for the 3D test cases.

3.2 Validation of the DG method

Two hypersonic flows were considered to validate the DG method. These are the pro-

files for the conserved variables under hypersonic gas flow over a 2D square cylinder in

the slip regime (case I), and the aerothermodynamic properties under hypersonic flow

Table 2 Mesh characteristics for the two-dimensional square cylinder

Grid type Total number of elements Minimum cell size (near the wall)

Mesh 1 2900 0.067

Mesh 2 5710 0.034

Mesh 3 11150 0.0167

Mesh 4 22020 0.00834
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over a 2D circular cylinder in the near-continuum regime at low Knudsen numbers

(case II).

(a) Case I: A hypersonic flow over a 2D square cylinder with the freestream condi-

tions of M = 5.0 and Kn = 0.1 was computed using the proposed DG method. The

temperature of the ambient gas and walls of the cylinder was assumed to be 273 K. The

argon gas based on the variable hard sphere molecules was considered [40]. Figure 4

compares the obtained density, temperature, and Ux velocity profiles with the results of

FLUENT using the slip/jump conditions and that of Chen et al. [50]. It is observed that

the peak values are accurately captured using the proposed method, and the captured

profiles agree well with each other. Furthermore, the conventional results obtained

using FLUENT (NSF equations with Maxwell/Smoluchowski conditions) and the pro-

posed method (NSF equations with Langmuir conditions) show similar profiles.

Fig. 3 Comparison of normalized quantities measured along the surface of the square cylinder for different

meshes at Kn = 0.005 and M = 5.0: a shear stress, and b heat flux
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Fig. 4 Comparison of profiles of normalized conserved variables measured along the central line y = 0 at

Kn = 0.1 and M = 5.0 with the FLUENT solutions obtained using the Maxwell/Smoluchowski conditions and

the Chen et al. [50] results: a density, b temperature, and c Ux velocity
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Figure 5 compares the obtained pressure, wall shear stress, and wall heat flux profiles

measured along the surface of the cylinder with the results from Fluent as obtained

using the Maxwell/Smoluchowski conditions and Chen et al. [50]. It is observed that

the peak values are effectively captured in the proposed method and the profiles are in

good agreement with each other. However, slight differences are noted in the profiles

compared with the existing literature, which is associated with an increased rarefaction

order; for such flow-regimes, an additional non-conserved constitutive model should be

used [40]. Furthermore, it is noted that the profiles obtained using the proposed model

(NSF equations with Langmuir conditions) and the FLUENT solution (NSF equations

with Maxwell/Smoluchowski conditions) follow each other closely.

(b) Case II: A hypersonic flow over a 2D circular cylinder under the freestream con-

dition M = 10 was computed with the proposed DG method. The temperature of the

ambient gas and walls of the cylinder was assumed to be 273 K. The geometric parame-

ters of the 2D cylinder were taken to be the same as those from Lofthouse et al. [10].

Table 3 compares the total drag force and heat transfer rates for Kn = 0.002 and 0.01.

The results using the extended NSF equations agree well with the results from Loft-

house et al. [10] with a maximum error of less than 3%. However, for the NSF equa-

tions with no-slip conditions, the maximum error increases to 10%.

The reason for the reduced overall drag predicted from the extended NSF equations

is related to a decreased wall shear stress as caused by the velocity slip on the surface

of the cylinder. This shear-thinning feature also affects the energy transfer rate for gas-

surface interactions, which reduces the heat flux on the cylinder surface. Similar find-

ings have been reported in the literature [10, 13, 15] where reductions in both the drag

and heat flux were observed for the extended NSF equations with slip and jump condi-

tions as compared with the NSF equations with no-slip conditions.

4 Computational simulations and discussions

Computational simulations were conducted for hypersonic flow over different blunt-

body configurations. The aerothermodynamic properties of the 2D blunt-bodies with

varying Mach (M) and Knudsen (Kn) numbers were investigated. In addition, we com-

pared the drag and heat flux coefficients for both the Langmuir slip/jump conditions

and the Maxwell slip/Smoluchowski jump conditions. The computational simulations

for 3D blunt-bodies with different Knudsen numbers are presented. Argon was selected

as the working gas and the flow was assumed to be laminar for all the numerical

simulations.

4.1 Two-dimensional (2D) blunt-bodies

4.1.1 Flow over a 2D square cylinder

4.1.1.1 (a) Varying Mach numbers We computed the hypersonic flow over a 2D

square cylinder for three different freestream Mach numbers (5, 6, and 7), while the

freestream Knudsen number was set to 0.005. Figure 6 shows contour plots for the nor-

malized conserved variables (Ux velocity, density, and pressure) as obtained using the

extended NSF equations. It is observed from Fig. 6a that the slip velocity on the surface

increases with the Mach number. In addition, it is noted that there are minimal
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Fig. 5 Comparison of surface quantities measured along the surface of the cylinder at Kn = 0.1 and M =

5.0 with the FLUENT solutions obtained using the Maxwell/Smoluchowski conditions and the Chen et al.

[50] results: a pressure, b shear stress, and c heat flux
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differences in the normalized density fields. However, as shown in Fig. 6c, the normal-

ized pressure field increases substantially with the Mach number.

Figure 7 compares the wall shear stress and heat flux for different Mach numbers.

The increasing magnitude of the wall shear stress with the Mach number is significant

in both the frontal and side parts of the square cylinder. The increased wall heat flux is

more prominent in the frontal part than the sides of the square cylinder. However, as

expected, the increased wall shear stress and heat flux at the rear of the square cylinder

are negligible.

Figure 8 compares the drag and heat transfer coefficients for varying Mach numbers

with Kn = 0.005. It is seen that the drag coefficient decreases as the Mach number in-

creases. Even though the drag in the frontal part of the square cylinder increases with

Table 3 Comparison of the total drag and peak heat transfer rates for the extended Navier-Stokes-

Fourier (NSF) with the slip and jump conditions

Kn Lofthouse et al. [10] Present case
(NSF with no-slip)

Present case (extended NSF)

FD (N/m) FQ (kW/m2) FD FQ FD FQ

0.002 187.6 89.80 196.55 95.08 194.30 92.70

0.01 40.02 39.13 42.23 43.01 40.98 39.48

Fig. 6 Contour plots of normalized conserved variables for different Mach numbers (5, 6, and 7), plotted in

rows, at Kn = 0.005: a Ux velocity, b density, and c pressure
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the Mach number, as shown in Fig. 6c, the resultant drag coefficient decreases, due to

a significant increase in the freestream dynamic pressure. In contrast, as the Mach

number increases, the heat flux coefficient grows due to the rapid rise in total

temperature at the front of the square cylinder.

Figure 8 also shows that the slip and jump conditions reduce both the drag and heat

flux coefficients, but with emphasis on the heat flux. The decreased drag coefficient is

caused from a reduced tangential velocity gradient near the wall, which is linked to the

velocity slip on the wall under the imposed slip conditions. Similarly, the decreased

heat flux coefficient is caused from a reduced temperature gradient near the wall. The

Langmuir and Maxwell/Smoluchowski conditions undistinguishably predict the drag

and heat flux coefficients, and the order of magnitude differences in these coefficients

are extremely small and can be neglected. However, the Dirichlet type Langmuir

Fig. 7 Comparison of normalized quantities measured on the surface of the square cylinder for different

Mach numbers (5, 6, and 7) at Kn = 0.005: a shear stress, and b heat flux
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condition predicts the velocity slip and temperature jump effects under a numerical im-

plementation, which is much simpler than the Neumann type Maxwell/Smoluchowski

conditions.

4.1.1.2 (b) Varying Knudsen numbers We computed the hypersonic gas flow under a

freestream Mach number of 6 for three different Knudsen numbers (0.001, 0.005, and

0.01). Figure 9 shows the contour plots of the normalized conserved variables (Ux vel-

ocity, density, and pressure) as obtained from the extended NSF equations. As the

Knudsen number increases, the gas is further compressed, which increases the normal-

ized density at the frontal part of the square cylinder. On the other hand, no significant

differences were found in the contours of the normalized velocity and pressure.

Fig. 8 Comparison of the aerothermodynamic properties for varying Mach numbers (5, 6, and 7) at Kn =

0.005: a drag coefficient, and b heat flux coefficient
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Figure 10 compares the wall shear stress and heat flux for different Knudsen num-

bers. The wall shear stress significantly decreases with an increasing Knudsen number,

both in the frontal and side parts of the cylinder. The decreased heat flux with an in-

creasing Knudsen number remains higher in the frontal part than in the side part of

the square cylinder. However, the deceased wall shear stress and heat flux are negligible

at the rear of the square cylinder.

Figure 11 compares the drag and heat transfer coefficients for varying Knudsen num-

bers at M = 6. It is seen that as the Knudsen number increases, fewer gas molecules

interact with the wall surface, which reduces both the pressure drag and viscous drag

that act on the cylinder surface. However, the resultant drag coefficient increases due

to a significantly reduced freestream dynamic pressure. Similarly, the increased heat

flux coefficient is explained from the significantly reduced freestream power. Moreover,

both the drag and heat flux coefficients are reduced from the slip and jump conditions

imposed at the wall surface.

In addition, Fig. 11 also compares the drag and heat flux coefficients for the Lang-

muir and Maxwell/Smoluchowski conditions. A closer examination of these conditions

suggests that there is a marginal increase in the order of these coefficients for the Max-

well slip/Smoluchowski jump conditions with a greater Knudsen number.

Fig. 9 Contour plots of normalized conserved variables for different Knudsen numbers (0.001, 0.005, and

0.01), plotted in rows, at M = 6: a Ux velocity, b density, and c pressure
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4.1.2 Flow over a 2D circular cylinder

4.1.2.1 (a) Varying Mach numbers We computed the hypersonic flow over a 2D cir-

cular cylinder for three different freestream Mach numbers (5, 6 and 7), while the free-

stream Knudsen number was set to 0.005. Figure 12 shows contour plots of the

normalized conserved variables (Ux velocity, density, and pressure) as obtained using

the extended NSF equations. It is seen from Fig. 12a and c that the slip velocity on the

surface and the pressure both increase with the Mach number. On the other hand, no

significant differences are found in the density. Compared with Fig. 6, the magnitude of

the density for the circular cylinder is relatively lower than that of the square cylinder.

This is related to the bluntness of the frontal part of the body, which tends to yield a

higher density.

Fig. 10 Comparison of normalized quantities measured on the surface of the square cylinder for different

Knudsen numbers (0.001, 0.005, and 0.01) at M = 6: a shear stress, and b heat flux
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Figure 13 compares the wall shear stress and heat flux for different Mach numbers.

The increased magnitude of the wall shear stress with the Mach number is significant

in the side part compared with the frontal part of the circular cylinder. However, the

increased wall heat flux is greater in the frontal part than in the side part. Moreover,

compared with Fig. 7, the heat flux on the circular cylinder is greater than the square

cylinder. The wall shear stress on the circular cylinder increases smoothly, attains a

maximum, and then smoothly decreases, while the wall shear stress on the square cy-

linder experiences a sudden increase and decrease near its sharp-edges.

Figure 14 compares the drag and heat transfer coefficients for varying Mach numbers

at Kn = 0.005. Similar to the square cylinder, a larger Mach number leads to a de-

creased drag coefficient and increased heat flux coefficient. The slip and jump condi-

tions respectively reduce the tangential velocity gradient and the temperature gradient

Fig. 11 Comparison of the aerothermodynamic coefficients for varying Knudsen numbers (0.001, 0.005, and

0.01) at M = 6: a drag coefficient, and b heat flux coefficient
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near the wall surface. The discrepancy between the Langmuir and Maxwell/Smolu-

chowski conditions is small enough for aerodynamic coefficients.

Compared with Fig. 8, the drag coefficient of the circular cylinder is smaller than that

of the square cylinder due to the reduced resistance of the smooth blunt-body to the

freestream. Nonetheless, the heat flux coefficient of the circular cylinder increases be-

cause of the relatively higher stagnation temperature at the frontal part of the cylinder

compared with the square cylinder [51].

4.1.2.2 (b) Varying Knudsen numbers We computed the hypersonic gas flow with a

freestream Mach number of 6 for three different Knudsen numbers (0.001, 0.005, and

0.01). Figure 15 shows contour plots of the normalized conserved variables (Ux velocity,

density, and pressure) as obtained using the extended NSF equations. As the Knudsen

number increased, the gas further compressed and resulted in a greater normalized

density field at the frontal part of the circular cylinder, which is the same as that ob-

served for the square cylinder.

Fig. 12 Contour plots of normalized conserved variables for different Mach numbers (5, 6, and 7), plotted in

rows, at Kn = 0.005: a Ux velocity, b density, and c pressure
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Figure 16 compares the wall shear stress and heat flux for different Knudsen num-

bers. The decreased wall shear stress for larger Knudsen numbers is significant on the

side parts rather than the frontal and rear parts of the circular cylinder. In contrast, the

heat transfer is considerably reduced in the frontal part rather than in the side and rear

parts of the circular cylinder. However, compared with Fig. 10, the heat flux of the cir-

cular cylinder is greater than that of the square cylinder. Furthermore, smoothly vary-

ing profiles are observed for the circular cylinder compared with the square cylinder.

Figure 17 compares the drag and heat transfer coefficients for varying Knudsen

numbers with M = 6. Similar to the square cylinder case, both the drag and heat

flux coefficients increase at larger Knudsen numbers. The increased drag and heat

flux coefficients are explained from the significantly reduced freestream values. Fur-

thermore, the slip and jump conditions at the wall surface are known to affect the

Fig. 13 Comparison of normalized quantities measured on the surface of the circular cylinder for different

Mach numbers (5, 6, and 7) at Kn = 0.005: a shear stress, and b heat flux
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drag and heat flux coefficients in a similar way; for example, from the preservation

of Reynolds analogy in the slip regime [52]. The decrease in both the drag and

heat flux coefficients is confirmed in the case of the extended NSF equations with

slip and jump conditions. Close agreement was observed between the Langmuir

and Maxwell/Smoluchowski conditions when calculating the drag and heat flux

coefficients.

4.2 Three-dimensional (3D) blunt-bodies

4.2.1 Flow over a 3D sphere

We computed the hypersonic gas flow over a 3D sphere using a freestream Mach num-

ber of 6 for three different Knudsen numbers (0.001, 0.005, and 0.01). The

Fig. 14 Comparison of the aerothermodynamic coefficients for varying Mach numbers (5, 6, and 7) at Kn =

0.005: a drag coefficient, and b heat flux coefficient
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computational domain was decomposed into unstructured grids with a total of 200,000

tetrahedral elements. The temperature of the ambient gas and the surface was assumed

to be a constant of 273 K. Figure 18 compares the profiles for the normalized con-

served variables (Ux velocity, density, and pressure) measured along the central line y =

0 for different Knudsen numbers. It is seen that as the Knudsen number increases, the

shock front moves further upstream due to reduced interactions between gas molecules

and the surface in the near-continuum regime [45]. Both the normalized density and

pressure monotonically increase with the Knudsen number due to the increasing com-

pression in the frontal part of the sphere.

Figure 19 compares the drag and heat flux coefficients for different Knudsen

numbers at M = 6. Similar to the circular cylinder case, the increased drag and heat

flux coefficients with the Knudsen number are explained by the significantly re-

duced freestream values. Moreover, the decrease in both the drag and heat flux co-

efficients is confirmed in the case for the extended NSF equations with the

Langmuir slip/jump conditions.

Fig. 15 Contour plots of normalized conserved variables for different Knudsen numbers (0.001, 0.005, and

0.01), plotted in rows, at M = 6: a Ux velocity, b density, and c pressure
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4.2.2 Flow over an Apollo configuration

We computed the hypersonic flow over an Apollo configuration with a freestream Mach

number of 6 and three different Knudsen numbers (0.001, 0.005, and 0.01). The coeffi-

cient of the pitching moment about the z direction was also considered [33, 37, 38]. The

temperature of the ambient gas and the body surface was assumed to be a constant of

273 K. The computational domain was decomposed into an unstructured grid with a total

300,000 tetrahedral elements and 9084 triangular elements for the surface.

Figure 20 compares the profiles of the normalized conserved variables (Ux velocity,

density, and pressure) as measured along the central line y = 0 for different Knudsen

numbers at a zero degree angle of attack. Similar to the spherical case, it is observed

that the shock front moves further upstream and the normalized density and pressure

monotonically increase with the Knudsen number. Compared with Fig. 18, the

Fig. 16 Comparison of normalized quantities measured on the surface of the circular cylinder for different

Knudsen numbers (0.001, 0.005, and 0.01) at M = 6: a shear stress, and b heat flux
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increased normalized density and pressure are relatively higher than the spherical case

because of the increased body bluntness.

It has been previously reported that as the Mach number increases up to 5, the separ-

ation point of the flow near the surface moves downstream from the shoulder to the

base on the back-shell for an Apollo capsule [53, 54]. However, this study shows that

the Reynolds numbers are substantially reduced with an increased Knudsen number;

therefore, no major separation region in the downstream of the capsule was observed

at a Mach number of 6.

Figure 21 compares the drag and heat flux coefficients for different Knudsen num-

bers. Similar to the spherical case, the drag and heat flux coefficients increase with the

Knudsen number. Moreover, these coefficients are lower for the extended NSF equa-

tions with the Langmuir slip/jump conditions. Compared with Fig. 19, the blunt config-

uration of an Apollo capsule experiences a relatively larger drag and a lower heat flux.

Fig. 17 Comparison of the aerothermodynamic coefficients for varying Knudsen numbers (0.001, 0.005, and

0.01) at M = 6: a drag coefficient, and b heat flux coefficient
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Fig. 18 Comparison of profiles of normalized conserved variables for different Knudsen numbers (0.001,

0.005, and 0.01) measured along the central axis line y = 0 at M = 6: a Ux velocity, b density, and c pressure
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The large radius of the blunt nose increases the drag coefficient and decreases the heat

flux coefficient acting on the surface as compared with a sphere [55].

Furthermore, we computed the hypersonic flow over an Apollo capsule with a free-

stream Mach number of 6 for different angles of attack (0∘, 10∘, and 20∘). Figure 22

compares the drag, heat flux, and lift coefficients for different angles of attack (αA) with

varying Knudsen numbers. It is seen that larger angles of attack cause both the drag

and heat flux coefficients to decrease. In particular, there is a substantial decrease in

the drag coefficient over all Knudsen numbers. This behavior is opposite to the case of

the lifting body, such as a slender body. The geometry of the Apollo capsule causes the

general flow pattern to be more smooth with an increased angle of attack, which results

in reduced drag and heat flux coefficients. On the other hand, as expected, the lift coef-

ficient increases with the angle of attack. Of note, the lift coefficient does not increase

Fig. 19 Comparison of the aerothermodynamic coefficients for varying Knudsen numbers (0.001, 0.005, and

0.01) at M = 6: a drag coefficient, and b heat flux coefficient
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Fig. 20 Comparison of profiles of normalized conserved variables for different Knudsen numbers (0.001,

0.005, and 0.01) measured along the central axis line y = 0 at M = 6: a Ux velocity, b density, and c pressure
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with the Knudsen number as much as the drag and heat flux coefficients, which results

in a considerable loss of the lift-to-drag ratio for non-continuum regimes.

Figure 23 compares the center of pressure and pitching moment coefficient for different

angles of attack and Knudsen numbers. Simulations of the flow over re-entry blunt cap-

sules efficiently predict the aerodynamic and aerothermodynamic properties in the non-

continuum regimes and have been a topic of interest [13, 38]. As the angle of attack in-

creases, the center of pressure moves upstream and drops below the central axis. As the

Knudsen number increases for a given angle of attack, the center of pressure moves up-

stream due to a significant reduction in the pressure [38]. On the other hand, the magni-

tude of the pitching moment coefficient (clockwise nose-up) along the z direction

increases with the angle of attack and Knudsen number, implying that the blunt capsule

configuration remains essentially unstable. In general, a blunt Apollo capsule configur-

ation yields a larger aerodynamic drag coefficient and smaller aerothermodynamic heat

Fig. 21 Comparison of the aerothermodynamic coefficients for varying Knudsen numbers (0.001, 0.005, and

0.01) at M = 6: a drag coefficient, and b heat flux coefficient
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Fig. 22 Comparison of the aerothermodynamic coefficients for varying Knudsen numbers (0.001, 0.005, and

0.01) for different freestream angles of attack at M = 6: a drag coefficient, b heat flux coefficient, and c

lift coefficient
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Fig. 23 Comparison of the center of pressure and the pitching moment coefficient for varying Knudsen

numbers (0.001, 0.005, and 0.01) for different freestream angles of attack, at M = 6: a X coordinate location

of the center pressure, b Y coordinate location of the center pressure, and c pitching moment coefficient
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flux coefficient compared with a sphere. Moreover, these coefficients increase as the flow

enters the near-continuum regime.

5 Conclusion

We investigated hypersonic flows over different blunt-body configurations in the near-

continuum regime by solving the NSF equations with slip and jump conditions. A

mixed-type modal DG method was developed to attain an appropriate numerical accur-

acy. We first investigated the aerothermodynamic properties of several blunt-body con-

figurations for different Mach and Knudsen numbers. It was seen that as the Mach

number increased, the drag coefficient decreased and the heat flux coefficient increased

due to a rapid rise in total temperature at the frontal part of the blunt-body. On the

other hand, as the Knudsen number increased, both the drag and heat flux coefficients

increased due to significant reductions in the freestream values. Furthermore, the slip

and jump conditions reduced both coefficients, especially the heat flux. The decreased

drag coefficient was caused from a reduced tangential velocity gradient near the wall,

which is linked to the velocity slip on the wall with the imposed slip condition. Simi-

larly, the decreased heat flux coefficient was caused from a reduced temperature gradi-

ent near the wall. Therefore, the use of the NSF equations with proper slip and jump

conditions is recommended to analyze hypersonic flows in the near-continuum regime.

The performances of both the Langmuir and Maxwell/Smoluchowski conditions were

very similar when predicting the aerodynamic coefficients and other properties of the

2D blunt configurations considered in this work as subjected to the near-continuum

gas regime. Nonetheless, the Dirichlet type Langmuir condition predicted the velocity

slip and temperature jump effects using a numerical implementation, which is much

simpler than the Neumann type Maxwell/Smoluchowski condition. We also investi-

gated hypersonic flow over an Apollo configuration with a freestream Mach number of

6 for three different Knudsen numbers in the near-continuum regime. It was found that

the blunt configuration of an Apollo capsule experienced a relatively higher drag and

lower heat flux than the sphere. It was also seen that as the angle of attack increased,

the drag and heat flux coefficients both decreased for all Knudsen numbers, which is

the opposite behavior to a lifting body, such as a slender body. Interestingly, the lift co-

efficient did not increase with the Knudsen number as much as the drag and heat flux

coefficients, which resulted in a considerable loss to the lift-to-drag ratio in non-con-

tinuum regimes. Moreover, as the Knudsen number increased for a given angle of

attack, the center of pressure moved upstream. The magnitude of the nose-up

pitching moment coefficient increased with the angle of attack and Knudsen num-

ber, implying that the blunt capsule configuration remains essentially unstable.

This work addressed the aerothermodynamic properties of different blunt-body

configurations for varying Mach and Knudsen numbers for monatomic gas flow in

the near-continuum regime. However, the proposed methodology may not be ap-

plicable to hypersonic flows dominated by complicated diatomic and polyatomic

molecules with internal energies and chemical reactions. Future work will focus on

extending the model to diatomic and polyatomic gases with chemically-reactive

species and second-order constitutive equations beyond the first-order NSF

equations.
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