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ABSTRACT

Depth profile reconstruction of a scene at low light levels using an
active imaging setup has wide-ranging applications in remote sens-
ing. In such low-light imaging scenarios, single-photon detectors
are employed to time-resolve individual photon detections. How-
ever, even with single-photon detectors, current frameworks are lim-
ited to using hundreds of photon detections at each pixel to mitigate
Poisson noise inherent in light detection. In this paper, we discuss
two pixelwise imaging frameworks that allow accurate reconstruc-
tion of depth profiles using small numbers of photon detections. The
first framework addresses the problem of depth reconstruction of an
opaque target, in which it is assumed that each pixel contains ex-
actly one reflector. The second framework addresses the problem of
reconstructing multiple-depth pixels. In each scenario, our frame-
work achieves photon efficiency by combining accurate statistics for
individual photon detections with a longitudinal sparsity constraint
tailored to the imaging problem. We demonstrate the photon effi-
ciencies of our frameworks by comparing them with conventional
imagers that use more naı̈ve models based on high light-level as-
sumptions.

Index Terms— Single-photon imaging, depth imaging, convex
optimization, greedy algorithm, LIDAR, Poisson processes

1. INTRODUCTION

The technique of light detection and ranging (LIDAR), which typi-
cally uses a pulsed, narrow-beam light source and a photodetector,
reconstructs scene depth by measuring the time-of-flight (ToF) of
the backreflected return from each pixel [1]. If there are multiple
reflections from the scene, such as when imaging through a scat-
tering medium, then multiple times-of-flight are recorded for multi-
depth reconstruction [2]. By transverse-scanning the light source
and repeating the pixelwise ToF acquisition process, one can obtain
a spatially-resolved depth profile of a scene.

Many LIDAR systems have employed single-photon detec-
tors [3–5]. Because the single-photon detector is able to resolve
individual photon detections, it can be useful for low-light applica-
tions such as remote 3D sensing, in which light travels long distances
and only a small amount of flux is incident at the detector. However,
even when using single-photon detectors, the acquisition times of
the system are made long enough to detect hundreds of photons per
pixel, such that a finely binned histogram of detection times approx-
imates the continuous-time, continuous-amplitude incident flux with
appropriate normalization, making ToF estimation straightforward.

This material is based upon work supported in part by a Samsung Schol-
arship, the U.S. National Science Foundation under Grant No. 1422034, and
the MIT Lincoln Laboratory Advanced Concepts Committee.

Very recently, computational imaging frameworks have been
introduced to process photon detection data without treating a
detection-time histogram as approximating a flux waveform, and
using regularization predicated on piecewise smoothness in the
transverse dimensions [6–10]. For natural scenes, accurate results
have been demonstrated from as little as 1 detected photon per
pixel, even in the presence of significant ambient light. However,
in some applications, it is important to avoid regularization based
on piecewise smoothness. For example, when spatial features are
small relative to the pixel spacing, methods dependent on such
regularization often produce erroneously over-smoothed results.

In this paper, we present a pixelwise imaging framework
from [11, Ch. 1–3], [12, 13] for accurate depth-profile reconstruction
using only a small number of photon detections in the presence of
ambient background light. This framework achieves high photon
efficiency using an accurate Poisson process model of photon detec-
tions and longitudinal sparsity constraints, based on discreteness of
scene reflectors, but no transverse regularization. We concentrate on
modeling, algorithms, and simulations for two imaging scenarios.

Imaging single-reflector depth: For imaging the depth of a
single reflector per pixel, our framework uses the accurate Pois-
son observation model for photon detections plus a union-of-
subspaces constraint that models reflector sparsity and the un-
known background flux. By using a greedy signal reconstruction
algorithm—a novel variation on compressive sampling matching
pursuit (CoSaMP) [14]—we solve for accurate estimates of scene
depth and background flux in a pixelwise manner. Using simulations
of single-photon LIDAR, we demonstrate that our proposed imaging
framework outperforms log-matched filtering, which is the conven-
tional maximum-likelihood (ML) depth estimator in the absence of
background flux [15]. Experimental results are presented in [12].

Imaging multiple depths: For imaging multiple reflectors per pixel,
with the number of reflectors unknown, our framework uses the ac-
curate Poisson observation model for photon detections plus a spar-
sity constraint on the multi-depth profile signal. In this problem,
we assume background flux is calibrated and known. We show that
the multi-depth estimation problem from photon detections can be
relaxed to create a convex optimization problem, and we solve it
using a novel variation on the iterative shrinkage-thresholding algo-
rithm (ISTA) [16]. Using simulations of single-photon LIDAR, we
demonstrate that our proposed imaging framework outperforms the
Gaussian-mixture fitting method, which is the conventional multi-
depth estimator assuming a large number of photon detections [17].
Experimental results are presented in [13].
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Fig. 1. Imaging setup with a raster-scanning pulsed source and a single-pixel single-photon detector for (top) single-reflector depth reconstruc-
tion and (bottom) multi-depth reconstruction (two-reflector case). The aim in both imaging scenarios is to use the discrete photon time-stamps
(shown in red markers) to reconstruct the scene depth (or the set of depths) at a pixel.

2. SINGLE-PHOTON DEPTH IMAGING SETUP

Figure 1 illustrates our single-photon LIDAR setup for the two imag-
ing scenarios. In both scenarios, a focused optical source, such as a
laser, illuminates a pixel in the scene with the pulse waveform s(t)
that starts at time 0 and has root mean-square pulsewidth Tp. This il-
lumination is repeated every Tr seconds for a sequence ofNs pulses.
The single-photon detector, in conjunction with a time correlator, is
used to time stamp individual photon detections relative to the time
at which the immediately preceding pulse was transmitted. The plots
at the left of the two setup figures show the raw photon detection
dataset after Ns trials of illumination and detection. These detec-
tion times are observations of a time-inhomogeneous Poisson pro-
cess whose rate function combines contributions from pixel return,
background light, and dark counts. They are used to estimate the
depth profile for the illuminated pixel. In the single-reflector imag-
ing setup (top figure), the aim is to estimate a single scene depth
and, in the multi-reflector imaging setup (bottom figure), the aim is
to reconstruct multiple scene depths.

3. PHOTON DETECTION MODEL

We first derive the relationship between the pixelwise impulse re-
sponse, which contains information about reflector depths, and the
photon-detection times. Our derivation is for a single pixel; the same
model applies at each pixel.

Let r(t) for t ∈ [0, Tr) be the optical flux, in photons per sec-
ond, that is incident on the detector from a single pulse illumination.
Then, we can write

r(t) = (h∗s)(t)+b, (1)

where h(t) is the impulse response of the scene pixel, b is the con-
stant background-light flux, and ∗ denotes convolution. The rate

function λ(t) that characterizes the photon detections at the single-
photon detector is thus

λ(t) = η(hd∗r)(t)+bd, (2)

where η ∈ (0, 1), bd, and hd(t) are the detector’s efficiency, dark-
count rate, and response function, respectively. For simplicity, we
assume a normalized detector response function:

∫ Tr

0
hd(t) dt = 1.

Substituting (1) into (2) then gives

λ(t) = η(h∗s̃)(t)+(ηb+bd), (3)

where s̃ = hd∗s is the effective pulse waveform after accounting
for the detector response. We assume that the scene being imaged is
entirely within the maximum unambiguous range of the imager, so
h(t) = 0 for t > Tr . We also assume Tp � Tr so that (h∗s̃)(t) = 0
for t 6∈ [0, Tr). Furthermore, the effect of detector dead time (reset
time) is omitted. The skewing of the effective pulse waveform due
to dead time that arises from moderate- to high-flux conditions is
described in [11, App. B].

A time-correlated single-photon detector records the time-of-
detection of a photon within a timing resolution of ∆ seconds. We
can choose a pulse repetition period that is much longer than the
timing resolution (∆ � Tr) so that m = dTr/∆e is the number
of time bins that contain photon detections. Using the probabilistic
theory of photon detection [15], the kth bin of the observed photon
count histogram after Ns pulse illuminations is easily shown to be
distributed as

yk ∼ Poisson

(
Nsη

∫ k∆

(k−1)∆

(h∗s̃)(t) dt︸ ︷︷ ︸
Mean count of
signal photons

+Ns∆(ηb+bd)︸ ︷︷ ︸
Mean count of

background photons
plus dark counts

)
. (4)



We would like to reach an approximation in which the Pois-
son rate parameter of yk is expressed as an affine transformation
with respect to the scene impulse-response vector. By approximating
(h∗s̃)(t) with a sampling period of ∆′ = Tr/n for some n ∈ Z+,
we can write the first term in the Poisson parameter in (4) as

Nsη

∫ k∆

(k−1)∆

(h∗s̃)(t) dt

=

∫ k∆

(k−1)∆

∫ Tr

0

Nsηh(y)s̃(t−y) dy dt

(a)
=

∫ k∆

(k−1)∆

n∑
j=1

∫ j∆′

(j−1)∆′
Nsηh(y)s̃(t−y) dy dt

(b)
≈

n∑
j=1

∫ k∆

(k−1)∆

∫ j∆′

(j−1)∆′

xj

∆′
Sk,j

∆
dy dt =

n∑
j=1

Sk,j xj ,

where (a) follows from partitioning [0, Tr) into n subintervals and
(b) from using constant approximations for h(y) andNsηs̃(t−y) on
(y, t) ∈ [(j−1)∆′, j∆′)×[(k−1)∆, k∆); specifically,

xj =

∫ j∆′

(j−1)∆′
h(y) dy,

Sk,j =
1

∆′

∫ k∆

(k−1)∆

∫ j∆′

(j−1)∆′
Nsηs̃(t−y) dy dt,

for k = 1, 2, . . . ,m, j = 1, 2, . . . , n. Based on our discrete ap-
proximation, the observation model of (4) can be rewritten as

yk ∼ Poisson ( (Sx+B1m)k ) , for k = 1, 2, . . . ,m, (5)

where x is an n×1 vector, S is an m×n matrix, and 1m is an m×1
vector of ones, and B = Ns∆(ηb+bd).

4. NOVEL IMAGING FRAMEWORK

Using the accurate photon detection statistics derived in the previous
section, we consider solving the inverse problem of depth profile
reconstruction in the two imaging scenarios from Fig. 1.

4.1. Imaging a single depth per pixel

For the single-depth imaging problem, we consider x and B as un-
known variables. Defining A = [S,1m] and z = [xT , B]T , such
that all unknown variables are represented by a single vector z, we
can further rewrite (5) as

yk ∼ Poisson
(

(Az)k
)
. (6)

Since x has exactly one nonzero entry due to our opaque reflector
assumption, we have that z lies in the union of n subspaces defined
as

UOS(n) =

n⋃
k=1

{
z ∈ Rn+1 : z{1,2,...,n}\{k} = 0

}
. (7)

Figure 2 shows an illustration of UOS(2), which is a nonconvex set.
Thus, ẑ, a statistically accurate estimate of z, can be obtained by
solving the constrained likelihood optimization problem:

minimize
z

Lz(z;A,y) (8)

subject to z ∈ UOS(n),

zi ≥ 0, i = 1, 2, . . . , (n+1),

Fig. 2. Illustration of the nonconvex set UOS(2).

where Lz(z;A,y) is the negative log-likelihood function of z based
on (6). To solve (8), which is an optimization problem over a non-
convex union-of-subspaces set, we use a greedy algorithm inspired
by CoSaMP. Unlike CoSaMP, each of whose iterations projects the
solution onto the best subspace of the `0-norm ball, we project our
solution onto the best subspace of Sn. (Here the best subspace is
defined as the subspace closest to the intermediate solution in terms
of Euclidean distance.) The details of the algorithm implementation
can be found in [11, Ch. 2], [12].

4.2. Imaging multiple depths per pixel

For the multi-depth imaging problem, we consider the scenario in
which the impulse response vector x is unknown, but B is known
through calibration prior to active imaging.

We use the K-reflector model for describing the impulse re-
sponse of a pixel with multiple reflectors [18, 19]:

h(t) =

K∑
i=1

a(i)δ
(
t−2d(i)/c

)
, t ∈ [0, Tr), (9)

where a(i) and d(i) are respectively the reflectivity and depth values
of the ith reflector at an image pixel, δ(·) denotes the Dirac delta
function, and K is the number of reflectors. If the minimum depth
separation of adjacent reflectors is larger than c∆′/2, then x has
exactly K nonzero entries whose values are {a(i)}Ki=1.

We can minimize the negative log-likelihood function, while in-
cluding a K-sparsity constaint on x, to solve for the multi-depth
profile. However, the K-sparsity constaint, which is expressed us-
ing the `0-norm, makes the problem NP-hard [20]. To design a com-
putationally feasible algorithm, we apply the convex relaxation that
uses the `1-norm as a convex-hull proxy for the `0-norm [21]. Our
optimization program also includes a nonnegativity constraint on re-
flectivity estimates. Thus, we obtain the multi-depth profile estimate
x̂ by solving the following `1-penalized and constrained likelihood
optimization problem:

minimize
x

Lx(x;y,S, B)+β‖x‖1 (10)

subject to xk ≥ 0, k = 1, 2, . . . , n,

where Lx(x;y,S, B) is the negative log-likelihood of x from (5)
and β > 0 is the parameter controlling the degree of penalizing
the estimate’s lack of sparsity. Because Lx(x;y,S, B) and the `1-
norm are both convex functions in x and the nonnegative constraint
is a convex set, the minimization problem given in (10) is a convex
optimization problem. Thus, its global optimum can be found by
using gradient descent methods. As post-processing, we replace the



(a) RMSE vs. num photons (b) RMSE vs. num photons
for B = 0.1 for B = 0.2

mean num. of photons
10 20 30 40 50

R
M

S
E

 (
cm

)

0.1

0.2

0.3

0.4

0.5
log-mf
proposed

mean num. of photons
10 20 30 40 50

R
M

S
E

 (
cm

)
0.1

0.2

0.3

0.4

0.5
log-mf
proposed

Fig. 3. Simulation of pixelwise depth imaging results from the con-
ventional log-matched filter and our methods, when using photon
detections at two background levels.

clusters of depths (neighboring nonzero entries of x̂) with their re-
spective average depths to maximize the sparsity level of the signal.
The details of the algorithm implementation can be found in [11,
Ch. 3], [13].

5. SIMULATION RESULTS

For single-depth imaging, we simulated (6) to study the performance
of the proposed framework. We compared our joint depth plus back-
ground estimation method with the conventional log-matched filter,
which is the ML depth solution assuming B = 0:

d̂ML =
c∆′

2

(
arg max

i∈{1,2,...,n}
logST

i y

)
. (11)

Figure 3 shows the root-mean-square error (RMSE) of depth re-
construction at two different background levels. Here we used m =
n = 801 and a Gaussian pulse with Tp such that cTp/2 = 1 cm.
For each number of photon detections, 4000 Monte Carlo trials of
(6) were run. We observe that our method improves over conven-
tional log-matched filtering for both background levels, with greater
improvements seen in the high background case, due to our model-
ing of both impulse response and background as unknown variables.

For multi-depth imaging, we studied the performance for K =
2, which is used in applications such as second-order multipath inter-
ference mitigation [22] and looking through a scattering layer [23]
via ToF imaging. We compared two algorithms: the mixture-of-
Gaussian (MoG) estimator using greedy histogram fitting, and our
proposed imager that uses convex optimization. Let {d(1), d(2)},
with d(1) < d(2), be the set of true depths of the two reflectors at a
pixel. Also, let {d̂(1), d̂(2)}, with d̂(1) < d̂(2), be the set of identi-
fied depths obtained using either the MoG method or our proposed
framework. We used the pulsewidth-normalized root mean-square
error (NRMSE) to study multi-depth recovery performance of the
two algorithms:

NRMSE
(
{d(1), d(2)}, {d̂(1), d̂(2)}

)
=

1

cTp/2

√
E
[
0.5((d(1)−d̂(1))2+(d(1)−d̂(2))2)

]
. (12)

If NRMSE is below 1, then the imager has achieved sub-pulsewidth
depth accuracy. (When either algorithm reported more than two val-
ues, the two with the highest amplitudes were used in computing the
NRMSE.)
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Fig. 4. Simulation of pixelwise two-depth imaging results from the
conventional MoG and our methods at two background levels. Sig-
nal photon detections are detections from scene response and not
the background-light plus dark-count detections. Here NRMSE = 1
corresponds to an unnormalized mean-squared error of cTp/2 = 4.5
cm. The plots also include confidence bars for the ±1 standard er-
rors.

Figure 4 shows simulated performance results of pixelwise two-
depth estimation using the MoG-based method and our convex op-
timization method for two background levels. Here we had m =
n = 100, Tp = 0.3 ns, and ∆ = 1 ns. The pulse shape was
discrete Gaussian. For each number of photon detections, the num-
ber of Monte Carlo trials was 2000. For each Monte Carlo trial,
two entries out of n were generated in a uniformly random fash-
ion from n-choose-2 possible combinations to simulate a 2-reflector
scene. Also, both entries’ amplitudes were set to 1. We used the
expectation-maximization (EM) algorithm to perform Gaussian mix-
ture fitting on the photon detection data. For our algorithm, we
chose the regularization parameter β = B, using the assumption that
higher penalty for lack of sparsity is required for higher background
levels. We see that for both low and high background levels, our pro-
posed framework uniformly outperforms the existing MoG method
for various numbers of detected signal photons, i.e., detected pho-
tons that had been backreflected from the scene. For example, for
both B = 0.1 and B = 0.5, the difference in RMSE between our
framework and MoG is around 9 cm given 10 signal photon detec-
tions.

6. CONCLUSIONS

This paper summarizes the imaging framework from [11, Ch. 1–
3], [12, 13] for pixelwise reconstruction of single depth and multiple
depths per pixel using single-photon ToF data. In both settings, high
photon efficiency is achieved using Poisson process photon detec-
tion modeling combined with sparsity of discrete-time flux vectors
arising from longitudinal sparsity of reflectors. The two settings il-
lustrate both greedy and convex relaxation-based approaches to ex-
ploiting sparsity while maintaining computational tractability.

Our pixelwise imaging framework can potentially be useful in
low light-level imaging applications, in which the scene is sparsely
scanned such that filtering techniques that exploit patchwise smooth-
ness potentially wash out those details. For example, it can be use-
ful in airborne remote sensing [24], whose goal is to recover finely-
featured 3D terrain maps from the fewest scans.
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