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ABSTRACT Sleep is a key marker of health, as it can either be a cause or a consequence. It is

traditionally studied in clinical environments using dedicated medical devices. Recent technological

developments, e.g., in sensing and data analysis, have led to new approaches for sleep monitoring

and assessment, which are attracting increasing attention in the emerging domain of personalized smart

healthcare. Nevertheless, a high-level overview of technology-enabled research on sleep that can inform

related communities of the latest developments is lacking. In this paper, we present a comprehensive

review to examine the current status of various aspects of technology-based sleep research. We first

characterize sleep behavior and key areas of sleep assessment, and we introduce a general review of the

methodologies used in this domain. We review the major technological methods and trends associated

with sleep monitoring, data collection and sleep behavior analysis, from which strengths and weaknesses

are highlighted. Finally, we also discuss challenges and promising directions for future research.

INDEX TERMS Sleep Behavior Analysis, Home Environment, Wearables, Polysomnography, Actigraphy,

Sleep Stage Classification, Sleep Positions, Sleep Disorders, Disease Recognition, Data Mining, Machine

Learning, Deep Learning, Sleep Monitoring, Sleep Parameters

I. INTRODUCTION

Sleep influences people’s lives but still remains mysterious

in many ways. It is a recovery mechanism in which heart

rate and breathing are slowed, approaching a state of paraly-

sis of the body, while the brain processes experiences from

the day and relaxes. Sleep is necessary for life, although

the evolutionary reasons for this process have not yet been

fully explored. Sleep status can be assessed using physical

or physiological parameters, such as respiration rate, heart

rate, temperature and body movement [1]. Based on the

features extracted from these parameters, sleep behavior

can be determined in terms of sleep time, duration, latency,

arousal, wake after sleep onset (WASO) and sleep efficiency

(SE) [2].

Sleep behavior is traditionally studied in clinical envi-

ronments and is still the commonly accepted method for

sleep assessments. Polysomnography (PSG) is the main

medical gold standard used for sleep disorder classification,

such as sleep-related breathing disorders [2]. This system

calculates SE, sleep latency, arousal index, sleep stages and

other sleep-disorder-related factors from the measurement

data. In addition to PSG, another important tool is the

noninvasive actigraphy, which measures acceleration to ex-

tract information from movement-related changes [1]. These

technologies are mainly used by clinicians and have certain

restrictions. The restrictions for PSG include short-term

sleep monitoring and expensive equipment. Furthermore,

it is well known that a first-night effect is present during

laboratory recordings, and at least two consecutive nights

of data collection are necessary, especially for patients with

insomnia [3]. For actigraphy, the available sleep information

is restricted based on the collected movement data. Medical

research is interested in automating processes to provide

faster and earlier diagnoses of sleep disorders and exploring

night behavior.

Computational methods are trending and able to address

more complex problems. These include the diagnosis of

sleep disorders, investigation of the areas that are influenced

by sleep and recurrent sleep patterns. Moreover, IoT de-

vices are advancing, creating new opportunities and attract-

ing increasing attention in home-based sleep assessments.

Home-based monitoring allows self-assessment and self-
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management of sleep status on a day-to-day basis within

a person’s natural home environment. The devices used in

this field vary, e.g., smartwatches, radio signals or Doppler

radar devices. The collected data are analyzed and assessed

by applying data mining and machine learning techniques

to extract key sleep parameters and indicators. Home-based

sleep assessments with sensor technology can not only help

individuals assess and manage their sleep but also help

researchers find connections and correlations between, e.g.,

day and night behaviors [4].

Many studies have investigated the use of various tech-

nologies for sleep monitoring and assessment, as well as

the influence factors of sleep. Although substantial progress

has been achieved, challenges and gaps remain in terms

of (1) the accuracy and validity of the proposed methods

towards gold standards and (2) correlations between sleep

and daily behavior. Review papers regarding sleep mainly

concentrate on the medical viewpoint using medical devices

[2], [5], [6], excluding the interesting computational com-

ponent, especially in home applications. The signals used

in sleep analysis are discussed in [1], but over the past

years, technologies have advanced, and new devices and

areas have been developed. This includes automatic sleep

disorder detection and new developments in techniques such

as deep learning. Nevertheless, a comprehensive literature

review that can inform researchers and practitioners of the

state-of-the-art in this emerging research field and highlight

research opportunities and directions is lacking.

This paper is structured as follows: Section II character-

izes common sleep behavior considering movement, stable

states, abnormal behavior, and how they relate to sleep

disorders. In section III, sleep monitoring and data collection

are discussed, introducing important sleep parameters and

devices from medical and research perspectives. The focus

is on section IV, which reviews computational methods for

sleep behavior analysis in the fields of sleep stage classifi-

cation, sleep position recognition, and disease investigation.

II. SLEEP BEHAVIOR CHARACTERIZATION

Sleep behavior can basically be divided into movement and

stable states. Movement contains information about sleep

and wake episodes from which sleep stages can be extracted.

Conversely, stable states mainly describe sleep positions

during periods without movement. Accordingly, normal and

abnormal behaviors can be characterized, possibly leading

to the diagnosis of sleep disorders and chronic diseases.

A. MOVEMENT BEHAVIOR

Sleep is a relaxed state that still contains self-induced

movements, mainly to prevent pressure ulcers [7]. These

self-induced movements are defined as movement states

that create behavior over time. Movement is the main

information source for most sensors. An exception is PSG,

which is based on a combination of motion and non-motion

information.

Movement behavior can be used to distinguish sleep from

wake episodes [8]–[11]. Based on this information, objective

sleep features can be extracted, e.g., sleep continuity [12],

efficiency [11], and time [13]. Combinations of motion

and non-motion information lead to sleep motion behavior,

which can be further correlated to sleep stages. Sleep stages

describe different levels of sleep, provide hints about patient

health and are one of the major aspects considered during

a PSG visit.

Many disorders exhibit correlations with specific anoma-

lies in sleep cycles or amount of time in specific sleep

stages. Normally, sleep stages are measured and defined

over brain-wave data but are considered difficult to classify

and therefore need trained technicians to be distinguished

[1]. Abnormal movement during sleep helps to diagnose

certain diseases. This includes movement from the eyes,

chin, limbs, chest wall, and upper abdomen [5]. Based

on irregular movements, sleep-related movement disorders

can be diagnosed, such as periodic limb movement dis-

order, restless legs syndrome, and sleep-related bruxism

[5]. Furthermore, irregular movements can help to diagnose

disorders, such as rapid eye movement (REM) disorders or

sleep apnea. Sleep apnea can be measured by respiration

effort over abnormal abdomen movement during apneas [5].

Abnormal wake-sleep behavior during the day is used to

diagnose circadian rhythm sleep-wake disorders [5]. This

knowledge can potentially help investigate the severeness

of insomnia based on the wake and sleep periods during the

night. From movement behavior, various information can

be obtained, but it can still be extended by investigating the

periods with no motion.

B. STABLE STATE BEHAVIOR

Stable states investigate the periods in rest with no move-

ment. These stable states are mainly related to sleep po-

sitions. Sleep postures are independent from sleep stages

[14]; therefore, they provide additional insights into sleep

behavior [15].

During periods without movement, four basic sleep pos-

tures can be distinguished, i.e., supine, prone, right, and left

lateral. Sleep position tracking is predominately motivated

by the prevention of pressure ulcers [15]–[17] or based on

the influence on sleep apnea [18] [15]. For sleep apnea,

sleeping on the back, i.e., supine position, relates to a higher

apnea/hypoapnea index (AHI) compared to laying on the

side [18]. Moreover, sleep parameters such as sleep quality

are influenced by different sleep positions [19].

Research mainly concentrates on monitoring the four

basic sleep postures, but postures with a higher granularity,

including leg positions, are also of interest [15]. Sensors in

this field can be (1) applied in or on the bed [16], [17], [20]–

[22], (2) wearables [19], [23] or (3) imaging devices [24].

These approaches will be discussed in more detail later.
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C. SLEEP BEHAVIOR REGARDING DISORDERS AND

CHRONIC DISEASES

Sleep behavior is manifested in established sleep parame-

ters. These parameters have proven useful in investigating

abnormal sleep behavior. Consequently, abnormal behavior

can classify sleep disorders and is related to certain chronic

diseases [25].

Certain sleep patterns are used to define sleep disorders

and have already been investigated for sleep apnea [26]

and insomnia [27]. The diagnosis of sleep apnea relies on

sensors in a sleep clinic, whereas the diagnosis of insomnia

is often based on subjective sleep questionnaires [2]. Sleep

apnea is diagnosed using AHI, which represents the apnea

and hypopnea events per hour [28]; see table 3. An AHI

of less than 5 is interpreted as healthy, whereas an AHI

between 5 and 15 is classified as mild obstructive sleep

apnea, an AHI between 15 to 30 is classified as moderate

sleep apnea, and an AHI higher than 30 is classified as

severe sleep apnea [25]. For insomnia, the Insomnia Severity

Index and Bergen Insomnia Scale can be used for the

assessment [2]. Medical history and physical exams can

be used in combination to quickly and accurately make

diagnoses, such as explored for sleep apnea diagnosis in

[25]. Sleep disorders are generally related to poor sleep

quality. They are common in the population and add costs

to health care and the economic system [1]. A chronic lack

of sleep can lead to impulsive behavior, depression, and

chronic illnesses. However, when people rest well, their

well-being benefits, and they can better handle pressure and

stress [29]. Additionally, sleep quality has a high impact on

physical and mental well-being [30]. Therefore, monitoring

social and sleep behaviors can help the early diagnosis of,

e.g., major depressive disorder [31].

Furthermore, sleep behavior is related to chronic diseases.

The diagnoses of these diseases are generally based on (1)

invasive methods, e.g., blood sugar screening; (2) clinical

history, including symptoms, and risk factors; or (3) sensor-

based data, e.g., with blood pressure measurements [25].

Current research investigates early disease detection by

marker-based clinical analysis or sensor-based behavioral

analysis [25]. Sensor-based analysis uses data mining on

sensory data, such as actigraphy, to investigate Alzheimer’s

disease [32], Parkinson’s disease [33], diabetes, hyperten-

sion, and chronic kidney disease (CKD) [27] [25].

III. SLEEP MONITORING AND DATA COLLECTION

In this section, home-based technologies, medical devices

for sleep assessment, and sleep parameters are discussed.

A. SLEEP MONITORING IN THE MEDICAL DOMAIN

The gold standards for assessing sleep disorders and issues

from a medical expert’s perspective are PSG and actigraphy.

1) Polysomnography

PSG is a method that collects sensory data from devices

applied to the human body and within the environment.

The wearable devices that can be used in a PSG setting

are electroencephalogram (EEG), electrooculogram (EOG),

electromyogram (EMG), electrocardiogram (ECG), pulse

oximetry, respiratory monitors, capnography, transcutaneous

monitors, thermometers, esophageal tests, nasal and oral air-

flow sensors, gastroesophageal monitors, and blood pressure

monitors [2], [34]. The application area of these specific

sensors is shown in fig. 1a. The nonwearable sensors that are

applied in the environment are microphones, video cameras,

and light intensity sensors [2].

PSG monitors brain and heart signals and movement. This

method is predominately used for assessing sleep disorders

such as sleep apnea and restless legs syndrome. Factors such

as sleep stages, SE, sleep latency, and arousal index can be

extracted from the data [35]. To extract knowledge from the

data, scoring methods are applied. The clinical gold stan-

dards for sleep scoring with PSG are the Rechtschaffen and

Kales (R&K) method [4], [36] and an alternative method

presented by the American Academy of Sleep Medicine

(AASM) [37]. The scoring is generally based on 30-second

epochs [35]. Originally, six sleep stages [36] were assessed,

wake, REM, S1, S2, S3, and S4, whereas AASM [37]

provides five stages: wake, REM, N1, N2, and N3. In

general, R&K stages can be interpreted as AASM stages

by combining S3 and S4 as N3. In table 1, a description of

the sleep stages and difference between the guidelines are

presented.

TABLE 1: Sleep stages for AASM [37] and R&K [36]

R&K AASM Description

Wake Alert Wakefulness to Drowsiness

REM Rapid Eye Movement, Few Movements, Dreams

NREM

S1 N1 Indicates Sleep Onset, Shallow, Quick Transition

S2 N2 Spindle Sleep, Light Sleep, Lower Heart Rate and
Body Temperature [38]

High Amplitude

S3
N3

Moderate Amount Slow Wave-, Deep-Sleep, Body Relax,

S4 Large Amount Rebuilds and Repairs [38], [39]

The higher number of body-attached sensors has the

drawback of falsified sleep behavior, which does not rep-

resent the natural habit. This leads to the advice that at

least two consecutive nights of data collection should be

performed [3]. Another issue is that the method is expensive

due to the laboratory setting and the fact that an observer

is needed to check the functioning of the applied devices

during the night [7]. Research on PSG is currently focusing

on how to reduce the number of sensors while automatically

recognizing the main sleep behavior measurements. This

leads to studies with single-channel EEG in sleep stage

classification [40]–[42], which can more easily be applied

at home.
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2) Actigraph Unit

Actigraph devices are able to measure activities during a

24-hour time period and are therefore also used in sleep as-

sessments. The device is widely accepted for objective sleep

quality measurements. An actigraph is a wearable device

attached to the nondominant wrist, providing information

about sleep-wake patterns during the night [7]. The device

can be used at home, which has the advantage of interfering

less with natural sleeping behavior.

Actigraph monitors are mainly based on accelerometer

data but can also include gyroscopes and magnetometers.

Ambient light is generally collected to help in wake-sleep

recognition. Furthermore, personal inputs can be given that

tell the device when the sleeping period starts. The usual

assessment consists of seven consecutive days to obtain a

representative picture of the patient’s sleep. This can also

be considered the recommended amount of days [43]. This

method is an unsupervised wearable approach for sleep anal-

ysis. The application area of the sensor is shown in fig. 1b.

Current research is concentrating on extracting knowledge

from the already processed data coming from medically

approved devices such as ActiGraph or Actiwatch. These

systems provide activity levels with wake and sleep labels.

Activity levels provide the intensity of movement within a

usual 30-second interval.

B. HOME-BASED SLEEP MONITORING

Sleep monitoring at home is generally accomplished through

wearable or nonwearable devices.

1) Wearables

Wearable devices are attached to the human body. Small

sensors are typically attached to one of the following areas:

wrist, chest, ankles or hip. The advantage of these sensors is

their low cost and easy application at home. Data are gath-

ered from sensors such as 3-axis accelerometers, thermostats

or photoplethysmography (PPG). Knowledge is generally

obtained by applying data mining techniques for sleep

position detection [15], [23], [46], sleep stage classification

[4], [9], [11], [47], heart rate [29] and respiration rate [46]

analysis, and body temperature monitoring [29], [48].

Sleep position detection is usually investigated using

either accelerometers [15], [46] or wearable wireless de-

vices [23] on the chest or ankles. In general, sleep stage

classification uses either only 3-axis accelerometers [9],

[11], [47] or in combination with, e.g., chest strap on

wrist and ankle [4]; alternatively, such classification can

use PPG [8], [49]. Other sensors include thermometers that

measure body temperature to extract sleep and wakefulness

[48]. Research also applies commercial wearables that are

available on the market, typically smartwatches, e.g., for

sleep behavior analysis, determining that automated self-

management tools reduce burdens and increase efficiency

[50]. Various devices are available and have already been

analyzed in terms of performance and accuracy [13], [35],

[51]–[55] and user perception [35], [56]. The devices con-

sidered in the performance investigations are Actiwatch,

ActiGraph GT3X+, FitBit Flex/One, FitBit Charge 2, FitBit

Alta HR, Misfit Shine, Basis Health Tracker, Withings Pulse

O2, GENEactiv, Jawbone Up3 [13], [35], [51], [55]–[60],

ResMed S+ [54], EarlySense [53], Smart Eye Masks [61]

and Microsoft Band I [34]. A summary of the Bland-

Altmann mean difference and error percentage is shown in

table 2, excluding values that are not significant (α = 0.05).

The output shows that most of the sleep devices overestimate

the total sleep time (TST), where Actigraph GT3X+ (4

min) provided the most relevant output compared to the Z-

machine [13] and FitBit Charge 2 (-9 min) compared to PSG

[55] considering healthy participants. For SE measurements,

Actiwatch (4.8%) performed with the best accuracy [60] for

healthy individuals, and FitBit Alta HR (2%) performed the

best for individuals with specific diseases. FitBit Charge 2

(24.5 min) represents WASO most accurate [59] for healthy

individuals, whereas Actiwatch (-21.6 min) [60] is the most

accurate for participants with medical conditions. FitBit

Charge 2 (4 min) can represent sleep onset latency the best

[55] for healthy individuals, whereas FitBit Flex (2.4 min)

[60] does so for individuals with medical conditions. The

differences between these investigations are also dependent

on the participants included, which means that for healthy

individuals and those with medical conditions, agreement

changes [62]. For Misfit Shine and Basis, light and deep

sleep can be distinguished, and a comparison reveals that

Basis performs more accurately than Misfit Shine [52]. Ad-

ditionally, accelerometer data extraction is over- and under-

estimating certain sleep parameters compared to PSG [12].

Ravichandran et al. [35] reviewed different sleep-sensing

devices and their performance in relation to the opinions

of experts and end users. They investigated Misfit Shine,

Jawbone UP3, FitBit One, and FitBit HR. Overall, experts

are concerned that sleep quality information is inaccurately

transported to end users. Design recommendations based

on the level of automation, understandable visualization,

and emotional influence factors were investigated in [56]

considering Polar Loop, Jawbone Up3, Misfit Shine, and

FitBit Flex.

2) Nonwearables

Nonwearable devices are not attached to the human body

and therefore are the least interfering sleep assessment

method, not disturbing the person’s regular sleeping habits.

In general, techniques are based on either single devices,

e.g., Kinect sensors, or multiple devices, e.g., integrated in

smart beds. Movement investigations use data collected from

sleep trackers. There are already applications on the market

for sleep self-management with smart devices, providing

insights into users’ sleep.

Nonwearable sensors are widely applied, such as load

cells, force sensors, air cushions, pressure pads, water-filled

vinyl tubes [7], smartphones [31], [63], Shimmer sensors

[10], Doppler radar signals [64], [65] also with sound

signals [65], [66], pressure sensors [16], [17], [17], [20]–
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(a) Polysomnography (b) Actigraph Unit (c) Nonwearable Sensors

FIGURE 1: Application area of sensors in the medical field for (a) polysomnography and (b) actigraph device. Figures

adapted from [44]. (c) Placement of nonwearable sensors in home environments. Figure of bed adapted from [45].

TABLE 2: Wearables validated against PSG if not otherwise

indicated with Z-machine (Z). The Bland-Altmann-Mean-

Difference is given in percentage (%B) or minutes (m).

Wearable TST* SE* SOL* WASO Research

Healthy

FB* Charge 2 -9.0 m 4.0 m [55]
-12.3 m -11.1 m 24.5 m [59], [62]

Actiwatch 17.8 m 4.8 %B [60], [62]
5.8 %* 10.4 %* [52]

FB* FlexS∗ 3.0 %* [52]
Basis Health 7.8 %* [52]
Pulse O2 6.0 %* [52]
Misfit Shine 15.3 %* [35], [52], [56]
GT3X+ 4.0 m/Z [13]

Disease-Affected

Actiwatch 40.6 m 7.0 %B -13.5 m -27.1 m [51]
43.9 m 7.5 %B -12.9 m -33.9 m [58], [62]

-21.6 m [60], [62]
FB* FlexN∗ 32.9 m 7.9 %B -2.4 m 30.5 m [60], [62]

46.0 m 8.1 %B -44.0 m [51], [56]
FB* FlexS∗ -86.3 m -16.0 %B 11.5 m 74.8 m [51], [56]
FB* Alta HR 11.6 m 2.0 %B [57]
Jawbone Up3 39.6 m 6.8 %B -5.1 m -34.3 m [58], [62]

*N-Normal; S-Sensitive; %-Percentage of Error; TST-Total Sleep Time;

SE-Sleep Efficiency; SOL-Sleep Onset Latency; FB-FitBit

[22], [67], and radio signals [68]. Air cushions under the

bed collect data such as respiration rate, heart rate, and

body movement to estimate sleep stages. Equally, a water-

filled tube under a pillow can be used to record these

three features. Additionally, pressure pads can be used to

evaluate the heart and breathing rates and even snoring,

body movements, and sleep apnea events [7]. However,

load cells are employed to detect movement and sleep-wake

patterns and estimate deep sleep stages. Pressure sensors

integrated in mats, beds or bedsheets typically report good

performance in detecting body locations and positions in the

bed [15]–[17], [17], [20]–[22], [67], and even sleep stages

can be extracted [23]. However, imaging devices are also

used to detect sleep postures, such as Kinect sensors [24]

and depth cameras [30], [69]. In sleep-wake and sleep stage

recognition, Shimmer sensors on the bed [10], Doppler radar

[64], and sound signals [65], [66] were investigated.

Sleep trackers that are applied within the environment

include smartphones, smart mats or whole beds. Smartphone

applications are the most easily accessible for users and

therefore an inexpensive method for sleep tracking. Smart-

phones monitor behavior during sleep, including noise, au-

dio, ambient light, and movement [63], where less mobility

and phone usage relate to better sleep [31]. A large number

of applications attempt to provide insights into daily sleep

cycles, SE, and duration [70], [71]. Additionally, some

applications provide the opportunity to self-report moods

and daily habits [70].

Smart mats are a good source of information, are easily

applicable, and provide higher accuracy. There are various

devices on the market that use smart mat technology to col-

lect movement, heart rate, and respiration rate [7]. Different

sensors can be integrated into smart beds, such as force,

piezoelectric, and pressure sensors [7]. Others also combine

this technology with environmental sensors [7]. Based on

these data, specific sleep-related information, e.g., bed exits,

and sleep statistics, such as sleep quality and movement

[7], can be provided to the users, which is useful in, e.g.,

pain management and fall prevention [7]. The locations

of nonwearable devices inside a sleeping environment are

depicted in fig. 1c.

C. DISCUSSION AND SUGGESTIONS ON SLEEP

MONITORING

There are advantages and disadvantages for all sensors

that must be carefully considered based on the area of

exploration.

Actigraph units and PSG are used for different areas

of investigation. PSG provides the highest accuracy but is

expensive, can only be performed in a supervised laboratory

setting, and interrupts the person’s sleep. PSG requires two

days of data collection and applies more than three sensors.
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In comparison, home-based actigraphy needs at least 7 days

of collection and only one sensor, resulting in low costs, not

intervening with the natural sleeping habit, and providing

intermediate accuracy. Nonwearable devices applied in the

environment at home are the least interfering method but

have less accurate outcomes, e.g., for smartphones [72], and

are often immobile compared to wearables.

Although imaging can generate good position recognition

outcomes, it leads to privacy concerns and cannot accu-

rately recognize movements through blankets [15], [24]. In

sleep position recognition, nonwearable devices generally

cannot distinguish supine and prone positions. In contrast, a

wearable approach provides a mobile solution with limited

privacy issues and is able to distinguish between multiple

people in one bed. However, it still relies on body-worn sen-

sors, which can create discomfort [15]. Sleep stage recogni-

tion depends on more advanced technology measuring EEG

data. Currently, research is advancing wearable technologies

such as actigraphy to be easier to apply at home. Details

can be found in IV. Self-management becomes much more

accessible for users at home. Thus, current research suggests

different devices depending on the sleep factors of interest;

for details, refer to table 2. The easiest devices to start with

are smartwatches, as they have a reasonable accuracy com-

pared to smartphone applications and are more accessible

than smart beds. Although numerous ready-to-use applica-

tions are available with different collection processes and

outputs, open issues such as accuracy and validity remain.

When choosing the ideal wearable device for investigation,

it is suggested to consider the target group, as this can

influence the accuracy of wearable devices [62]. Another

usual generalization problem comes with validating small

datasets, which does not allow overall conclusions such as

in [31].

D. MEASURED SLEEP PARAMETERS

The main features describing sleep are respiration rate,

heart rate, temperature, body movement [1] and brain waves

[2]. Considering various hypotheses, different features are

important and are weighted more strongly than others.

Depending on the aim, objective or subjective measurements

are explored, which present different insights into the sleep

of individuals; for details, refer to table 3.

1) Objective Sleep Measurements

Objective sleep parameters are concluded from sensor data.

These parameters include sleep stages, disturbances, sleep

regularity, SE, duration, latency, arousals, spindles, and

many more. For example, sleep stages are investigated by

heart or respiration rate using the knowledge of existing

relations between them [73], whereas skin temperature can

be used for estimating disturbances [48]. Sleep continuity is

based on the percentage of TST in each sleep stage, SE, and

the arousal index [12]. Sleep quality, regularity, sleepiness

level, and chronotype are considered new insight indicators

investigated with wearable devices compared to traditional

parameters, such as time falling asleep, number of awakes,

and sleep duration [74]. Explicitly, sleep regularity measures

the affinity between sleeping periods from consecutive days

[74], [75].

2) Subjective Sleep Measurements

Subjective sleep parameters are typically assessed by sleep

questionnaires that extract information from users by asking

questions to assess sleep issues [2]. These sleep parameters

include, e.g., nightmares, bedtime, and rise time; see table 3

for details [74]. The extracted factors can be assessed with

different techniques, such as the SATED assessment [35],

Consensus Sleep Diary, Pittsburgh sleep quality index, Mini

Sleep Questionnaire, Epworth Sleepiness Scale, Insomnia

Severity Test, and Sleep Disorders Questionnaire [5]. We

refer to the work of Ibáñez et al. [5] for a thorough review

of subjective methods.

3) Discussion on Sleep Parameters

Objective methods monitor and measure individuals’ sleep

behavior in a specific setting, e.g., PSG in a hospital. In

comparison, subjective sleep analysis has the advantage that

experts are not necessary and are not location dependent, but

the disadvantage of inaccuracy remains [74]. These methods

are occasionally difficult to compare, as definitions are not

consistent in objective and subjective feature calculations. In

table 3, features and their formulas are presented. Some of

the formulas are for PSG and can be translated to actigraphy;

others are developed specifically for actigraph data.

IV. COMPUTATIONAL ANALYSIS METHODS

The main methods for sleep behavior analysis are data min-

ing techniques, such as artificial intelligence, and statistical

analysis. Statistical analysis is a well-developed method,

whereas artificial intelligence has recently become more

popular in the fields of health and medicine. It has proven to

be a good performing method for analyzing more difficult

scientific problems, such as sleep behavior and disease

detection. Various techniques are available and perform

best for specific sleep problems. Prominent methods are

random forests (RFs), decision trees (DTs), support vec-

tor machines (SVMs), k-nearest neighbors (kNNs), hidden

Markov models (HMMs), Bayesian classifiers (BCs), neural

networks (NNs), and deep learning methods. Specifically,

deep learning can be described as an NN with more than

three layers. Methods such as recurrent NN (RNN), e.g.,

long short-term memory network (LSTM) and convolutional

NN (CNN), are adapted in sleep research.

We will discuss computational sleep behavior analysis

with a focus on machine learning approaches for the main

problems, such as sleep stage, sleep position, and sleep

disorder investigations.

A. VALIDATION OF SLEEP ANALYSIS METHODS

Most technologies and approaches, such as home-based

sensors and single-channel EEG, are tested against the
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TABLE 3: Subjective and objective sleep parameters

adapted from [2], [74]–[80].

Factors of Investigation

Subjective

Pains in the Night Fall Asleep Rise Time
Real Sleep Duration Feel Cold Awakes
Mood and Energy Developing Activity Bad Breath Snoring
User-Perceived Sleep Quality Feeling Hot Nightmares
Somnolence Developing an Activity Drug Ingestion Bedtime
Awakes to the Toilet # Co-Sleepers

Objective

Time in Each Stage (TiES) Spindles Slow Waves
Light Off Time K-Complex Arousals
Total Sleep Time (TST) Light On Time

Factors Description

Sleep Stages Wake, REM, S1-S4/N1-N3
Total Recording Time (TRT) Lights out to Lights on.

Sleep Efficiency (SE) 100
TST

TRT
= 100

len(Sleep Period) − WASO

len(Sleep Period) + SL

Sleep Latency (SL) Lights out to first sleep stage.
REM Latency Sleep onset to first epoch of REM.
Wake-After-Sleep-Onset (WASO) WASO = TRT - SL - TST
Arousal (AR) Wake period <10s
Awakening (AW) Wake period >10s
Arousal Index #AR × 60/TST

Fragmentation Index (FI)
1 min. scored sleep bouts

# Sleep bouts of any length
× 100

Movement Index (MI)
Scored awake minutes

Time in bed in hours
× 100

Sleep Fragmentation Index (SFX) MI + FI
Significant Limb Movement (LM) Duration 0.5-10 sec
Periodic LM of Sleep (PLMS) ≥4 consecutive LM events
PLMS Index PLMS × 60/TST
Apnea (A) Cessation of breathing
Hypopnea (H) Shallow/low-frequency breathing
Apnea-Hypopnea Index (AHI) (#A + #H) × 60 / TST
Respiratory-Effort Related
Arousals (RERAs)

Arousals from sleep do not meet
the definitions of apneas or hy-
popneas but do disrupt sleep.

Respiratory Disturbance Index (RDI) RERAs + As +Hs × 60/TST
Sleep Onset Time (Actigraphy) The first of 15 uninterrupted

sleep min. after reported bedtime.
Sleep Awakening Time (Actigraphy) The last of 15 sleep min. fol-

lowed by 30 min. of movement.
Sleep Regularity Index (Actigraphy)

−100 +
200

M(N − 1)

M∑

j=1

N−1∑

i=0

δ(si,j , si+1,j)
︸ ︷︷ ︸

=1 if si,j=si+1,j

∣
∣
∣
∣
∣
∣

s = 1 if sleeping

M daily epochs

N days of recording

gold standard PSG. Researchers should be aware that the

interscorer agreement of human-scored parameters does not

have a perfect agreement but rather 82.6% [81]. This can

result in a bias towards a rater’s style if only one person

scores sleep data. It also means that discussions need to

take this into account. Seldom, data from actigraph units

are used for validation [10]. The most often applied perfor-

mance measures in computer science are accuracy, recall

(=sensitivity), specificity, precision, and Cohen’s kappa.

These measures are also used for validation purposes in

sleep behavior analysis. Occasionally, the receiver operating

characteristic (ROC) curve, area under the curve (AUC) or

F1 score is given.

Accuracy is the percentage of predictions that a spe-

cific classifier correctly makes. Sensitivity describes the

capability of the classifier to recognize true positives, and

specificity indicates that it does not generate a false negative

[26]. Specificity is defined over the number of false positives

(FPs) and true negatives (TNs), whereas precision is the

positive predictive value [42]. The F1 score based on pre-

cision and recall can be calculated with macro- and micro-

averaging methods. The multiclass F1 score is based on

the weighted individual class scores. The macro F1 score is

uniformly weighted, whereas the micro F1 score is measured

by calculating the overall number of false negatives (FNs),

true positives (TPs), and FPs [42]. Accuracy and precision

(recall) are not able to completely describe the situation

in multiclass classification. Additionally, for imbalanced

classes, accuracy can be misleading; therefore, precision

and recall are of importance, for example, represented by

the F1 score. Regardless, the drawback is that the F1 score

has no good intuitive explanation [82]. Therefore, Cohen’s

kappa statistic was introduced for imbalanced and multi-

class classifications. Cohen’s kappa statistic compares the

classifier performance to random guessing [82], measuring

the agreement between annotators for categorical items

statistically [83]. An ROC curve represents a classifier’s

performance at different classification thresholds in a graph,

providing a global estimation of the classification ability

[26]. It is based on the precision and FP rate (1-specificity).

The larger the AUC is, the better the classification performs

[26]. For multiclass problems, multiple numbers of graphs

are needed.

Note that validation is performed with (1) k-fold

cross-validation (CV); (2) leave-one-out cross-validation

(LOOCV), which is favorable; or (3) one specific data

split, from which no general conclusions can be drawn. All

measurements are not always provided; therefore, it is not

always possible to directly compare the results of different

methods. Generally, user-independent classification is ideal,

i.e., users who are trained on should not be tested on or

else the generalizability of the method cannot be guaranteed.

This can be realized in methods (1) and (2) but needs to be

addressed to ensure that the results are trustworthy.

B. SLEEP STAGE CLASSIFICATION

The main goals in sleep stage classification are to (1)

automate the process that is normally performed by trained

technicians and to (2) make home-based assessment possi-

ble. Validation is usually performed against trained human

classification, which is not always the best because human

classification includes known variability. This is based on

the fact that technicians classify specific epochs differently

[84], [85]. It is especially important to consider the per-

formance on healthy subjects and subjects with medical

conditions. In the following paragraphs, approaches using

sensory monitoring at home and in the medical domain are

discussed. The different technologies and their performances

and details can be found in table 4 for home-based sensory

data and in table 5 for medical devices, focusing on single-
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channel approaches such as EEG and ECG as these can

potentially be applied at home. The values are recalculated

from the confusion matrix or by averaging the given out-

come parameters.

1) Home-based Sleep Stage Analysis

Wearable and nonwearable devices are investigated for sleep

stage classification.

a: Five-Stage Classification

An ideal approach would be able to distinguish 6 or 5

sleep stages depending on the chosen guideline. Currently,

research is mainly focusing on the 5 AASM stages. In

[4], MSR accelerometer data from the wrist and ankle and

Zephyr BioHarness 32 data from the chest were collected

in a sleep lab to investigate sleep stages in comparison to

PSG measurements. The data were analyzed using RF and

deep learning. Deep learning was used for unsupervised

feature learning, followed by a deep belief network (DPN)

built from stacked restricted Boltzmann machines. The DBN

approach achieved a 10-fold CV accuracy of 77.6% for

accelerometer data only. The RF method, which fused the

data sources of the chest strap and accelerometers, classified

80.7% correctly. A commercial Microsoft Band I sensor was

used in [34] to collect heart rate and actigraph recordings

from 39 healthy subjects. They proposed a method using

multilevel feature learning and an RNN. LOOCV resulted

in a precision of 64.5%, recall of 65%, and F1 score

of 60.5% in the comprehensive group, where resting and

nonresting sleep were included. We will see later that EEG

home systems are the most promising as sleep stages were

originally defined over brain waves. Using sensors in a

home environment that interfere less with sleeping habits

are showing good results for using accelerometer data and

a chest strap with an RF method. The limitations in 5-

stage classification are that (1) only healthy participants

are considered and (2) the validation datasets are relatively

small. Overall good outcomes over all classes can be seen

when comparing Cohen’s kappa.

b: Four-Stage Classification

Because it is difficult to distinguish N1 and N2, the stages

are occasionally fused to light sleep and compared to deep

sleep (N3) [86]. This results in 4 stages: wake, REM, light,

and deep sleep. In [86], continuous positive air pressure

(CPAP) flow signals were analyzed to detect sleep stages.

High-level features were extracted with CNN and RNN,

which were further used in a conditional random field

(CRF). An accuracy of 74.1% was reached, but only with

a weak Cohen’s kappa of 0.57. We can conclude that the

dataset is highly imbalanced and cannot detect minority

classes sufficiently. Likewise, radio waves can be analyzed

by combining CNN and RNN [68]. This approach reached

a moderate Cohen’s kappa of 0.70 with up to 79.8% ac-

curacy for 25 healthy subjects that participated. Ultimately,

the advantages of both main deep learning methods were

used. Specifically, the CNN was able to separate wake and

REM stages, whereas RNN could separate deep and light

sleep [68]. Instead, accelerometer data were collected in

[47] from the nondominant hand. They analyzed different

classifiers and performed feature selection, concluding that

RC performs the best. The results showed an accuracy of

80% for light sleep and 90% for wake, REM, and deep

sleep. The subjects’ health status was not provided, but the

study is most likely based on healthy participants. In contrast

to machine learning approaches, equation threshold-based

approaches are also investigated, such as in [87], by record-

ing data from a wrist-worn device that includes a 3-axis

accelerometer and a reflective photoelectric volume pulse

sensor. The system reached an accuracy of approximately

68.5%, which is generally lower compared to other ac-

celerometer approaches but is validated on a larger database.

The commercial ResMed S+ device based on an ultra-

low-power radio-frequency sensor was analyzed in [54].

Respiration amplitude, frequency, and body movement were

extracted from the signal. The validation was performed

with 3 technicians using a majority voting for an overall

score. Forty adults were assessed, with an accuracy of

70% compared to an accuracy of 82% for general scorers.

In contrast, the Early Sense sensor based on piezoelectric

sensors reached only 64.5% accuracy with a weak Cohen’s

kappa of 0.54 [53].

An RC approach for accelerometers appears to be promis-

ing for four stages with an average 87.5% accuracy [47], but

a nonwearable device and deep learning method such as in

[68] comes with certain advantages but only 80% accuracy.

c: Three-Stage Classification

Correspondingly, researchers simplify the problem to wake,

REM and N-REM stages. In [65], a sound and Doppler

radar sensor were combined to detect sleep-wake episodes

followed by NREM-REM classification. Different features

for each problem were used, reaching an accuracy of 64.4%

with RF for patients with sleep disorders. Each step in-

cluded a personal-adjustment structure, based on a threshold

coming from ordering the likelihood ratios from the RF

classification. In [66], audio signals from microphones of

250 participants were analyzed with a one-layer NN, ob-

taining 87.3% accuracy. Moreover, Smart Eye Masks were

applied to determine REM and NREM sleep from photore-

flectors and accelerometers [61]. RF was used, reaching

80% accuracy. In contrast, optical wrist-worn devices were

utilized in [49] by applying a trained DT, reaching an overall

accuracy of 81.35%. These take into account PPG and a 3-

axis accelerometer.

Although it is difficult to compare different data sources,

it appears that for 3 stages, audio signals in combination

with DT perform well, including not only healthy partici-

pants.
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d: Two-Stage Classification

Wake-sleep classification is often the first step towards finer

granularity sleep stage classification. This classification can

be performed with PPG [8], accelerometers [9], actigraph

units [11], and Shimmer sensors on the bed [10]. In [8],

sleep-wake stages for 10 patients with sleep apnea were

classified by kNN and SVM using a PPG from which heart

rate variability and PPG features were extracted. The kNN

approach achieved an accuracy of 77.35% for 10-fold CV

for HRV, PPG, and feature selection. Twenty-two elderly

individuals participated in a study to collect accelerometer

data. These data were analyzed using a CNN. The CNN

approach was compared to a standard sleep-wake classifi-

cation approach, increasing the specificity from 54% to 68%

while decreasing the sensitivity from 82% to 80% [9]. In

[10], five Shimmer sensors were applied on the bed and

validated against a Philips Actiwatch. Undersampling and

oversampling were used to prepare the data for RF methods.

The overfitting issue was therefore addressed, achieving

results with a sensitivity of 93% and specificity of 86%.

Alternatively, a rule-based approach was proposed by Kuo et

al. [11] using an actigraph, reaching an accuracy of 92.16%,

specificity of 71.3% and sensitivity of 95.02%. They tested

the system with 81 subjects, divided in terms of poor and

good SE. Four different rules were introduced from move-

ment density and density thresholds. A descriptive analysis

was performed in [88]. For this purpose, camera recordings

were analyzed and validated against actigraphy and PSG.

Frame difference and motion history were used to classify

motion, which is an indicator of wake episodes. Data from

10 subjects reached 92.13% accuracy for the video-based

system in comparison to Actiwatch with 91.24% accuracy.

Threshold-based actigraph sleep-wake classification is a

powerful method, suggesting the necessity to distinguish

between subjects with poor and good SE [11].

2) Sleep Stage Analysis in the Medical Domain

In this section, the focus lies in the automation of sleep stage

classification towards home usage with single-channel EEG

data. The preprocessing of highly sensitive data is important

as artifacts, e.g., from movement, are present, and a large

amount of information is available.

a: Six-Stage Classification

Attempts to automate sleep stage scoring were performed in

1996 [84], where an NN model with an uncertainty index

was presented that was able to classify 6 sleep stages using

EEG, EMG, and EOG. Sixty participants were included:

20 suffering from depression, 20 suffering from insomnia

and 20 healthy participants. The results showed accuracies

of 84.5% for healthy subjects, 81.5% for subjects with

depression, and 81% for subjects with insomnia. These ap-

proaches have the limitations of collecting data from various

sensor sources and are therefore mainly useful in a hospital

environment, whereas single-channel EEG approaches could

be easier to use at home in the future. Researchers using

single-channel EEG data often use the Physionet Sleep

EDF database with 8 subjects for validation. With this, an

accuracy of 88.62% for empirical mode decomposition with

adaptive boosting and DT [89] can be reached, whereas

iterative filtering with RF can reach an accuracy of 90.02%

[90], complex-valued nonlinear features and CVANN can

reach 91.57% [40], and decomposed two-subband tunable

Q-wavelet transform with DT can reach 92.43% [83].

In this setting, NN [40] performs with almost perfect

agreement considering Cohen’s kappa. We can conclude that

preprocessing appears to be a very important aspect to make

a single-channel EEG approach have the most accuracy.

The limitations lie in the size of the data sample with

only 8 subjects, including 4 healthy and 4 participants with

mild difficulty falling asleep not diagnosed with sleeping

disorders.

b: Five-Stage Classification

The 5-stage classification typically follows the AASM

guidelines. For single-channel EEG coming from the Sleep-

EDF data, (1) 8 subjects or (2) 20 subjects are investigated.

Approach (1) can reach 87.2% accuracy with Elman-RNN

[91], 90.11% with DT [89], 91.13% with iterative filtering

with RF [90], 93.69% with DT [83], and 93.84% accuracy

using CVANN [40]. Approach (2) performs with an accu-

racy of 82% with CNN-LSTM [92] and 83.5% with CNN

on a smartphone [93]. The data sample of 20 subjects only

contains healthy individuals; therefore, it is necessary to

further investigate patients suffering from sleep disorders.

In [41], 41 healthy participants and 42 participants with

insomnia were investigated, reaching an overall accuracy

of 77% by applying DNN-HMM. Twenty-eight subjects

with sleep apnea were considered in [94], reaching 95.88%

accuracy for SVM. A total of 5728 patients from the

Sleep Heart Health Study (SHHS) were investigated in [42],

and applying a CNN resulted in an accuracy of 87%. In

[42], better results could be reached for the Sleep-EDF

dataset, which is potentially caused by the small number of

technicians that participated. This makes the system learn a

specific rater’s style, which causes difficulties in generaliza-

tion. Similar accuracy could be reached by Malafeev et al.

[95] with a CNN-LSTM including 18 healthy patients, 23

patients with narcolepsy and 5 patients with hypersomnia.

For single-channel usage, SVM [94] and CNN [42] tested

on a large dataset including participants affected with sleep

disorders presented promising results, and CVANN [40]

performed well on a small dataset. Overall, the N1 stage is

often difficult to distinguish [92]. This leads to models that

concentrate on this issue, such as in [96]. Filtered single-

channel EEG signals from 13 participants of the Sleep-EDF

database were investigated by SVM, leading to an accuracy

of 92.5% in distinguishing N1 and wake stages. Many

approaches for sleep stage classification rely on features

and preprocessing data, while others use raw data, such as

in Malafeev et al. [95]. If no CV is performed, the results

must be considered with caution, such as in [42], [89].
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TABLE 4: Home-based sleep stage classification in 30-second intervals following AASM [37]; validated against PSG except

[10] against Actiwatch and [61] against a wrist-worn device. Certain performances were recalculated from confusion matrices.

Data P* Characteristics Analysis Split Prec. Rec. Acc. κ

5 Stages - Wake, REM, N1, N2, N3

[34] Microsoft Band I 39 H*/30M*/19-64Y* RNN LOOCV 64.5 65 60.5(F*)
[4] 2 Accelerometers, CS* 26 H* RF, DBN 10-CV 78.3 77.9 80.7 0.72

4 Stages - Wake, REM, Light Sleep (N1, N2), Deep Sleep (N3)

[53] EarlySense 63 SD*/45M*/17-72Y* Commercial 63.8 60.6 64.5 0.46
[87] Accelerometer, PWS* 100 H* Thresholds 64.4 59.7 68.5
[54] ResMed S+ 40 H*/21M* Commercial 20/20 70 0.53
[86] CPAP flow 400 SD* C/RNN-CRF 60/20/20 65 71.8 74.1 0.57
[68] Radio Signals 25 H*/100N*/60% M* CNN-RNN 75/25 79.6 75.8 79.8 0.70
[47] Accelerometer 36 Kstar, Bagging,

RC, RSS, RF
10-CV 85(S*) 70 87.5

3 Stages - Wake, REM, NREM (N1, N2, N3)

[65] DR*, Microphone 24 SD*/21M*/43.4±13Y* RF 11P/13P 64.4
[66] Microphone 250 SD*/162M*/19-84Y* NN 150/100 82.6 80.9 87.3 0.72

2 Stages - REM, NREM

[61] Smart Eye Mask 7 H*/4M*/20-24Y* RF 11-CV 80
[49] PPG*, Accelerometer 15 H* DT 81.4(S*) 86.3 81.4

2 Stages - Sleep, Wake

[8] PPG*, HRV* 10 SD*/5M*/56±8.79Y* kNN, SVM 50/50 79(S*) 79 79.4 0.59
[9] Accelerometer 22 7M*/85.7±3.7Y* CNN 68(S*) 80

[10] 5 Shimmer sen. 3 H*/1M*/21-30Y* RF 86(S*) 93 90
[11] Accelerometer 81 47M*/20-60Y* Rules 13/43GSE*, 9/16PSE* 71.3(S*) 95 92.2 0.64

*P-Participants; CS-BioHarness 32 chest strap; PWS-Pulse Wave Sensor; DR-Doppler Radar; PPG-Photoplethysmography; HRV-Heart Rate Variability; H-Healthy; M-Males;

Y-Years; N-Night; SD-Sleep Disorders; RC-Random Committee; RSS-Random Subspace; GSE-Good Sleep Efficiency; PSE-Poor Sleep Efficiency; S-Specificity; F-F1 score

c: Four-Stage Classification

To simplify the problem, researchers fuse stages to wake,

REM, light (N1, N2), and deep sleep (N3). Approaches

with single-lead ECG and CNN achieved 75.4% accuracy

when including 16 subjects with sleep issues, 65.6% for 994

subjects with sleep disorders, and 65.9% for 3295 subjects

including breathing issues [97]. In contrast, single-channel

EEG from the Sleep-EDF database results in 91.2% accu-

racy with DT [89], 91.5% with DT [83] and 92.29% with

iterative filtering with RF [90]. Overall, RF [90] performs

the best but has the limitation of a small dataset.

d: Three-Stage Classification

Further simplification leads to 3 stages: wake, REM, and

NREM (N1, N2, and N3). In this case, a one-channel

EEG investigation from Sleep-EDF reached an accuracy of

93.55% with DT [89], 93.9% with DT [83], and 94.6%

with RF [90], whereas 184 observations using NNs reached

89.9% accuracy [38]. Extending the system with EEG, EOG,

and Flow reached 89.6% accuracy for healthy individuals

and those with restless legs syndrome and sleep apnea [38].

In contrast, ECG data applying a CNN reached an accuracy

of 75.3% for SHHS and 81.6% for 16 subjects with sleep

issues [97].

3) Discussion and Suggestions on Sleep Stage Analysis

There are two main areas in sleep stage recognition that

target either home-based analysis or sleep stage analysis in

the medical domain. Both approaches have individual issues

that need to be addressed in the future.

Overall, most methods for home-based assessment have

issues with (1) imbalanced data, (2) being unable to

correctly classify more complex stages, (3) the limita-

tion of small datasets only including healthy participants

and (4) generalizability, caused by non-standardized user-

independent classification. It is clear that classifying sleep

from wake data is performing well with accelerometers, as

movement is the main factor to distinguish these. More

complex sleep stages typically require more information,

which can be addressed by combining multiple sensors with

accelerometers currently tested only on healthy subjects.

When reducing the number of sensors, sound is able to

distinguish three stages, even for participants with sleep

disorders.

For sleep stage analysis in the medical domain, challenges

remain for (1) the generalization of the model to the

general population affected by diseases and (2) dealing with

imbalanced classes. This effect can be seen as methods

have lower performance on larger and more diverse datasets.

Overall, it appears that single-channel EEG is sufficient to

obtain sleep stages; however, the application at home is a

future step. In general, online detection is desirable because

this can be useful for boosting slow-wave sleep, transcranial

stimulation, and acoustic stimulation [85].
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TABLE 5: Sleep stage classification comparison for single-channel EEG and one from single ECG [97]. Stage classification

in 30-second epochs except for [98]. Performances were recalculated from confusion matrices.

P* Dataset S Analysis Validation Prec. Rec. Acc. κ

6 Stages - Wake, REM, S1, S2, S3, S4

[89] 8 Sleep-EDF 6 AdaBoost 60/35/5 • 79.9 71.8 88.6 0.82
[83] 8 Sleep-EDF 6 Bagging LOOCV 80.4 71.6 89.6 0.84
[90] 8 Sleep-EDF 6 RF 10-CV 81 71.7 90 0.84
[40] 8 Sleep-EDF 6 CVANN LOOCV 98.2(S*) 85.8 91.57 0.89

5 Stages - Wake, REM, N1, N2, N3

[91] 8 Sleep-EDF 5 RNN LOOCV 72.4 75.6 87 0.76
[89] 8 Sleep-EDF 5 AdaBoost 60/35/5 • 84.4 77 90.11 0.84
[83] 8 Sleep-EDF 5 Bagging LOOCV 84.2 77.6 90.8 0.85
[90] 8 Sleep-EDF 5 RF 10-CV 86.6 75.4 91.3 0.86
[40] 8 Sleep-EDF 5 CVANN LOOCV 98.4(S*) 91.8 93.84 0.92

[93] 20 Sleep-EDF 5 CNN 20-CV 76.1 76.9 81.7 0.75
[92] 20 Sleep-EDF 5 CNN-LSTM 20-CV 75.6 78.7 82 0.76

[41] 83 41.3Y*avg* 5 DNN-HMM 5CV 77
[92] 32 MASS 5 CNN-LSTM 31-CV 82 81.3 86.2 0.80
[42] 5728 SHHS 5 CNN 50/20/30 • 80.6 77.3 86.8 0.81
[94] 28 35-56Y* 5 SVM 4-CV 97.42(S*) 88.32 95.88 0.86

4 Stages - Wake, REM, Light Sleep, Deep Sleep

[89] 8 Sleep-EDF 4 AdaBoost 60/35/5 • 91.2
[83] 8 Sleep-EDF 4 Bagging LOOCV 89 85.6 91.5 0.86
[90] 8 Sleep-EDF 4 RF 10-CV 92.29

[97] 5793 SHHS 4 CNN 10-CV 52 64.1 65.9 0.47
[97] 16 SLPD 4 CNN 10-CV 46.2 53.7 75.3 0.54

3 Stages - Wake, REM, NREM

[89] 8 Sleep-EDF 3 AdaBoost 60/35/5 • 93.55
[83] 8 Sleep-EDF 3 Bagging LOOCV 91.3 88.8 93.9 0.89
[90] 8 Sleep-EDF 3 RF 10-CV 94.7

[38] 111 M* 3 NN 10-CV 87.2 85.35 89.9
[97] 5793 SHHS 3 CNN 10-CV 75.3 0.57
[97] 16 SLPDB 3 CNN 10-CV 81.6 0.63

*P-Participants; Y-Year; avg-Average; M-Males; S-Specificity; †Sleep stages: wake, (REM, S1), S2, S3, S4; •(training, validation, test) split

C. SLEEP POSITION RECOGNITION

Sleep position recognition generally detects the basic four

sleep positions: supine, prone, right, and left lateral [15].

Recently, higher granularity positions have been increas-

ingly investigated. For some approaches, e.g., image-based

approaches, the number of detected positions must be re-

duced based on the limitations of the method. This normally

involves excluding the prone position or combining the

prone position with the supine position [16], [17], [21], [22],

[30], [99]–[102]. Others consider more complex positions,

such as right fetus [17], [67], right yearner [17], right log

[67], left fetus [17], [67], left log [67], left yearner [17],

supine [17], [67] and prone [67]. Different arm [16], [103]

and leg [15] positions, as well as angles [21], [23], are

considered higher granularity positions. These positions can

relate to certain issues, such as inducing back pain [15].

Furthermore, positions can be extended by an unknown

state, normally the sitting/standing position, such as in [30],

[104], [105], explaining, e.g., bed exits.

In this section, outcomes are distinguished by wearable

and nonwearable devices, as sensors in the medical field

are rarely used, such as in [106], [107]. A summary can be

found in table 6, where different methodologies and their

results are listed.

1) Sleep Position Analysis using Wearables

Wearables are often investigated because these devices are

easily applicable and provide high accuracy for posture de-

tection. Some systems have almost perfect performance for

detecting sleep positions but normally show issues related

to the number of participants involved and user-independent

detection.

In general, single sensors can detect basic sleep positions

well. Shinar et al. [106] used an ECG device, achieving a

specificity of 93% and sensitivity of 79% with a k-means

iterative algorithm. [107] measured respiration impedance

signals and achieved a 99.7% accuracy.

Extending approaches with additional wearable devices

can achieve similar outcomes for an even higher number of

positions, such as in [15], with 99.8% for LVQ personalized

per individual. Other multiple wearable approaches reached

an accuracy of 88.5% with RF [104], 83.6% for a general

LVQ approach [15], and 92.2% with kNN [103]. Barsocchi

[23] studied the feasibility of a transmitter and receivers in

the sleeping environment to distinguish four main positions,

also considering a lateral incline of 30% [15]. They could

reach 100% accuracy by using at least two sensors and kNN.
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The best matching rates could be achieved in [23], which

has the limitation of a very small sample of two partic-

ipants, whereas in [15], individual models were trained,

which makes generalizing the system more difficult but

can distinguish higher granularity positions including leg

movement, whereas [103] includes hand movement in the

higher granularity position investigation.

The next step is the real-world application, which has

been considered in different research studies. Smartwatches,

for example, can be applied, such as in [108], where RF

performed the best with a TP rate of 91.8%. The most

promising models include an accelerometer placed on the

chest, reaching an accuracy of 99.5% with LDA [46],

and even rule-based approaches can reach 99.2% accuracy

[105] including an unknown state. Six positions could be

recognized with an accuracy of 97.74% with LVQ, having

the drawback of a small data sample and multiple sensors

attached.

2) Sleep Position Analysis using Nonwearables

Nonwearables usually need more complex methods for

analysis because they often produce images that need to

be classified.

Three sleep posture classifications are very common

because distinguishing the prone posture from the supine

posture is very difficult. Consequently, Hsia et al. [22]

exploited pressure at the upper part of the bed to investigate

three postures, focusing on the influences coming from hand

postures and laying angle with a BC. The result showed

a low accuracy of 78.7%, which was influenced by the

laying angle. Pressure mats are commonly applied for detec-

tion, reaching up to 98.4% accuracy with GMM-kNN [21]

and RF [102]. Other investigations have used PCA-SVM,

resulting in 94.1% accuracy [101], 89.9% with NN-BN

[100] and 82.7% with RBM-DNN [99]. Hence, simple data

analysis models already appear promising. More complex

approaches, e.g., hydraulic bed transducers, were used under

a mattress to distinguish the four main sleep postures from

58 participants by using an NN [109], also including the

prone position. This led to an accuracy of 72%, which is

low compared to the approach with pressure distribution

and logistic regression (LG) with an accuracy of 90.2%,

which only included 3 participants [20]. Yousefi et al. [17]

utilized a pressure mat to detect five different positions,

including supine, yearner, and fetus, from six subjects. The

posture detection was based on a three-step algorithm using

normalization, eigenspace projection, and a kNN classifier.

The average accuracy of this detection reached 97.7%. A

mobile, easy applicable solution was investigated in [67]. In

this case, a pressure-sensitive bedsheet was used to monitor

six sleeping positions, including supine, prone, log, and

fetus, by sparse classifiers, reaching an accuracy of 83%

[67]. To obtain a more detailed picture, camera devices

for 3-D measurements can be used and have reached an

accuracy of 92.5% using SVM [69]. Pressure mats can be

used to detect higher granularity positions, e.g., Pouyan et

al. [16] classified eight different bed postures excluding

prone. The proposed algorithm creates a pressure image that

is processed using size and shift-invariant images. Classifi-

cation was performed by computing the Hamming distance

between the signature images and the presented sample. The

results showed an accuracy of 97.1%. Multiple angles of

the three positions could be detected by Ostadabbas et al.

[21]. They detected 13 sleeping positions with a GMM-

based clustering approach, reaching an accuracy of 91.6%.

Real-world applications considering whole nights of data

are rarely investigated. However, existing investigations in-

clude Kinect devices [24], 3D-Asus Xtion cameras [30], and

pressure bedsheets [67]. Kinect sensor data were collected

to distinguish five sleep positions from 20 students [24],

and no blankets were used [15]. A single depth camera was

able to distinguish supine, left, right, and empty positions.

They included 78 patients and obtained results of 94.9%

accuracy with a CNN [30]. For multiple positions, collecting

pressure-sensitive data from a bedsheet over three nights

from three people were used, resulting in 86.5% precision

and 84.7% recall [67].

3) Discussion and Suggestions on Sleep Position Analysis

Sleep position analysis can be performed for wearable and

nonwearable devices in a laboratory or real-world setting.

Overall, wearable accelerometers, particularly on the

chest, can reach high accuracy with already simple machine

learning models. Alternatively, respiration monitoring also

appears to be a promising approach. Although research

has investigated different data sources and technologies, an

energy-efficient, robust solution that is able to accurately

detect finer granularity positions and that is adaptable to

individual needs is still lacking. Furthermore, validation

on larger data samples is necessary. Wearable devices are

commonly used when tracking sleep positions, but as these

are worn on the body, discomfort can be present; therefore,

improving usability and comfort is of interest [15].

One alternative is the usage of nonwearables; in this

context, pressure mats are commonly applied and reach

high accuracy with the limitation of distinguishing prone

from supine, which was partly overcome in [20], [67].

Most recent investigations have attempted to investigate 3D

images, which raises privacy concerns.

Research needs to target real-world applications, provid-

ing reproducible results that are able to enhance recog-

nition rates for finer-grained positions. Furthermore, user-

independent validation needs to become a standard to guar-

antee generalizability. In the future, other sensor sources will

become available and can potentially target more advanced

investigations.

D. INVESTIGATION OF SLEEP DISORDERS AND

DISEASES

Abnormal sleep behavior was originally classified by sleep

experts and further used to diagnose individuals’ health

status in terms of sleep disorders. Recently, behavior has
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TABLE 6: Sleep position monitoring systems. Ground truth is, if mentioned, based on videos, except for [108], which is

based on a smartwatch.

Data Per./Time P* Add to Basic P* Analysis Validation Pre. Rec. Acc. κ

Wearables - Simulated Setting

[106] ECG-Lead II 12/3x(30sxP*) 4 k-means 93(S*) 79
[107] Respiration Impedance 16/2x(3mxP*) 4 SVM 10-CV 99.7 99.7 99.7 0.99
[104] Koala (wrist+chest) unclear/3m* 5 sit RF 86.5 88.6 88.5 0.86
[23] W*(chest) + WSN* 2/50x(10sxP*) 5 30◦-incline lateral kNN 100
[15] 3 ShS*(ankles+chest) 6/9x(25sxP*) 8 leg P* LVQ(Gen.) 20xLOOCV 85.9 82.4 83.6 0.82

[103] 3 W*(chest+arms) 10/2x(10sxP*) 8 arm P* kNN 92.2 92.5 92.2 0.91
[15] 3 ShS*(ankles+chest) 6/9x(25sxP*) 8 leg P* LVQ(Ind.) 20x10-CV 99.8

Wearables - Real-World Setting

[108] Huawei SW* 16/1-8D* 4 RF LOOCV TPR"=91.8; FPR"=0.03
[46] Acc.(chest) 7 4 LDA 99.5 99.5 99.5 0.99

[105] Acc.(chest) 13/1N* 5 sit/stand Rules 99.1 95.6 99.2 0.98
[15] 3 ShS*(ankles+chest) 2/1N* 6 leg P* LVQ(Gen.) 97.7

Nonwearables - Simulated Setting

[22] Pressure sens.(uBP*) 2/2x 3 no prone BC 10-CV 81.4 78.7 78.7 0.71
[99] Pressure mat 13 3 no prone RBM-DNN 10-CV 82.6 79.4 82.7

[100] Pressure mat(uBP*) 1/20.500S* 3 no prone NN-BN 5-CV 89.9
[101] Pressure mat 164S* 3 fuse prone & supine PCA-SVM 10-CV 94.2 94.1 94.1 0.91
[21] Pressure mat 9 3 no prone GMM-kNN 7-CV 98.4 98.4 98.4 0.98

[102] Pressure sen.(uBP*) 2/3mxP* 3 no prone RF 3m*/6m* • 98.4
[109] HBT* 58/1mxP* 4 NN 10-CV 72
[20] Pressure distr. 3/2H* 4 LR 1P*/2P* • 90.5 90.1 90.2 0.88
[17] Pressure mat 6 5 leg P*, no prone PCA-kNN 70/30 • 97.7 97.6 97.7 0.97
[67] Pressure bedsheet 14/40*6S* 6 leg P* MCR LOOCV 83.3 83 83 0.81
[69] 3D-Artec/Kinect 3 6 leg P*, no prone SVM 2/1 92.7 92.5 92.5 0.91
[16] Pressure mat 20 8 leg, arm P*, no prone kNN 10-CV 97.1 97.1 97.1 0.97
[21] Pressure mat 9 13 body, limb P*, no prone GMM-kNN unclear 91.6

Nonwearables - Real-World Setting

[30] 3D-Asus Xtion cam 78/94N* 4 sit/stand, no prone CNN 5-CV 95 94.9 94.9 0.93
[67] Pressure bedsheet 3/3N* 6 leg P* MCR-HMM LOOCV 86.5 84.7 85.6(F*)

*P-Positions; uBP-upper bed part; HBD-hydraulic bed transducers; W-Wearables; WSN-wireless sensor network; ShS-Shimmer Sensors; H-Hour; SW-Smartwatch; S-Samples;

D-Day; N-Night; m-Minute; s-Second; sxP-s* per P*; S-Specificity; F-F1 Score; •(training,test) split

been investigated in automatic decision making for (1) sleep

disorders such as sleep apnea [25]–[27], [110], [111] and

insomnia [27] and (2) specific chronic diseases such as

diabetes, hypertension, CKD [25], [27], Alzheimer’s [32],

and Parkinson’s disease [33]. Established sleep parameters

can be used to help investigate disorders and abnormal sleep

behavior. The field of using computational behavior analy-

sis in helping diagnose certain diseases is not extensively

explored. In this survey, we present approaches that are

interesting in our opinion.

1) Sleep Apnea Investigation

a: Sleep Apnea Detection

Javaid et al. [111] investigated a nonwearable Impulse Radio

Ultra-Wide Band Radar panel under the mattress for the

detection of sleep apnea events from radar signals. The

overall match against PSG reached an accuracy of 70% with

a linear discriminant classifier (LDA) on extracted statistical

features. In [27] and [25], sleep apnea stages were investi-

gated by comparing sleep apnea towards unaffected partic-

ipants with a wearable actigraph, separating mild stages in

[25]. The results for two classes showed an accuracy of

68% with a CNN [27] and 81% [25] with an LSTM. An

alternative for sleep apnea-hypopnea syndrome diagnosis

was investigated with a home-based oximetry sensor in

[112]. A dataset of 320 subjects was analyzed with different

machine learning algorithms, such as LDA, LG, Bayesian

multilayer perceptron, and AdaBoost. AdaBoost with LDA

performed the best depending on the AHI: for 5 (92.9%),

10 (87.4%), and 30 (78.7%). Chung et al. [113] reached the

closest diagnostic ability to the machine learning approach,

achieving better accuracy of 93.7% for an AHI of 30, but

including only surgical and not regular patients. In [26], two

sleep apnea types were analyzed by applying SVM on 125

sets of ECG records, extracting 24 features. This approach

reached an accuracy of 92.85%. An optimization problem

on kernels led to the conclusion that the polynomial kernel

with degree of 3 provides the best results. The research

was limited to patients with no history of cardiovascular

disease and central sleep apnea. The model could be useful

for determining the CPAP therapy by analyzing the change

in probabilities in the outcome [26].

It is difficult to compare the approaches because the

used data sources and investigated classes are different.

Nonwearable devices can recognize sleep apnea events with

an accuracy of 70%, but they are outperformed by wearable
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sensors such as ECG, oximetry and actigraph sensors.

b: Sleep Apnea Treatment

CPAP devices are utilized for treating patients suffering

from sleep apnea by providing pressure to help them through

apnea episodes. In [110], an approach was investigated to

detect patients who were likely to discontinue the therapy.

CPAP and electronic health records from 3588 patients were

used. Feature selection was performed, and oversampling

the dataset counteracted the imbalanced distribution. Dif-

ferent techniques were applied, such as linear regression,

LR, DT, and SVM, whereby RF and boosting trees such as

XGBoost considerably improved the results. Deep learning

for time series classification did not present good perfor-

mance, mainly due to the lack of data. The results showed

that XGBoost reaches the best F1 score including health

records with 85%, which is an improvement compared to

the current state-of-the-art.

2) Chronic Disease Investigations

Chronic diseases affect individuals’ lives but also introduce

sleep behavior changes [25]. These changes are investigated

to obtain indications for early and later stages of diseases.

Sleep behavior changes were investigated in [27] and

[25], where actigraph data were considered from a broad

population to detect insomnia [27], diabetes, hypertension,

and CKD [25]. In [27], a CNN was applied, introducing

a method for embedding activities. In contrast, in [25], an

LSTM was investigated, considering the major limitation

of an imbalanced dataset in [27]. Therefore, a balanced

dataset was adopted for training, reaching accuracies of

72.5%, 62%, and 76.7% for diabetes, hypertension, and

CKD, respectively [25]. In [27], the outcomes were 69%

for hypertension and 44% for diabetes. The accuracy for

hypertension extraction was higher in [27], but precision and

recall values could be improved in [25]. This is an important

step in obtaining reproducible outcomes.

Early disease detection is very relevant for the diagnosis

of Alzheimer’s and Parkinson’s diseases, which have been

shown to be related to sleep [32], [33]. Early stages of

Alzheimer’s disease already affect sleep behavior based on

the relation of β-amyloid (Aβ) with sleep quantity and

quality manifested in actigraph data [32] [25]. Sleep behav-

ior also shows relationships for patients with Parkinson’s

disease investigated using actigraph data [33] [25]. Early

disease detection could thrive from these newly elucidated

relationships.

3) Suggestions for Disorder and Disease Investigations

In general, it is necessary to investigate and use the exist-

ing knowledge of relationships between sleep and certain

diseases because this knowledge can enhance and promote

self-management and help diagnose diseases at an early

stage. Automating sleep disorder diagnoses such as sleep

apnea with daily technologies could provide an easy and

inexpensive assessment.

With the increasing usage of deep learning technologies

that are able to handle larger amounts of data for individual

classifications, it is possible to investigate chronic diseases

from sleep data. Based on the existing basis of sensor

accuracy and availability, the diagnosis of diseases and

disorders will be a promising future investigation area with

the potential to make early diagnoses possible and accessible

at home.

V. CHALLENGES AND FUTURE TRENDS

In recent decades, sleep behavior analysis has advanced

considerably by introducing new devices and computational

methods; nevertheless, there are still certain limitations and

challenges that must be addressed by the research com-

munity. Common challenges are (1) the inclusion of sleep

behavior differences coming from healthy and sick popula-

tions into methodologies; (2) including medical knowledge

in terms of sleep structure, relations and influence factors;

(3) improving current technologies for home usage; (4)

validating on larger and more diverse datasets; (5) address-

ing imbalanced datasets and their issues; and (6) providing

adequate comparative outcomes and standards.

Current research mainly concentrates on automating hu-

man scoring tasks on well-known problems such as sleep

stage classification. This has some drawbacks because ma-

chines have the potential to classify stages better than

humans. Human-labeled data are known to be scored dif-

ferently between sleep experts and cannot reach a 100%

match [95]. Specifically, this interscorer agreement follow-

ing the AASM rules is only approximately 82.6% [81].

One way to bring new insights into sleep behavior analysis

that is not based on classic features is pattern recognition

and unsupervised approaches to describe sleep differently.

Emerging approaches for sleep assessment are investigating

new features, such as the sleep regularity index [75]. The

regularity of sleep [75] represents the trend of consecutive

nights, which is a step towards long-term visualization

and helps to draw more specific conclusions. Furthermore,

the automatic detection of shorter underlying structures

using machine learning techniques is emerging, such as

for K-complexes [114] and sleep spindle detection [114],

[115]. Eventually, research will extract this information from

sensor sources other than EEG, which are easier to apply at

home.

In the future, the issue of small datasets could be over-

come by user contributions, i.e., crowdsourcing sleep data

to contribute to sleep research. Consumer wearables will

progressively adopt to facilitate users sharing their sleep

tracking data with researchers and could be enhanced by

users’ personal information, e.g., gender, age, and medical

conditions. Hence, larger studies can be conducted, and

inconsistencies and inherent noise can be overcome to a

certain extent.

It is already known that there are many correlations

between sleep and daily life, as well as specific chronic

diseases, which are not used extensively. Research is being
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performed to explore features that provide hints about

specific diseases. These features can be measured contin-

uously with sensor technology at home. Combining this

with the known relations could help diagnose diseases in

an early stage [25], [27]. The reason for this interest is that

people normally learn about issues quite late, which does

not allow preventative approaches. Computational analyses

could provide insights into sleep data that are not obtainable

by currently used methods and therefore target educating

and showing users their sleep habits [35], preferably at

home. Overall, sleep is very subjective and individual [35];

therefore, individuality should be addressed and transported

to developed systems. This will lead to fusing different

sleep elements from objective, subjective, and environmental

[29] perspectives into an automatic approach for sleep

assessment and self-management. Another attempt is to

fuse known relations, such as the knowledge from physical

activity into sleep research, which can actually improve

results, such as in [78].

VI. CONCLUSION

In this paper, we provide a systematic, comprehensive re-

view on the state-of-the-art in research and practices in com-

putational sleep behavior analyses. We specifically focus on

the latest developments in sleep monitoring, modeling, and

computational analysis methods for sleep assessments using

sensor technologies, which can be used by the general public

at home and are easier, quicker, and inexpensive. This survey

offers in-depth knowledge and insights into this increasingly

important research field to effectively guide the reader

through vast amounts of literature. We have also highlighted

the challenges and future research trends that will inform,

inspire, and guide researchers, technology developers, and

healthcare practitioners in research, innovation, and service

provision. This is a rapidly growing, dynamically changing

research area. Whereas previous research has mainly been

undertaken to exploit and automate human expert knowl-

edge, one apparent trend is to apply data-driven techniques

to investigate data from various perspectives rather than

human labeling only, inferring and discovering new insights

directly. It is also expected that, with the prevalence and

maturity of daily technologies and the availability of cloud-

based computational power, the gap between clinic-based

and home-based sleep assessments will vanish in the very

near future. Whereas this will require close collaborations

and knowledge sharing among healthcare professionals,

research experts and users, it opens up opportunities that

will potentially lead to transformations in future healthcare.
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