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Introduction 
 
The past 15 years have witnessed an incredible increase in both the scale and also 
scope of social and behavioral data available to researchers. Over the same period, 
and driven by the same explosion in data, the study of social phenomena has 
increasingly become the province of computer scientists, physicists and other “hard” 
scientists.  Papers on social networks and related topics appear routinely in top 
science journals and computer science conferences; network science research 
centers and institutes are sprouting up in top universities; and funding agencies 
from DARPA to NSF have moved quickly to embrace what is being called 
“computational social science.”    
 
Against these exciting developments stands a stubborn fact—that in spite of many 
thousands of published papers, surprisingly little progress has been made on the 
“big” questions that motivated the field—from systemic risk in financial systems, to 
problem solving in complex organizations, to the dynamics of epidemics or social 
movements.  
 
There are many reasons for this state of affairs, but in this talk I will concentrate on 
three.  First, social scientific problems are almost always more difficult than they 
seem. Second, the data required to address many problems of interest to social 
scientists remain hard to assemble.  And third, thorough exploration of complex 
social problems often requires the complementary application of multiple research 
traditions—including statistical modeling and simulation, but also social and 
economic theory, lab experiments, surveys, ethnographic fieldwork, historical or 
archival research, and practical experience—many of which will be unfamiliar to 
any one researcher.  Meeting these challenges, I claim, will require both new 
platforms for collecting the appropriate data, and also new institutions for 
conducting social science research.   
 
 
Why is social science hard? 
 
Almost by definition, “social” phenomena are less about the behaviour of individuals, 
than of collections of individuals like groups, crowds, organizations, markets, classes, 
and even entire societies, all of which interact with each other via networks of 
information and influence, which in turn change over time. As a result, social 
systems—like other complex systems in physics and biology—exhibit “emergent” 
behaviour, meaning that the behaviour of entities at one “scale” of reality is not 
easily traced to the properties of the entities at the scale below (Anderson 1972). 



Firms, for example, can exhibit highly stable identities and cultures even as the 
particular employees who work in them change completely over time, just as you 
remain “you” even as the cells in your body turn over during the course of your 
lifetime. Conversely, the stock market, the economy, or a political regime can 
collapse suddenly and unexpectedly even as the various players and background 
conditions remain the same.  
 
Complicating matters further, emergent properties can be both the cause and the 
effects of social change.  Sometimes, that is, the decisions of corporations or even 
governments may depend critically on the personal interests of a handful of 
executives, whereas at other times the behaviour of those same individuals may be 
powerfully constrained by the corporate or political culture to which they belong. 
Nor is emergence as simple as one “scale” of reality aggregating to another. Rather, 
in many problems of interest to social scientists, the actions of individuals, firms, 
regulatory and government agencies, markets, and political institutions may all play 
important roles. Moreover, because these different types of actors not only exist at 
different scales—firms comprise individuals, markets comprise firms and 
individuals, etc.—but may also interact with each other in important ways, 
problems of this type require one to consider events, actors, and forces across 
multiple scales simultaneously. 
 
Given the unavoidably multi-scale, complex, and emergent nature of social 
phenomena, it is not surprising that theories of social behaviour and change have 
been difficult to work out in any realistic detail. Compounding this theoretical 
difficulty is an empirical one, or rather two separate but related empirical 
difficulties. First, observational data on the scale of hundreds of millions, or even 
tens of thousands, of individuals has been impossible collect historically. Second, 
because cause and effect can be difficult to infer from observational data alone, 
experimental studies are also necessary.  Yet experiments involving, say the 
performance of an organization with a particular structure, or the popularity of 
songs in a single instance of a cultural market—represents the collective behavior of 
hundreds or even thousands of individuals, designs that are clearly impossible to 
implement in a physical lab (Zelditch 1969). 
 
 
The emergence of computational social science 
 
In light of these three interrelated difficulties, (a) the complexity of the theoretical 
issues confronting social science, (b) the difficulty of obtaining the relevant 
observational data, and (c) the difficulty of manipulating large-scale social 
organizations experimentally, it is hardly surprising that progress in social science 
has been slow relative to that in the physical, engineering, and biological sciences, in 
particular over the past century.  Correspondingly, in lifting some of the constraints 
the computing revolution of the past two decades—a revolution that has not only 
dramatically increased the speed and memory of computers themselves, but also 
the scale and scope of social data that can now be analyzed—has the potential to 



revolutionize traditional social science, leading arguably to a new paradigm of 
“computational social science”1 (Lazer et al. 2009). 
 
The most prominent strand of research in computational social science leverages 
the communication technologies—including email, social networking and 
microblogging services, cell-phones, as well as online games, e-commerce sites, and 
other internet enabled services—all generate signals, often referred to as “digital 
exhaust” or “digital breadcrumbs”, from which inferences can be made about 
individual and/or collective behavior.  In this way, it is increasingly possible to 
observe the actions and interactions of hundreds of millions of individuals in real 
time, and also over time.  
 
Data derived from instant messaging services and social networking sites, for 
example, have been used to construct networks of hundreds of millions of nodes 
have been analyzed (Leskovec and Horvitz 2008; Ugander et al. 2011), confirming 
earlier conjectures about the topology of large social networks (Newman 2003; 
Watts and Strogatz 1998). Other studies have mined email data to estimate the 
micro-level rules describing new tie formation (Kossinets and Watts 2006), or used 
blog networks to measure the propensity to join new groups (Backstrom et al. 
2006). Others still have mapped the diffusion of online content (Bakshy, Karrer and 
Adamic 2009; Dow, Adamic and Friggeri 2013; Goel, Watts and Goldstein 2012; 
Leskovec, Adamic and Huberman 2007; Sun et al. 2009), or conducted massive 
randomized field experiments to estimate the causal effects of social influence on 
adoption (Aral and Walker 2011), voting turnout (Bond et al. 2012), or likelihood to 
share content (Bakshy et al. 2012).  
 
A less well explored but also important strand of work comprises research that uses 
the web to create “virtual labs”: controlled environments within which lab-style 
macro-sociological experiments can be conducted (Hedstrom 2006). Although early 
efforts relied on volunteers (Dodds, Muhamad and Watts 2003; Salganik, Dodds and 
Watts 2006), an important recent development in this field has been the use of 
crowdsourcing sites such as Amazon’s Mechanical Turk to recruit and pay subjects 
analogous to the longstanding tradition in behavioral science of recruiting from 
college student populations (Mason and Watts 2009).  One important advance due 
to crowdsourced virtual labs has been to resolve the “synchronicity problem”—
namely assuring that N subjects will arrive contemporaneously and remain engaged 
in the experiment for its duration (Abell 2001; Abraham 2008), thereby allowing for 
networked experimental designs.  Another has been that experiments can be 
                                                        
1 Computational social science is a contested label, referring in some quarters to simulation of agent-
based models (see, for example, http://computationalsocialscience.org/), and in others strictly to the 
analysis of computationally challenging datasets (http://research.microsoft.com/en-
us/groups/cssnyc/). Here I follow Lazer et al (2009), who invoke the term somewhat liberally to 
refer to the emerging intersection of the social and computational sciences an intersection that 
included analysis of web-scale observational data, virtual-lab style experiments, and computational 
modeling. 
 



designed, launched and executed on a much shorter timescale than has been 
historically feasible, and on a lower cost basis (Wang, Suri and Watts 2012).  Finally, 
by shrinking the “hypothesis-testing cycle”—the lag between analyzing one set of 
experimental results and running the next set of experiments—from on the order of 
months or years to days or even hours, crowdsourced virtual lab experiments can 
dramatically expand the range of conditions that can be studied experimentally. 
 
 
Challenges for computational social science 
 
As impressive as its recent accomplishments have been, computational social 
science faces a number of pressing challenges if it is to address the important 
questions of social science—organizational and inter-organizational problem 
solving; collective action problems; influence, adoption and information diffusion; 
collective decision making; deliberation, segregation, and polarization; technology, 
governance, and democracy; predicting sudden cultural change, outbreaks of 
political conflict, or the emergence of disruptive technologies—in a meaningful way.   
 
A Social Supercollider. First among these challenges, the dominant “digital exhaust” 
model of data collection imposes important limitations on the type of research 
questions that can be answered. To illustrate, consider the problem of measuring 
how friends influence each other’s purchase behavior, a question that is of great 
interest both to social scientists and also to marketers, policy makers and other 
change agents. Although simple to ask, answering such a question requires being 
able to observe both the complete friendship network — already a difficult task — 
and also everyone’s shopping behavior. Using existing systems, one might obtain an 
approximation of the friendship network by using Facebook data, or mining email 
logs, while e-commerce sites or retailer databases may show how much individuals 
are spending on particular products. Currently, however, it is extremely difficult to 
combine even two such sources of data, and of course there are many different 
modes of communication, and many different places to make purchases. 
 
Many questions of interest to social scientists encounter a similar problem, in that 
they require studying the relation between different modes of social action and 
interaction—for example, search data to infer intent, network data to infer 
relationships, e-commerce data to infer choices, and social media data to infer 
opinions—yet these “modes” are all recorded and stored separately, often by 
different companies.  A major breakthrough for computational social science, 
therefore, would be a proverbial “social supercollider:” a facility to combine 
multiple streams of data, creating richer and more realistic portraits of individual 
behavior and identity, while retaining the benefits of massive scale.    
 
Against this considerable promise stands the equally pressing concern of protecting 
individual privacy.   Privacy is already an important issue for all industries that 
collect digital information about their consumers; however, for exactly the same 
reason that the social supercollider would be so powerful a scientific tool — namely 



that it would put all the pieces together — it raises far more serious questions about 
individual privacy even than are posed by existing commercial platforms.  Precisely 
these questions, in fact, have already been raised by recent revelations of the NSAs 
Prism project, which also appears to be an attempt to combine data from multiple 
sources.  Construction and management of anything like a social supercollider 
would therefore have to proceed under the strictest scrutiny, both with respect to 
the governance of the data itself, and also its end uses.   
 
Expanding Virtual Labs. A second challenge for computational social science 
concerns the continued development of experimental macrosociology.  Perhaps 
surprisingly the major limitation to existing experimental designs has been the 
difficulty of recruiting large numbers of subjects in a reliable and cost-effective 
manner.  For example, the largest synchronous virtual lab experiments to-date have 
not exceeded N = 36, largely because of the practical difficulty of recruiting more 
than that number at any single time.   
 
One potential solution to this problem would be to construct a large, persistent, and 
well-documented panel of subjects—potentially hundreds of thousands of 
individuals, who may participate in many experiments over months or years—it 
would be possible to increase the scale of synchronous experiments to involve 
hundreds, or even thousands of contemporaneous subjects.  By allowing 
researchers to specify their sampling frame in advance, moreover, a large persistent 
panel of this type would also facilitate investigations of how behavior varies by 
demographic, national, or racial group.  Such a panel would also allow for entirely 
novel questions about the connections between individual attributes and behavior, 
as well as between different elements of behavior itself.  Do people who contribute 
generously to public good games behave in any characteristic way when 
participating in a collaborative problem solving exercise, or in an exchange 
network?  Finally, beyond virtual lab experiments, a panel of this scale and duration 
could also be of great value for survey research and also for randomized field 
experiments.   
 
Putting the “social” in computational social science. A final challenge for 
computational social science is highlighted by the observation that in spite of the 
many thousands of papers that have been published on topics related to social 
networks, financial crises, crowdsourcing, influence and adoption, group formation 
and so on, relatively few of these papers are published in traditional social science 
journals, or even attempt to engage seriously with the existing social scientific 
literature.   The result is that much of computational social science to date has 
effectively evolved in isolation of the rest of social science, largely ignoring much of 
what social scientists have to say about the same topics, and largely being ignored 
by them in return.   
 
One can argue about who to blame for this state of affairs—computer scientists for 
being presumptuous or social scientists for being defensive—and also whether or 
not it is even a bad thing.  Perhaps all interdisciplinary fields start out as ugly 



ducklings and have to become swans on their own, not by making friends with 
existing fields but by outcompeting them. My view, however, is that meaningful 
progress on important problems will require serious engagement between the 
communities, each of which has much to offer the other.  On the one hand, that is, 
computer scientists and physicists have technical capabilities that are of great 
potential benefit to social scientists, while on the other hand deep subject matter 
knowledge is essential in order to ask the right questions, and to formulate even 
simple models in ways that address these questions.   
 
Harnessing the complementary strengths of both communities, however, is easier 
said than done. Consider, for example, the problem of modeling systemic risk in 
financial systems.  On the one hand, a recent networks literature on financial crises 
has sprung up around the analogy of crises as cascades of failures in interbank 
networks (Delli Gatti et al. 2012; Gai and Kapadia 2010; May and Arinaminpathy 
2010; Nier et al. 2007).  Unfortunately, while the analogy of contagion in networks is 
appealing, these models turn out to omit certain features of real banking systems—
for example, that banks “create” money by expanding their balance sheets, that 
shocks can propagate non-locally via asset prices, or that prices must adjust in order 
that markets will clear—that are critical to understanding recent crises. On the 
other hand, however, descriptively accurate accounts of real financial crises also 
tend to be so complex and multifaceted (Brunnermeier 2009; Commission 2011; 
Gorton 2012; Hellwig 2009) that it is difficult even for experts to agree on which 
mechanisms are the most important, and therefore what features are critical to 
include in even a simple model.   
 
Prima facie, it is not obvious how, or even if, these approaches can be reconciled, but 
any attempt to do so would likely take months, or even years—if only to become 
familiar with the multiple, often incommensurate literatures on the topic—and is 
likely beyond the ability of any one individual to undertake alone.  Meanwhile, 
encouraging interdisciplinary teams of researchers to engage in long-term, intensive 
collaborations involves not only creating actual places where the right mix of people 
are physically proximate, but also ensuring that they have the time and the 
incentives to invest in high-risk projects.   Deep and significant progress in 
computational social science, in other words, will require not only novel and 
creative approaches to data collection and creation—the overwhelming focus of 
enthusiasm so far—but also novel and creative approaches to designing research 
institutions.  
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