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INTRODUCTION

This paper reviews practical computa-

tional strategies for recognizing objects

in digital imagery. It provides both an

introduction to the field of applied object

recognition for the nonspecialist and a

detailed guide to a representative body of

literature and techniques for those

beginning research in this domain. The

focus is on mature techniques with

explicit models and working applica-

tions.

The paper begins by defining the object

recognition task and establishing the

scope of the review. It then proposes a
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classification framework based on gen-

eral characteristics of object recognition

strategies. The central sections discuss

the categories of the general classifi-

cation, evaluate the applicability of the

techniques, and present summaries of

papers typifying each method. A list

of related books and review articles, as

well as more detailed analyses of selected

papers, are presented in appendices.

CHARACTERISTICS OF THE OBJECT

RECOGNITION TASK

Definitions

Object recognition is the task of finding

and labeling parts of a two-dimensional

(2D) image of a scene that correspond to

objects in the scene. Figure 1 shows an

example of the object recognition task as

it might be carried out by a human

observer with a marking pen; an aerial

image of an industrial complex has been

marked and labeled to show areas recog-

nizable as buildings and roads.

Photometry usually refers to light

intensities reflected from surfaces in a

scene and recorded on camera film; on

occasion, data originate from sources such

as ultrasound or x-ray absorption instead

of light. A digital computer image of a

scene is a 2D array of numbers called

pixels whose values represent the scene’s

photometry, that is, the strength of the

signal arriving at a particular point on

the recording medium. The image behind

the markings in Figure 1 originated from

an ordinary black and white photograph

that was digitized into a 2D array of

pixel values in computer memory. These

numerical values contain all the photo-

metric intensity information at our

disposal.

To carry out the object recognition task,

we must first establish models, or gen-

eral descriptions of each object to be

recognized. Typically, a model includes

shape, texture, and context knowledge

about the occurrence of such objects in a

scene. For example, the mathematical

description of a building model as a set

of shaded rectangles might have been

used to generate Figure 1. A three-

dimensional (3D) building object could be

modeled as a set of rectangular solids.

Texture information might include colors

or knowledge about the layout of a

building’s windows.

A model label is then attached to each

occurrence (or instance) of a model in the
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Roads
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Figure 1. An aerial image of an industrial complex with

labels attached to buildings and roads.

label can be thought of

as a tag pinned to an area in the image

that we believe shows an instance of the

corresponding object model. The words

Roads and Buildings in Figure 1 are

examples of model labels; the outlined

2D areas indicate where we think the

photogaph shows 3D buildings. That is,

a model may be two- or three-dimen-

sional, whereas labels in an image always

refer to 2D model instances. (We note

that in certain cases the image and some

of its labeled model instances may be

three-dimensional.)

There are several important distinc-

tions about the kind of information we

deal with in a digital image and its cor-

responding scene. The most elementary

type of information is syntactic, which

deals only with the pixel values them-

selves, not their meaning. Semantic

information, by contrast, deals with

knowledge and meaning. Thus, when we

talk about a syntactic image operator,

we mean a procedure that blindly applies

an algorithm to the pixel values; an

example would be a procedure that as-

sembles groups of adjacent pixels that

have a high contrast with their other

neighbors. A semantic operator, in con-

trast, uses models of the scene and the

image production process that incorpo-

rate symbolic knowledge about the orga-

nization of the information, such as

“parts may be lying on top of one

another. ”

Closely related to the distinc-

tion between semantic and syntactic

information are terms describing the

spatial dependence of a procedure or con-

cept. We frequently use the term local to

refer to processes that look at a pixel and

its very nearest neighbors but use no

information about the rest of the image;

local processes are typically syntactic.

The term global, therefore, is used to

refer to the opposite situation, in which

context information from the entire

image or scene, usually semantic in na-

ture, is considered.

To sum up, we may think of object

recognition as the process of drawing

lines and outlining areas in an image

and attaching to each such structure a

label corresponding to the model that best

represents it, as illustrated in Figure 1.

scope

In this paper we consider only object

models that include knowledge of

object structure such as shape or seman-

ACM Computmg Surveys, VOI 24, No 1, March 1992
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tic context. In particular, models that

rely strictly on local photometry are not

considered. Thus we do not treat in detail

models defined only by syntactic state-

ments such as “all contiguous pixels with

intensity value above 128. ”

The effect of these restrictions is to

focus our attention on object recognition

strategies that are generally associated

with the machine perception branch

of artificial intelligence. Among the

wide variety of object recognition prob-

lems that fall within the scope of this

review are such tasks as locating single

object instances, accurately determining

object boundaries in an image, choosing

an object’s best class membership from

among many possibilities, and extracting

object labels from complex, cluttered

scenes.

Role of Context in Object Recognition

Object recognition is difficult because a

combination of factors must be used to

identify objects. These factors may

include restrictions on allowable shapes,

the semantics of the scene context, and

the information present in the image

itself. We next present two examples

illustrating the importance of context in

interpreting images. Note that the

human reader will experience the same

types of confusion that computer systems

do if the scene context is not clearly

understood; even human beings require

training to interpret accurately images

of the type presented.

Consider first the image in Figure 2a

without reading the caption. In isolation,

it is nearly impossible to identify the

object in the center of this image. This

same object also appears in the same

position in the image of Figure 2b. With

no further information, it is still difficult

to identify the object. Finally, given the

context information that the image in

Figure 2b is an aerial image of a high-

way, the object is more easily recognized

as an automobile. Cultural context plays

a central role in enabling us to interpret

the scene.

As our second example, consider the

photograph in Figure 3a, showing a clus-

ter of rocks lying on light-colored ground.

What we want to illustrate here is the

importance of context assumptions about

lighting and shadows. If we have learned

to expect sunlight to fall on the top of the

dark-colored rocks, forming even darker

shadows on the soil, we can form a very

three-dimensional interpretation of Fig-

ure 3a. If, however, we interchange light

and dark, as in Figure 3b, our expecta-

tion is confounded, and most of us will no

longer see a consistent 3D picture.

Two more simple operations on the

images can help us isolate what is

important to our perceptual process: In

Figure 3c, we show a thresholded binary

image that effectively paints the shad-

ows black. This cartoonlike image is rel-

atively easy to see as a 3D scene; it may

help to squint your eyes slightly. If, how-

ever, we paint the shadows white in the

original gray-scale image, as in Figure

3d, most viewers will again find it impos-

sible to recover the 3D shapes. The

intended lesson is this: Although the

thresholded Figure 3C retains much of

the important visual information in the

original image, Figures 3b and 3d have

become uninterpretable because the 3D

cues we have learned to expect have been

obliterated. These examples argue

strongly that computer systems (or

humans, for that matter) need appropri-

ate context models even at a very low

level of the data processing procedure in

order to carry out object recognition and

scene interpretation.

Object recognition is analogous to

another difficult problem—the interpre-

tation of an audio signal as a sensible

sentence. For simple cases, it may work

to extract all the words from the audio

signal in one pass, then send the words

to a parser. In real-world applications,

it may be absolutely essential to exploit

the context of possible parses during the

processing of the audio signal to get the

correct set of idealized symbols and their

interpretation. The visual context is

equally important in object recognition.

ACM Computing Surveys, Vol 24, No 1, March 1992
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(a)

Figure 2. An illustration of the importance

au~omobiles in an aerial highway sce~e.

Illustrating the Drawbacks of Simple

Approaches

The simplest approaches to object recog-

nition rely entirely on local operators that

analyze the photometric statistics of the

image (e. g., measured light intensities).

Since real objects are defined by their

geometric and semantic characteristics as

well as their statistical properties, these

methods may fail to identify objects prop-

erly. Although we are excluding methods

relying exclusively on local image statis-

tics from our treatment, it is important

to have a qualitative understanding of

their characteristics.

For example, depending on arbitrary

parameter settings, edge detector meth-

ods will either produce so many edges

that relevant information cannot be per-

ceived in the clutter or will fail to extract

edges that are crucial for the inter-

pretation process. Similarly, region seg-

mentation algorithms will either

undersegment (combine semantically

meaningful objects) or oversegment

(break coherent objects into unrecogniz-

able pieces). These failure modes are

inevitable because the statistical

techniques used fail to take higher level

of context. (a

(b)

) One automobile in isolation; (b) image of

geometric and semantic knowledge into

account. Examples of these phenomena

are shown in Figure 4 for three such

methods: a histogram-based segmenta-

tion system [Laws 1984; Ohlander et al.

1978], an edge operator [Canny 1986],

and the zero crossings of differences of

gaussians [Marr 1982]. Many object

recognition approaches depend on the as-

sumption that the outlines appearing in

some chosen single image defined by such

methods will correspond directly to

objects (buildings in this case); often,

however, this assumption is simply not

true.

To reiterate: Since a major task in the

object recognition process is to outline

areas in an image identifiable as model

instances, it is tempting to use one of the

above edge detection or region segmenta-

tion methods by itself. This does not work

in general, because such methods have

no conceptual model for what they are

looking for—with a given set of parame-

ters, one of these methods will draw the

same outline whether it is looking for

tadpoles or airports! These simple tech-

niques may, however, be useful when we

need a starting point for a more

sophisticated analysis.

ACM Computmg Surveys, Vol 24, No 1, March 1992
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(a) (b)

/

(c) (d)

Figure 3. Four images of a rock scene: (a) Normal Image; (b) Image with the pixel mtensltles reversed; (c)

thresholded image with shadows black; (d) Image with shadowe replaced by white Shape cannot be

deduced from shading alone in these examples, as all shape perception disappears m (b) and (d)

We have now argued that local

photometry does not fully characterize

objects in the real world, so effec-

tive object recognition procedures must

incorporate model knowledge or context.

In order to implement procedures that

achieve this goal in a feasible fashion, we

must adopt appropriate computational

strategies. The classification and selec-

tion of such computational strategies is

the subject of the remainder of this paper.

CATEGORIZATION OF OBJECT

RECOGNITION SYSTEMS

We classify the computational strategies

used for object recognition according to

two main characteristics: their suitabil-

ity for complex image data and their

suitability for complex models. The moti-

vations for choosing these two features

are the following:

ACM Computmg Surveys, Vol 24, No 1, March 1992
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. (a) An image of an aerial suburban scene; (b) a segmentation with undersegmented roofs

[Ohlander et al. 1978; Laws 19841; (c) oversegmentation resulting from a different parameter choice; (d) (e)

(f) Canny edge images computed with progressively lower-edge strength thresholds [Canny 19861; (g) (h) (i)

zero crossings of differences of gaussians with progressively decreasing widths

* Complexity of the Image Data. First,

we define data complexity to corre-

spond roughly to the signal-to-noise

ratio in a digital image; an image with

semantic ambiguity therefore corre-

sponds to noisy, or complex, data. For

example, if the data naturally have

very good characteristics, we have the

analog of an error-free sentence given

to a sentence parser. Examples include

data consisting of perfect (e.g., human-

generated) outlines of model instances

~hroughout an image or image data in

which all houses in an aerial image

have perfectly lit white roofs against a

black backWound. Our only concern in

this situation is to produce a correct

set of labels without regard for how

the set of symbolic outlines to be

labeled were inferred from the data; in

this case we call the data simple. If the

modeled object characteristics are not

unambiguously and completely

encoded by an external process or by

the photometric statistics, however, the

task of extracting plausible model

instances from the data is a major

undertaking that often cannot be sepa-

rated from the symbolic interpretation.

Data with poor resolution, noise, or

photometric anomalies (e. g., occlusions

or cloud cover) typically require spe-

cially designed methods for the extrac-

tion of model instance hypotheses.

Similarly, in images with easily con-

fused false model instances, we need

special methods to distinguish the cor-

rect objects from the false ones. In these

latter cases, we refer to the data as

complex.

D Complexity of the Model. If the

model is defined by a simple criterion

ACM Computmg Surveys, Vol 24, No 1, March 1992
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like a single shape template or the

optimization of a single function

implicitly containing a shape model,

no other context may be needed to

attach model labels to the scene. If

many atomic model components must

be assembled or hierarchically related

to establish the existence of the desired

model instance, however, complex data

structures and nontrivial search tech-

niques may be required. Thus model

complexity is indicated roughly by the

levels of detail in the data structures

and in the techniques required to

determine the form of the data

organization.

We are thus led to the four major

classes of computational strategies that

populate our category space; they are

summarized schematically in Figure 5.

0 Feature Vector Classification. Fea -

ture vector methods rely on a trivial

model of an object’s image characteris-

tics and are typically applied only to

simple data. Feature vector methods

are well understood and treated in

many textbooks [Duds and Hart 1973;

Tou and Gonzales 1974]. However, for

completeness we have chosen to include

a brief description of these techniques

because thev can be verv useful start-

ing points” for more “ sophisticated

applications.

0 Fitting Models to Photometry. When

simple models are sufficient but the

photometric data are noisy and am-

biguous, a number of methods that ex-

tract simple model instances may be

effective. Such methods search for fea -

tures with predetermined global shapes

and ~hotometric tmo~erties Methods. .
may use rigid models, depending on a

limited set of parameters, or flexible

models, specified by a set of generic

constraints on object characteristics.

Detailed discussions of two typical

examples of this method, the Hough

transform and the snake method, are

given in Appendix C, Sections C. 1 and

C.2.

o Fitting Models to Symbolic Strut-

e

tures. When complex models are

required but reliable symbolic struc-

tures can be accurately inferred from

simple data, procedures that tie these

structures into complex model hierar-

chies may be appropriate. Such

approaches typically look for instances

of objects by matching data structures

that represent relations among object

parts and may use a hierarchy of inter-

mediate models to prune the search

tree. Detailed discussions of two typi-

cal examples of this method, the

HYPER and ACRONYM systems, are

given in Appendix C, Sections C. 3

and C.4.

Combined Strategies. When both the

data and the desired model instances

are complex, successful object recogni-

tion requires a combination of stra-

tegies. Detailed discussions of two

typical examples of this method, the

3DP0 and the minimal description

length (MDL) method, are given in Ap-

pendix C, Sections C. 5 and C. 6.

Subsequent sections deal systemati-

cally with each of the major approaches

to object recognition in the literature that

fall within our scope. Appendix A tabu-

lates and classifies the selected papers

reviewed in the main text. Appendix B

summarizes other reviews of our subject

area and contrasts the approaches used

with the one presented here. Appendix C

contains more detailed discussions of

selected papers representing each cate-

gory in our classification space.

Now we turn to the task of analyzing

and categorizing the literature on strate -

gies for object recognition. We summa-

rize a range of papers for each of our

strategy categories in order to paint a

broad picture of the possible applications

as well as to illustrate the breadth of

techniques that are available.

1. FEATURE VECTOR CLASSIFICATION

1.1 Summary of the Technique

The feature vector classification approach

is a well-established strategy that has

been described extensively in the litera-

ACM Computing Surveys, Vol 24, No 1, March 1992
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Suitability for Complex
Image Data

Fitting Models to Photoxnetrv
Combined !$tratcgics

w Hough . 3DP0

w Snakes e MDL

Fltthg Modek to symbolic

Structures

Feature Vector Classification e HYPER

● ACRONYM

Suitability for Complex Models

Figure 5. Classification space for object recognition strategies with

illustrative examples. Appendix C contains detailed summaries of

each example me~hod. -‘

ture [Duds and Hart 1973; Tou and

Gonzales 19’741 and has proven its useful-

ness in many industrial applications.

Here, we give a brief summary to estab-

lish conventional terminology.

In this approach, objects are modeled

as vectors of characteristic features, each

of which corresponds to a point in the

multidimensional feature space. Exam -

pies of features include gray value, color,

infrared or ultraviolet intensity, area,

perimeter, compactness, and number of

holes. To use the feature vector approach,

we must select which features are rele -

vant, determine a way to measure them,

and define a criterion for distinguishing

the desired objects from others. For

instance, to find chocolate doughnuts

using a feature vector approach, we might

construct groups of neighboring pixels

that had similar chocolate color, compute

the total number of pixels in each such

group, and compute the total number of

pixels in holes surrounded by each group.

For each pixel, plot its color, the area of

its group, and the area of its group’s

holes on separate axes. Pixels, all of

whose values lie within acceptable ranges

of these parameters, are then assigned

the label “chocolate doughnut, ” There

are, of course, many variations of such a

procedure, with widely varying accuracy.

We see that once the feature space is

defined, it must then be partitioned into

regions corresponding to different object

models; this allows the assignment of

unknown objects to known object classes.

The decision boundaries are usually con-

structed during a learning or training

phase; for example, we might take a large

number of sample objects with assorted

feature values, make a density plot of

their values, and note the boundaries

of the clusters containing objects with

different label names. Class selection

may also be based on such techniques as

bayesian decision analysis methods. The

two major philosophies of feature vector

classification are m follows:

0 Pixel Classification. Pixel classifica-

tion is the simplest and most straight-

forward application of the feature-space

strategy. Each pixel is potentially a

member of a different model class, and

the classification of pixels is based

solely on their intensities or frequency

spectrum. Spectral analysis [Richards

1986; Wheeler and Misra 1980] is a

well-known example of pixel classifica-

tion. In this method, we might take

two images of a large area of farmland

using different color filters, then deter-

mine experimentally the average val -
ues of each of the two colors seen in

known wheat fields. Unknown areas of

the image would be labeled as wheat

fields if the values of both their aver-

ACM Computing Surveys, Vol 24, No 1, March 1992
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age colors were close to those of known

wheat fields.

e Classification of Labels. Instead of

the pixel-based approach of the previ-

ous method, we may use features that

characterize regions of a partitioned

image; such regions are typically

obtained by some photometry-based

method that groups adjacent pixels into

coherent areas with homogeneous local

characteristics. This requires images

with simple photometric statistics.

Examples of label classification can be

found in the system of Green et al.

[1989] that classifies chromosomes in

images of dividing cells based on fea-

tures such as length of the chromo-

some, distance from the top to the

last band, distance from the top to

the darkest band, and so on, and in the

system of Bergman and Mulgaonkar

[1988] that uses a three-layer neural

network to recognize destination

address blocks in images of mail pieces

using position and shape.

1.2 When to Use this Strategy

The feature-space approach works well

when the problem involves simple mod-

els that do not include constraints relat-

ing different parts of a model and when

we can restrict ourselves to either pixel

classification or classification of labels

with good photometry. A variety of local

photometric methods and classification

techniques suffice to produce accurate la-

bels in such cases.

1.3 When to Avoid this Strategy

A major limitation of the feature-space

approach is its inappropriateness for the

representation and handling of models

that include constraints on the relation-

ships between the chosen features. The

technique does not easily make use of

more global information, such as spatial

relationships and model context. Fur-

thermore, unless local photometry is suf-

ficient to distinguish the desired object

completely, we cannot rely strictly on

feature-vector approaches.

Hanson

2. FITTING MODELS TO PHOTOMETRY

The most straightforward object recogni-

tion techniques are those that fit their

models directly to the photometric data.

These methods improve upon feature

classification by incorporating more

model knowledge into their procedures

and replacing local pixel classification by

more global considerations. As a simple

example, we could tell the procedure to

look for circles by finding portions of arcs

with a given radius and center, as

opposed to saying find any light-dark

boundary in the intensity data. We divide

the basic strategies into two categories:

Rigid Model Fitting. The shape or

photometry of the target object is

known a priori; the model can be either

rigid or parametric, depending on a

limited set of free parameters. For

more flexible models, a more sophisti-

cated strategy is required.

Flexible Model Fitting. The next level

of complexity supports-the use of mod-

els that are specified by generic

constraints. These methods rely

on an optimization procedure that finds

the best fit between the model

and the image data. Heuristics can be

used to control the search and reduce

the computation time at the possible

risk of finding a nonoptimal solution.

We now examine each of these strate-

gies in turn. The references reviewed

below for each category are summarized

in Appendix A.

2.1 Rigid Model Fitting

2. 1.1 Summary of the Technique

Template matching, one of the oldest

computational strategies, is the precur-

sor of a range of more recent strategies

described in this section. A template rep-

resents an object as a rigid curve or an

image. A metric or similarity measure

that reflects how well the image data

match the template is used to find the

optimal template location.

ACM Computmg Surveys, Vol 24, No 1, March 1992
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2.1.2 Quantifying Photometric Statistics

The simplest class of metrics quantifies

similarities between two images by cor-

relation (e. g., average absolute or squared

differences of image pixels, normalized

cross-correlation, statistical correlation)

and are described in basic textbooks on

image processing [Ballard and Brown

1982; Hall 19’79; Rosenfeld 19691. The

basic idea is that when a (small) pattern

matches up well with a local portion of a

(large) image, the pixel-by-pixel differ-

ences are very small and therefore

provide a clue that something special is

happening in that particular local region.

We refer the reader to the textbooks cited

above for details of these fundamental

statistical methods.

A classic example of the correlation

approach is optical matched filtering.

This technique actually implements cor-

relation using optical devices that simu-

late the operation of an appropriate

sequence of Fourier transforms [Reynolds

et al. 19891. These optical methods are

interesting because they are examples of

massively parallel, virtually instanta-

neous analog computing technology. The

results are also easily simulated using

(slower) digital correlation techniques.

To detect photometric similarities

between the object template and the

image, it is natural to use the raw image

data. When other object features are more

indicative, however, the raw image can

be processed first (e.g., by performing a

low-level operation such as edge filtering

or line filtering).

Template matching is also applicable

to binary images. Binary images can, for

example, be obtained as the output of a

low-level operator. Wallace [19881 applies

boundary correlation to match rigid

object-model contours geometrically with

image contours. The contours are repre -

sented as tangent angle versus length

curves (0 – s), and the two 19– s descrip-

tions are correlated in s-space. Mansouri

et al. [19871 first predict the existence of

a straight line segment of predefine

length at each pixel location where the

gradient magnitude is above a certain

threshold; they then verify the prediction

by applying template matching in the

form of a set of statistical tests on

the untlhresholded gradient data in the

predicted position.

This class of techniques is effective only

when the model is rigid. Small changes

in scale, orientation, and shape (depend-

ing on the template pattern used), and

photometry (depending on the metric

used) can strongly disturb the match.

2.1.3 Hough Transform Methods

The .Hough Transform uses templates

described by a set of parameters, such as

the slope and intercept of a line. By “ vot -

ing” in parameter space, patterns in the

image data conspire to produce local

extrema at the most likely parameter

values. 1 The results are relatively insen-

sitive to partially occluded or slightly

deformed sha~es but take into account.
only the shape of the object outline.

The standard Hough transform

[Ballard and Brown 1982; Rosenfeld 19691

detects curves whose shape can be

described as an analytic curve. The

method has been extended to detect arbi-

trary shape templates (the generalized

Hough transform, [Ballard 19$11), repre-

sented as a list of boundary points. The

method may incorporate parameters that

translate, rotate, and scale the template.

The interested reader will find more

details on the generalized Hough trans-

form (GIFIough) in Appendix C. Figure 6

shows am exampl,e of the generalized

Hough transform applied to a thresh-

olded gradient image of a lake. The use

of template matching of this sort is inter-

esting because a match can still be found

even with missing data.

The drawbacks of the method gener-

ally derive from the fact that a massive

amount of memory and computation may

be required to handle a general set of

1In this paper, we classify the Hough transform

under template matching. Many textbooks and

papers, however, cons ~der them as two different

techniques and restr~ct template matching to

strategies carried out entirely in the image domain.
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(a) (b)

Figure 6. (a) Image of a lake with overlaid Hough transform template The template does

not match the image; (b) generalized Hough transform match of a lake m an aerial image

The correct location. scale. and orientation relating the template to the observed object m the

image have been determined automatically by the Hough transform procedure

parameters. Extensive attention has been

paid in the literature to methods for

dynamically allocating sparse storage for

the accumulators using various tech-

niques to decrease parameter errors or

reduce computation time [Niblack and

Petkovic 1988] and improving perfor-

mance using hardware implementations

[Illingworth and Kittler 1988]. Grimson

and Huttenlocher [1990] present a

detailed evaluation of the reliability and

other characteristics of the Hough

transform.

2. 1.4 When to Use this Strategy

These techniques are without equal when

the object’s shape or photometry are pre-

cisely specified because they constrain

the search space effectively. Further-

more, they are relatively insensitive to

noise, thus making them useful in an

application where occlusions may occur.

In other words, these techniques work for

rigid models applied to complex data.

2. 1.5 When to Avoid th{s Strategy

The power of template-based approaches

stems from the exact knowledge of the

target object’s shape or photometry and

disappears when such knowledge is not

available. Another drawback is that it is

difficult to handle a large number of

model types at once; when a large num-

ber of models must be matched to the

data simultaneously, we should consider

variants such as geometric hashing

[Kalvin et al. 1986; Lamdan and Wolfson

1988]. When the template style of model

definition is not applicable, methods such

as those described in the following section

may be useful.

2.2 Flexible Model Fitting

2.2.1 Summary of the Technique

Whereas template matching is restricted

to rigid or parametric object models, our

next class of computational strategies

uses more fZexible models, specified

by a set of generic constraints on object

characteristics such as smoothness, recti-

linearity, curvature, compactness,

symmetry, and homogeneity y. The fit of

the model to the image data is usually

measured by an objective function, and

matching is performed by minimizing

this measure.

The basic idea of flexible model fitting

is similar to least-squares fitting. As a

simple example, suppose we have a col-

lection of data points and a randomly

chosen line; then the least-squares solu-

tion can be found experimentally by wig-

gling the line around until the sum of
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(a) (b)

Figure 7. (a) Image containing thin linear features; (b) Result of F’*; coherent linear data structures have

been automatically computed that closely correspond to the human perceptions of (a).

differences squared (this is the objective

function) is minimized (i.e., an optimiza-

tion procedure is carried out). See the

description of Kass et al. [1987] in

Appendix C for a more sophisticated

example.

Like template matching, the optimiza-

tion process in this method operates at

the pixel level, but because of the flexi-

bility of the model, the search may

become computationally expensive. The

papers discussed in this section typically

require an initialization in the form of a

limited search area and use only a small

number of generic constraints.

2.2.2 Dynamic Programming

Dynamic programming is an optimiza-

tion process that is expressed as a recur-

sive search [Bellman and Dreyfus 1962].

Dynamic programming is applicable only

if the objective function can be expressed

in terms of relationships among

neighboring pixels alone.

o Fischler et al. — F *: Iterative Path

Finding in a Xl Array. The F* algo-

rithm described by Fischler et al.

[1981] defines a path cost and itera-

tively finds an optimal path in an

image from a starting pixel (or a set of

candidate starting pixels) to a termi -

e

nating pixel (or a set of candidate ter-

minating pixels). The 2D image array

is considered to be a graph in which

each pixel is connected by a directed

weighted arc to its eight immediately

adjacent array neighbors. The pixels

and arcs have an associated cost that

reflects their local likelihood of belong-

ing to the optimal path, that is, the

path with minimum cost. The F* algo-

rithm is used to delineate thin linear

features such as roads and rivers on

low-resolution aerial images precisely

(Figure 7). The starting pixel and ter-

minating pixel, as well as a search

region, can be selected interactively

from a map data base or automatically

using some basic image processing op-

erations. In this technique, costs are

modified using the transform cost’ =

cost” + b. The constant bias b tends to

smooth and straighten the road track,

whereas raising each cost to a power a

causes the path to favor strong

intensities or derivatives.

Gerbrands et aL-Resampling the

Search Region. Whereas the F*

algorithm is iterative, the dynamic

programming algorithm proposed by

Gerbrands et al. [1986] finds an opti-

mal path in a cost matrix in one itera-

tion. To achieve this, the image data in
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e

a selected search region must be trans-

formed into a rectangular matrix. The

search region is preferably a thin,

curved, band of pixels in the image;

this strip is then viewed as a distorted

rubber sheet rectangle. The pixel val-

ues of the new undistorted rectangle

are typically quite different from grid

points in the distorted pixel band, so

the latter has to be resampled. That is,

the pixel values of the new undistorted

rectangle are obtained by interpolating

(averaging or smoothing) the pixel val-

ues near the corresponding points in

the distorted strip.

Gerbrands developed this method for

the accurate detection of the left

ventricular contour in cardiac scinti -

grams. As compared to F*, the compu-

tation time of Gerbrands algorithm

may be lower, depending on the com-

putational cost of the resampling

process and the computational gain

obtained by avoiding iterations. A

drawback, however, is that global

shape constraints of the final trajec-

tory (e.g., smoothness) in the original

image may not be simply expressible

in the resampled array.

Nuyts et al. — Parametric Search

Region. The only shape constraint that

can easily be expressed in the

Gerbrands algorithm is straightness in

the resampled rectangular array,

which is to be considered as a similar-

ity constraint in the original image

[Nuyts et al. 19891. This means that

the shape of the resulting path will

closely resemble the shape of the

selected search region. Nuyts et al.

[19891 further extend this idea by

developing an iterative dynamic pro-

gramming method that finds a path

similar to a parametric curve. The

authors approximate the shape of the

left ventricular wall on SPECT (single

photon emission tomography) images

by a piecewise elliptic curve. The

search region is centered around this

parametric model. After each itera-

tion, the parameters of the elliptic

curves are tuned to the shape of the

detected contour. The algorithm then

Hanson

Figure 8. Quantification of the myocardium in

SPECT images The black center line represents

the parametric model; the white lines represent the

detected contour

restarts with the updated model. This

procedure iterates until the model

parameters remain stable. In Figure 8

we see the results of applying this

method to the quantification of the

myocardium in SPECT images, where

parts of the object may be missing.

Tenenbaum et al. — Optimal Path

without Shape Constraint. If there

are no shape constraints, the optimal

path in the resampled array can be

found by taking the pixels with the

minimum cost along subsequent lines

perpendicular to the direction of the

search region. Tenenbaum et al. [19791

used this procedure to monitor the

water level of a reservoir from an aerial

image, using elevation contours to

guide the search for the land and water

boundary. Tenenbaum also used this

method to determine the precise loca-

tion of a road guided by a rough pre-

diction provided by a map and to detect,

measure, or count objects whose pos-

sible locations and orientations in the

image can be constrained by a map.

Yamada et al. —Noniterative Proce-

dure without Resampling. The

dynamic programming matching
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method by Yamada et al. [1988] does

not require resampling and finds the

solution in one iteration. The method

is applied to extract kidney glomeruli

in microscopic images. Glomeruli are

more or less circular structures. The

shape of the fitted curve is restricted to

be piecewise linear. (The direction of

each line segment is fixed.) Yet, the

length of’ each vector is allowed to vary

within a given range, and the number

of segments can easily be increased in

order to give the model the necessary

shape flexibility. Because of this flexi-

bility, the model is not comparable to

the parametric object model used in

template matching.

One difficulty of this application is

that the fitted contour has to be closed.

This constraint is added a posteriori by

applying a distance criterion to the

results of the dynamic programming

process. Further improvement is

obtained by cycling around the object

more than once. Although the fi~al

result is theoretically not globally opti-

mal, the method performs efficiently

on the examples shown in the paper.

e Maitre and Wu— Matching Seg-

mented Images with Line Draw-

ings. Maitre and Wu [1987] applied

dynamic programming to binary

images in order to match them with

line drawings such as cartographic

maps or sketches. They show results of

registering coast lines in satellite

images, where the data are subject to

noise, occlusions, and distortions, A

binary image is obtained by gradient

thresholding. Only the M highest edge

candidates are retained (M on the or-

der of 400). Due to the ambiguous pho-

tometry, this binary image contains

noise, breaks, and distortions. Only

planar translations between the binary

image pattern and the model are fur-

ther allowed, yet the concepts could

also be directly applied to rotated and

perspective views. Problems of distor-

tions are easily overcome using dy-

namic programming to match the edge

candidates to the lines in the map. To

bridge existing gaps between the dif-

ferent parts of the path and to find the

starting and final point automatically,

the authors have introduced the

concept of the “virtual state,” which

suspends broken paths until they can

be reconnected.

The method appears to be well suited

to problems of image registration, in

which the model is available as a line

drawing. It is not applicable to models

expressed by some generic constraints

like smoothness and rectilinearity,

which imply that the optimal path may

not coincide with the edge candidates

extracted by a local operator.

2.2.3 Gradient Descent

The above tracking algorithms find a

global optimum of the objective func-

tion in their search window but require

the use of constraints that are local in the

image data. In contrast, the energy-

minimizing approach of Kass et al. [19871

can use nonlocal geometric constraints

but may converge to local optima instead

of global ones.

In this technique, contours are defined

as curves. called snakes. that can deform

themselves from a given initial position

to the nearest local optimum of an

objective function. This measure typi-

cally includes shape constraints, image

constraints, and external constraints.

Kass et al. [1987] use the shape con-

straints to enforce rigidity and elasticity

by constraining the first and second

derivatives of the curve. Other examples

of shape constraints are rectilinearity,

parallelism [Fua and Leclerc 1990], and

radial symmetry [Terzopoulos et al.

1988]. The image constraints can be

designed so that lines or maxima of the

image gradient, for example, attract

the curve. These constraints can also

take the area enclosed by the curve into

account and force the curve to find homo-

geneous regions [Fua 1989]. Finally,

external constraints can be introduced to

attract the curve toward ~articular ~laces.
in the image; these constraints may cor-

respond to either interactively specified

forces or forces relating model compo -
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nents [Kass et al. 1987; Witkin et al.

1987a]. The optimization procedure may

even involve multiple snakes inter-

related by constraints. Kass et al. [19871

mention the example of a stereo snake,

which is a pair of correlated curves with

smoothly varying disparities in a pair of

stereoscopic images.

In the absence of sha~e constraints,

gradient descent techni~ues converge

slowly because there are an extremely

large number of degrees of freedom. If

snakes are treated as ~hvsical curves

with linear shape constr~ints moving in

the potential defined by the objective

function. the o~timization can be ~er-

formed by solvi~g the dynamic equations

of the system. Other approaches to opti-

mization can be found in Gardin and

Meltzer [19881, where messages are

passed between neighboring snake

“molecules.” and in Fua [19891, where

global geometric constrain~s are applied

at every iteration. All these implemen-

tations can be parallelized by allowing

all the points on the curve to move

simultaneously.

Snakes tend to get caught in undesir-

able local minima. One wav to overcome

this problem is scale-spat; continuation

[Kass et al. 1987; Witkin et al. 1987bl,

which initiallv smooths the search s~ace.
so gradient descent is likely to fi~d a

good approximation for the global mini-

mum, then repeatedly reduces the

smoothing. Another approach is simu-

lated annealing [Kirkpatrick et al. 19831,

which randomlv chooses to chamze its.
state up, out of the local minimum, to

see if there is another more desirable

minimum nearbv. More details about

gradient descent” methods are given in

Appendix C.

2.2.4 Closed-Form Solution

Both dynamic programming and snakes

search for the optimum of an objective

function derived from the pixel data. A

closed form solution may exist when the

constraints are carefully chosen.

e Premoli et al. — KAMRI: Knowl -

edge-Aided Minimum Radial Iner-

tia, Knowledge-aided minimum radial

inertia (KAMRI) [Premoli et al. 19891

uses the following constraint functions:

(1) radial inertia defined over the gra-

dient image (the image resulting from

numerically differentiating the pixel

intensity values of an image), (2) the

distance to a shape template of

the searched contour, and (3) a smooth-

ness constraint. (The radial inertia is,

roughly speaking, the sum of the

squared difference between the radius

of a pixel in the gradient image and

the corresponding radius of the shape

template contour expected along the

same line from a chosen origin. ) Mini-

mizing the radial inertia forces the

curve to follow rapidly changing (high

gradient) areas, while the shape tem-

plate imposes a similarity constraint.

This model is roughly comparable to

the model used by Nuyts et al. [19891,

except that the parametric template

used by Nuyts is more flexible. The

method of Premoli et al. uses a scale

factor as the only parameter and fur-

thermore requires that the centroid and

orientation of the projected template in

the image approximate those of the

image pattern to be outlined.

The fitted curve must be a cubic

spline. Theoretically, this further con-

strains the shape of the optimal

contour, yet the high number of ana-

lytic curve parameters makes this

constraint quite weak. Using the para-

metric form of the curve and all the

constraints, Premoli et al. show that

the objective function is a quadratic

form in the unknown variables. Hence,

the minimal value can be expressed as

a closed form in terms of known values.

2.2.5 Re/axat/on

The relaxation strategy iteratively

locates and eliminates—or relaxes–the

relational inconsistencies among the can-

didate interpretations. Its computational

mechanisms are well suited to paral -

lelization. Relaxation has been used for

grouping coherent pixels with similar
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(a) (b)

Figure 9. The results of Quam’s road tracker are shown in the white overlays. Both the road trajectory

and potential anomalies are marked, (a) When the tracker encounters a surface change, it extrapolates

ahead and tries to reacquire the road; (b) result for a freeway interchange on-ramp loop; this example is

interesting since the road curves rather tightly, and the road surface changes at approximately the same

place where the road trajectory changes from a circular arc to a straight line,

characteristics into the most likely inter-

pretation. By propagating the elim-

ination of relational inconsistencies

throughout the image, photometric ambi-

guities such as image noise can be

resolved if the relaxation scheme con-

verges to the desired optimum.

* Murray and Buxton—Image Seg-

mentation into Spatiotemporally

Continuous Regions. Murray and

Buxton [1987] use stochastic relaxation

to segment scenes consisting of a fixed

number of moving planar surface

patches. The algorithm looks for the

interpretation of a field of optical flow

data with the maximum a posteriori

probability (MAP). As shown by

Geman and Geman [1984], stochas-

tic relaxation is a form of simu-

lated annealing that converges if the

annealing schedule is slow enough. The

MAP criterion includes terms express-

ing how well the current inter-

pretation explains the measured data

and how well the interpretation con-

forms to the prior expectations of a

sensibly organized flow field. To for-

mulate the objective function, it is

assumed that each surface patch in the

scene is spatially and temporally con-

tinuous and that the optical flow data

contains Gaussian distributed noise.

An additional term is added to express

the cost of introducing various line dis -

continuities, such as corners and

T-junctions.

2.2.6 Heuristic Prwwg

The previous strategies rely on analytic

optimization techniques. When the

search space is too large, intelligent

heuristics are needed to constrain the

search. In such cases, the objective func-

tion is not necessarily explicitly stated

but may be embedded in the heuristic

procedure (e.g., A*, described in Pearl

[19851 and Fischler et al. [19811). Below

are some examples in which heuristics

are used to prune the search space at the

possible risk of finding a nonoptimal

solution.

o Quam–Heuristic Road Tracking

Using Context-Adaptive Cross

Correlation. In Quam’s [1978] proce-

dure for tracking roads and detecting

vehicles in aerial images, a context-

adapting heuristic search method is

used to support a dynamically chang-
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ing model of road photometry. The

approximate position of the road center

ahead is defined based on past road

center ~oints and directions using

●

parabol;c extrapolation. This positio~

is optimized by cross correlating (tem-

plate matching) road cross-section

intensities along a line perpendicular

to the road direction with the current

road cross-section model. Deviations

from the model indicate potential road

markings and vehicles. Figure 9 shows

an example of the application of this

approach; note particularly how dra-

matic changes in the road characteris-

tics can be accommodated.

Quam’s method uses a flexible model

in the sense that the model template is

dynamically updated based on the

history of previously aligned road cross

sections. Similarity between image

areas centered around neighboring

pixels is in fact the only constraint

that characterizes the model.

Although the road tracker yields a

Zocally optimal path, a globally opti-

mal solution is not guaranteed. Typi-

cal of such heuristic line trackers is

that slight intermediate displacement

errors may extrapolate into large devi-

ations. To avoid this effect, it is neces-

sary that each step along the trajectory

be reliable. In the case of Quam’s road

tracker, for example, it is assumed that

the local shape of a road is approxi-

mately parabolic and that the photom-

etry changes smoothly along the road

trajectory (a few anomalies and

road surface changes are allowed).

Zhan~ and Simaan—Model-Driven

Seed “Growing. The system by Zhang

and Simaan [19871 partitions seismic

images into meaningful regions. In

particular, they analyze a seismic

image of the Gulf of Mexico. The image

is partitioned into regions that differ

in sediment compaction and regions

that include shale ridges and salt

domes. Initially, small clusters, called

islands, are found by clustering dis -

criminant texture features with high

(.9) probability of belonging to a par-

ticular region of common signal char-

acter, that is, a region with a typical

sediment compaction or a region that

includes shale ridges and salt domes.

The islands provide a context that is

subsequently used as a constraint when

growing the seeds into larger regions

of common signal character. This con-

text includes knowledge about the rel-

ative position of the regions, their

size, and their topology. For example,

regions composed of salt domes and

shale ridges are not layered but are

expected to have nearly vertical sides.

2.2.7 When to Use this Strategy

Strategies that support flexible models

are best adapted to situations in which

an initial guess for a model shape

instance can be easily supplied. Compu-

tation time is then reduced by an initial-

ization in the form of a limited search

region. The effectiveness of the method

depends strongly on the appropriateness

of the modeling primitives that are

searched for and thus is a natural strat-

egy when well-known models, described

by a limited number of photometric and

shape constraints, are available. Com-

plex scenes may require models with

multiple components; these components

typically need to be combined in a non-

trivial way in order to find a practical

strategy for finding the optimal solution.

This method can work well in the pres-

ence of incomplete or noisy data, pro-

vided natural limitations on the size of

the search space can be imposed. Its

effectiveness is further enhanced when

appropriate algorithms for minimizing

the cost function are available.

2.2.8 When to Avoid this Strategy

Fitting flexible models directly to the

photometric data is very sensitive to

the completeness of the model and the

appropriateness of the image data. For

example, the snake evaluated using edge

data alone will give spurious bleeding or

premature termination if the situation

requires a model that checks the area

signature of the hypothesized object in

addition to the edge signature. With-
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out additional information or control of

the search strategy, apparently optimal

solutions that do not correspond to the

desired objects are found. As the model

complexity further increases, these

strategies become computationally too

expensive and multilevel (hierarchical)

strategies become necessary. Approaches

to remedying this deficiency are the

subject of Section 4.

3. FITTING MODELS TO SYMBOLIC

STRUCTURES

Fitting models to symbolic structures

assumes that a set of features has been

reliably extracted from the image data

by some preprocessing operation. These

features are usually found by a local

statistics-based operator, without using

shape information or contextual scene

knowledge. This process is often referred

to as segmentation. The features, how-

ever, may also be the raw pixel intensi-

ties or even labels produced by a method

such as template matching or gradient

descent, discussed in Section 2, thereby

yielding a hybrid strategy. In these cases,

the subsequent matching processes use

the symbolic output of the initial process

without referring back to the image. The

major categories are as follows:

e

e

Graph Matching. Objects are mod-

eled as a relational structure or graph

of primitives. The nodes are compo-

nents of the object or scene, whereas

the arcs denote relationships. Labels

are assigned by searching for the opti-

mal match between the model graphs

and the graph derived from the image

data. Heuristics can be used to prune

the search tree and reduce the compu-

tation time at the possible risk of find-

ing a nonoptimal solution.

Com~osite (Hierarchical) Model Fit-

ting.’A reduction of the search space is

obtained by working hierarchically,

that is, by finding partial matches

using a hierarchy of intermediate

models and then refining them.

We now examine each of these cate-

gories in turn. Appendix A summarizes

the references reviewed below for each

category.

3.1 Graph Matching

3. 1.1 Summary of the Technique

Relational matching overcomes the major

inadequacies of pattern recognition by

providing a representation for relational

constraints. Objects or scenes are repre-

sented as relational structures whose

nodes are subparts and whose arcs are

relationships between the nodes they

connect. The problem of matching rela-

tional structures is representable as one

of optimizing some objective function.

Heuristic search can be used to prune the

search tree and ~educe the computation

time at the possible risk of finding a

nonoptimal solution.

3.1.2 Search

The simplest form of relational matching

techniques searches for sets of labels and

relations that match subparts of the

graph, assuming that an initial set of

labels and relations has been extracted

from the image by some preprocessing

operation.

e Murray— De]pth-First Recursive

Search. The most straightforward

approach to graph matching is to

require that both graphs be identical

(isomorphic). This strategy is used by

Murray [1987] to recognize rigid poly-

hedral objects using sparse and error-

prone point measurements of surface

orientations and scaled depth. Rela-

tional constraints to be satisfied are of

the following type: “If an inter-

pretation pairs sensed data points P.

and Pb with model faces i and k,

respectively, then the range of angles

between the vector in the direc-

tion between the two points and the

sensed normal at P. must overlap the

range of possible angles measured from

the model.” That is, points on a side

face of a cube can only lie in a specific

region when viewed from a point on

the top face of the cube; families of
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such relations place severe restrictions

on what face a point can belong to. The

process of matching sensed data points

and model facets is performed by a

depth-first recursive search.

Although Murray [1987], in princi-

ple, could be thought of as a hybrid

model that also involves hypothesis

verification, it is placed here because

its treatment of graphs makes it an

ideal example of the process of isomor-

phic graph matching.

Belles and Horaud—3DPO: Maxi-

mum Clique Finding. Slight photo-

metric anomalies, such as occluded

parts of 3D objects, may make the

requirement of finding identical graphs

too strong for many real-world applica-

tions. A less stringent criterion is to

require that both graphs contain a

subisomorphism, that is, an identical

subgraph. Subisomorphisms in two

graphs can efficiently be detected by

maximum clique finding in an associa-

tion graph. This method has been used

in the 3DP0 system [Belles and

Horaud 1986] to find the best match

between features extracted from a

range image and their corresponding

interpretations.

The elementary matching process of

3DP0 is an ideal example of subiso-

morphic graph-matching methods;

however, the system also has the capa-

bility of using more elaborate strate-

gies, which are discussed in more detail

in Section 4 and Appendix C.

The graph-matching techniques de-

scribed so far are acceptable provided the

graphs or subgraphs to be identified are

identical; this is rarely the case unless

the criteria for finding compatible nodes

or arcs are weak. To com~are nonidenti-.
cal graphs or to compare identical graphs

obtained with weak similarity measures

we must use a distance measure to eval-

uate the similarity between graphs.

@ Mulgaonkar et al. —Matching Non-

identical Graphs. The recognition

scheme implemented by Mulgaonkar

et al. [1984] uses relational and rough

●

geometric information about 3D, man-

ufactured objects (table, chair, etc. ) to

recognize instances of the objects in

single, perspective normal views of

scenes. An example showing how the

pieces of a chair are recognized is given

in Figure 10. All models are decom-

posed into three basic shapes: sticks,

plates, and blobs. The model further

consists of binary and ternary rela-

tions and related angles. For example,

the back of a chair and the seat form a

plate-plate connection in which the

edges of the plates touch each other.

Using the shape and relational con-

straints, graph matching is performed

as a sequential tree search. The rela-

tional distance measure is defined as

the sum of the number of relations of

the model that fail to carry over to the

image, normalized by the total number

of relations in the model.

Horaud and Skordas— Rankin~

Maximal Cliques. The method ~f

Horaud and Skordas [1989] matches

linear edge segments and their rela-

tionships in a stereo image to solve the

correspondence problem. A relational

graph is built from each image. Com-

patible subgraphs in both images are

found as maximal cliques in a corre-

spondence graph. Each maximal clique

is evaluated by a benefit function, cal-

culated as the sum of the individual

benefits of the nodes. These indi-

vidual benefits express the similarity

between the corresponding line pairs,

so the best maximal clique is not nec-

essarily the largest one.

The work of Jain and Hoffman [1988]

is another example that makes strong

use of a distance measure to match

relational structures. Because the

strategy is hybrid and hierarchical, it

is described in Section 3.2.

3. 1.3 Dynamic Programming

Dynamic programming is a process that

recursively searches for an optimal path

in the graph [Bellman and Dreyfus 1962].

It allows the solution to be efficiently

computed but requires that the graph

ACM Computmg Surveys, Vol 24, No. 1, March 1992
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L!

Figure 10. Matching results for a chair object. The lines from

the model part to the various partitioned 2 D views show how the

parts map. The structural matching error is shown in parenthe-

ses as the first number. (Courtesy of P. Mulgaonkar )

distance measure involve only local rela-

tionships among neighboring nodes in the

graph. Dynamic programming may be

used to increase the computational effi -

ciency of the optimization procedure at

the expense of using additional storage

in the search.

@ Eshera and Fu— Inexact Contour

Matching. Eshera and Fu [1986] per-

form inexact graph matching by mini-

mizing a graph distance measure. The

contours of the object models and of the

segmented patterns are represented as

attributed relational graphs (ARG),

that is, graphs whose nodes and

branches can have attributes. The

authors present two examples. The first

deals with finding a 2D industrial part

in an image of overlapping 2D objects.

The second is concerned with the

detection of an airport in synthetic

aperture radar (SAR) images. Graph

nodes are straight line segments,

arc segments, and closed curves With

length and span as attributes.

Branches represent relations such as

joint, intersecting, nonjoint and ncm-

●

intersecting, and parallel, with

attributes joint angle, angle of inter-

section, distance between the two line

segments, and angle between the two

line segments. Hence, objects are nec-

essarily rigid 2D models. Costs are lo-

cally assigned proportional to the simi-

larity between pairs of nodes and pairs

of branches. The optimization problem

can therefore be solved by means of

dynamic programming.

Fist Mer and Elschla~er— Heuristic

Dynamic Programming. Fischler-and

Elschlager [1973] represent a scene by

a number of rigid components held

together by springs. The springs join-

ing the rigid pieces served both to con-

strain their relative movements and to

measure the cost of the description by

how much they are stretched. As shown

in Figure 11, a face can be represented

as a nose, mouth, eyes, and ears held

by springs. The dynamic programming

technique is used to match the various

elements in the image and optimize

their respective locations. Although the

storage and time requirements for

ACM Computing Surveys, Vol. 24, No, 1, March 1992
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dynamic programming in this work

grow exponentially with the number of

nodes in the graph, not all dynamic

programming formulations lead to

exponential algorithms. For example,

if we could linearize the graph (not

necessarily possible for spring-loaded

templates), the dynamic programming

algorithm is of polynomial complexity.

3. 1.4 Relaxation Labeling

Direct serial search can easily become

combinatorially explosive but can be

replaced by parallel techniques to make

the computation feasible. Relaxation

labeling [Kittler and Illingworth 1985;

Rosenfeld et al. 1976] is such a tech-

nique. It is computationally identical to

relaxation discussed in Section 2.2. It

iteratively locates and eliminates incon-.
sistent node interpretations. Because

its computational mechanisms are well

suited to ~arallelization. relaxation

labeling has’ become an attractive strat-

egy for grouping similar pixels, feature

vectors. or data structures into the most

likely (interpretation. It has further been

extended from discrete labeling to prob-

abilistic labeling, in which the labels

extracted from the image are assimed a

probability that is iter~tively inc~eased

or decreased based on its compatibility or

incomnatibilitv with related labels in the. .
structure. As discussed by Faugeras and

Berthod [1981], relaxation labeling can

be an optimization process. The proce-

dure is generally expected to converge to

an optimal solution; however, in many of

the proposed relaxation schemes this is

not guaranteed. Even if the scheme con-

verges, the result may be a local optimum

that depends on the initial labeling. This

may or may not be desirable. Stochastic

optimization may be more appropriate if

a global minimum is required [Kittler

and Illingworth 19851.

. Huffman and Clowes —Line Draw-

ing Interpretion. The line drawing

interpretation approach associated

with Huffman [19711 and Clowes [19711

is an early example of relaxation

labeling [Ballard and Brown 1982;

Mackworth 19731. This strategy can

analyze line drawings of complicated

polyhedral scenes such as that in

Figure 12. Initially, each trihedral cor-

ner in the line drawing and the lines

meeting at that corner are considered

as candidates for all possible inter-

pretations. A line can correspond to a

concave, convex, or a discontinuous

edge in the 3D space, depending on the

e

type of vertex with wh<ch it i; associ-

ated. Conflicting line interpretations

are eliminated by applying the

coherence rule, which states that in a

real polyhedral scene no line may

change its interpretation (label) be-

tween vertices. By iteratively applying

the coherence rule, this constraint

propagates throughout the image and

produces a consistent interpretation.

Recently, the Huffman-Clowes

approach has been further extended by

Malik [1987] to deal with the more

general class of line drawings of curved

objects. Although this line-drawing

work appears promising, its applic-

ability to real-world applications is

restricted because of the model sim-

plicity and the unrealistic assumptions

of good image data.

MSYS—Discrete Relaxation Label-

ing. A more practical example of

relaxation labeling is discussed by

Tenenbaum and Barrow [1977]. The

goal of this system is to partition an

image into meaningful regions by

merging small initial regions in accor-

dance with their candidate interpre-

tations. An example of such an

interpretation for a scene of an indoor

room is shown in Figure 13. Experi-

mental results are reported in three

scene domains: landscapes, mechanical

equipment, and rooms. The system

starts from an initial partitioning of

the scene, in which the regions may

have multiple interpretations. This

initial interpretation set can, for exam-

ple, be obtained from a training phase,

during which a representative set of

images is presented and pixels with

the same set of possible interpretations

are grouped into regions. Maps or a

ACM Computmg Surveys, Vol 24, No 1, March 1992
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(a) (b) (c)

Figure 11. Dynamic programming approach of Fischler and Elschlager [19731. (a) Model description of a

face; (b) image of a face; (c) solution of the matching procedure. (Used with permission of IEEE; (~ 1987

IEEE,)

Figure 12. Example of the level of complexity m

line-drawing scenes that can be dealt with using

the Huffman-Clowes approach.

previous analysis of a similar image

may also be used instead of the train-

ing samples. (An alternative method,

not explicitly mentioned by the

authors, would be to calculate local

features, classify them using the fea-

ture-vector approach, and retain groups

of pixels (islands or seeds) with a high

probability of having a unique

interpretation.) The result after relax-

ation is a set of regions with a unique

interpretation, obtained by iteratively

merging adjacent regions with the low -

est contrast boundary and with nondis -

joint interpretation sets. In contrast to

line-drawing interpretation, this

method has been tested on real image

data and incorporates more sophisti-

cated semantic constraints.

Mohan and Nevatia— Constraint

Satisfaction Network. The method

described in Mohan and Nevatia [1988,

19891 is an example of relaxation where

a cost function associated with a net-

work of constraints is minimized.

Linear segments extracted from aerial

images are combined into structural

patterns. The structural elements con-

sidered are lines, parallels, U’s, and

rectangles. Initially, all possible struc-

tural elements found in the image are

considered as candidates. Structural

patterns that are consistent, such as a

line and a U it belongs to, are mutu-

ally supportive. Inconsistent patterns,

such as two overlapping U‘s that share

components, are mutually competitive.

The structural patterns and the rel ~-

tionships of support and conflict among

them define a network, with the strut-

tures serving as nodes and the rela-

tionships and compatibilities as arcs.

A cost function is associated with the

network, and the problem of locating

the best groupings reduces to that of

minimizing this cost. In Figure 14, we

show the sequence of analysis. Begin-

ning with a bare image, the approach

ACM Computing Surveys, Vol. 24, No. 1, March 1992
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(a)

Figure 13. (a) An outdoor

(b)

scene. (b) result of labeling the picture usin

first extracts every reasonable straight

line candidate; these are grouped into

patterns and the costs evaluated,

resulting in the final optimal cluster of

rectangles shown.

3. 1.5 Heuristic Pruning

To speed up the optimization procedure,

heuristics may be used to decide which

among several alternative courses of

action promises to be the most effective

and should be explored first [Pearl 1985].

Moreover, heuristics can prune the

search tree at the possible risk of finding

a nonoptimal solution.

“ Am ini, Weymouth, and

Anderson—Hill Climbing. The

method of Amini et al. [1989] is an

intriguing medical application of the

heuristic pruning approach. The task

is to distinguish inner-ear hair cells in

images containing cross sections of the

hair cells. An edge operator is used to

find edge segments in the image. The

centers of these edge segments then

are treated as the vertices for groups of

possible convex polygons. A depth-first

search for a polygon is started in paral-

lel for every edge segment in the

image. The search ends if the initial

segment and the final segment are

identical. This search for polygonal

structures is controlled by a heuristic

Interpretations

Sky
Tree
Tree and Sky

Shrubs
Grass
Path

g MSYS.

Reg[ons

6,9

2

7,8

3,5

4

●

rule that picks the best segment at

every step. The cost function used to

rank the edge fragments is a weighted

sum of length, distance, and curvature.

The intuitive idea is that segments that

are longer and closer to the current

segment should be more desirable

because there will be less possibility of

meaningless noise segments and empty

gaps. In addition, the curvature of the

segment decreases or increases the cost

depending on its consistency with

the shape of the hypothesized cell.

After each step, every edge segment

corresponds to a single cell-contour

hypothesis.

The advantage of hill climbing, that

is, depth-first search with a heuristic

procedure that orders choices, is the

reduction of the computation time. The

main drawback, however, is that the

solution obtained by this sequence of

locally optimal decisions is not neces-

sarily globally optimal.

Ayache and Faugeras—HYPER:

Heuristic Tree Pruning Including

Hill Climbing. As shown in Figure 15,

the HYPER (Hypotheses Predicted and

Evaluated Recursively) system of

Ayache and Faugeras [1986] identifies

and accurately locates touching and

overlapping flat industrial parts in an

image; the problem of handling such

incomplete data is a common one in
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(a) (b)

Q
(c)

Figure 14. Results from Mohan and Nevatia [19891. (a) Aerial image of a suburban scene: (b) linear

segments detected in (a); (c) rectangles selected by the constraint ‘satisfaction network (Used with

permission of R. Nevatia and IEEE; @1989 IEEE,)

other applications as well. Object mod-

els and segmented image patterns are

described by first-degree polynomial

approximations to their contours.

Matching is performed by a heuristic

tree search procedure. The rigid model

contour is iteratively matched to the

image pattern segments by succes-

sively adding compatible segments to

the available partial contour match.

At each iteration, a dissimilarity mea-

sure between the active model segment

and each image pattern segment is cal-

culated. This dissimilarity measure is

a weighted sum of three terms: the

difference between the orientation of

the model segment and the image seg-

ment, the euclidean distance between

their midpoints, and the difference

between their lengths. As in Amini

et al. [1989], Ayache and Faugeras

[19861 heuristically match the consid-

ered model segment with the best

image segment, that is, the image seg-

ment with the minimal dissimilarity.

More details of this approach are given

in Appendix C.

3.1.6 When to Use this Strategy

The strategy of optimizing the match to

information represented as a graph works

best when a comprehensive graph

model is available and if one has good

local operators that reliably discover the

features used as nodes and relationships

of the graph.

3.1.7 When to Avoid this Strategy

This approach assumes that most ele-

ments of the relational structure are

directly available, that is, nodes can

be extracted from the data without the

use of contextual knowledge. Although

inexact graph matching may overcome

some problems due to image ambiguities,

such as occlusions [Ayache and Faugeras

19861, this assumption is generally unre-

alistic for images with ambiguous photo-

metric statistics because local operators

cannot be expected to achieve the

required level of performance.

3.2 Composite (Hierarchical) Model Fitting

3.2.1 .%rrrmary of the Technique

In Section 3.1 we saw how simple heuris-

tics were used to limit the range of label-

ing possibilities to be considered. In this

section, we discuss a class of methods

that uses hierarchical modeling tech-

niques to limit the search; a sequence of

intermediate and progressively more

complete models is used to find and refine

partial matches. The intermediate states

in the computational process have an

ACM Computmg Surveys, Vol 24, No 1, March 1992
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(b) (c)

Figure 15. HYPER system of Ayache and Faugeras [1986] (a) Model contours; (b) original

image of overlapping flat electromechanical device parts; (c) highest ranked model instances

(in white) superimposed onto original image For example, the leftmost model in (a)

corresponds to the actual object seen at the left of the image (c) rotated half a turn (Used

with permission of the IEEE; @ 1986 IEEE )

. . . . . . .. . . .
obvious semantic meanmg and create a

context for the subsequent analysis. For

example, if the problem is to recognize

yellow cars in an aerial image, we might

first look for all yellow patches in the

image, then see which of the patches had

the characteristics of a car.

3.2.2 Structural Grouping

The most basic methods of this class use

a sequence of models that range from

generic, with few attributes, to complex,

with multiple attributes. The problem is

divided into tasks, with particular mod-

els applied to solve each case in sequence.

The gross features are dealt with first,

the more specific ones next.

Since the semantic characteristics of

objects are not necessarily independent,

the process of finding an instance of a

partial model is often heuristic. Unless

these partial solutions are considered as

hypotheses that can still be changed after

verlhcatlon, the hnal solutlon may not be

optimal.

o Lowe— SC ERPO: Locating Percep-

tual Structures. Hierarchical object

recognition may or may not produce

optimal solutions. This strategy is more

likely to produce an optimal solution

if the control structure is powerful

enough to backtrack when necessary,

thereby permitting the investigation of

the complete state space. The SCERPO

system [Lowe 1987], whose goal is to

recognize and locate rigid 3D manufac -

tured parts in a single gray-scale

image, is a typical example of such a

system. Figure 16 shows SCERPO’S

results for partial and final matches in

an image of a bin of disposable razors.

Pairs of straight lines are combined

into perceptual structures, that is,

instances of collinearity, end-point

proximity, and parallelism. Next, these

primitive relations are combined into
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larger, more complex structures, such

as trapezoid shapes. These “generic”

structural patterns are finally used to

limit the search by hypothesizing the

position of the manufactured part (e.g.,

a razor, a stapler, etc.), which is then

backprojected onto the edge data to

verify the hypothesis.

0 Brooks — ACRONYM: Hierarchical

Models and Constraints. ACRONYM

[Brooks 1981; 19831 has been used in

applications involving a wide variety

of models ranging from motors to air-

craft. One of its most challenging

applications is the location and identi-

fication of airplanes in aerial views of

airfields. Three-dimensional geometric

object classes, (e. g., airplanes) and spe-

cific objects (like a Boeing-747) are

modeled as generalized cones and their

spatial relationships. Initially, edges

are combined into features such as rib-

bons and ellipses, which are the shapes

generated by the body and the ends of

generalized cones. The interpreter then

looks for matches between the model

as a set of generalized cones and the

observed features based on the pre -

dieted ways the generalized cones could

appear in the image. Interpretation

proceeds by combining local matches of

shapes to individual generalized cones

into more global matches for more

complete objects, requiring consistency

among related families of constraints.

In Figure 17, we show a typical

ACRONYM application, with a bare

image, a set of edges, the derived fea-

tures, and the final consistent match to

a particular aircraft model. The ability

to handle families of aircraft models

via the properties of their subparts in

this way illustrates the use of a more

complex modeling procedure than, for

example, a system like SCERPO. This

paper is discussed in detail in

Appendix C.

● Huert as and Nevatia — Finding Lin-

ear Structures. The approach of

Huertas and Nevatia [1988] uses a

combination of information about lin-

ear cultural objects and their context

in the identification process. In an

application designed to detect runways

in aerial images, Huertas et al. [1987]

group line segments into apars, that

is, antiparallel line pairs or parallel

lines of opposing contrast. Broken

apars are joined using some properties

of connectedness and collinearity. The

remaining long apars are candi-

date runways. Verification of these

hypotheses is accomplished primarily

by detection and identification of run-

way markings among the set of ori-

ginal apars and line segments. In

Huertas and Nevatia [19881, the au-

thors use a similar strategy to detect

buildings in aerial images. Initially,

edges are approximated by piecewise

linear segments. Next, corners, defined

as near orthogonal L junctions, are

found and labeled as objects or shadow

as a function of the direction of the

illumination. Corners that share a

line segment are grouped into more

complex structures. Finally, a closed

outline is classified as a building

boundary if it contains a corner with a

corresponding shadow.

D Jain and Hoffman—Merging Adja-

cent Surface Patches. The recogni-

tion method described by Jain and

Hoffman [1988] matches models of 3D

objects, described by a set of con-

straints on the relationships among

their parts, to the detected structure of

surface patches produced by a range

image. (Typical constraints would

involve the relative orientation of the

faces of a rectangular solid.)

The process used to produce these

range-image surface patches typically

produces an oversegmentation of natu-

ral object faces. The first task of the

recognition system is therefore to

merge adjacent surface patches into

meaningful structures based on model

knowledge about the boundary angles

of the 3D objects. The result of this

merging process is a separate rela-

tional structure of surface patches for

each candidate object model.

Next, the recognition system calcu-

lates a similarity measure between

each object model and its correspond-
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Figure 16. The SCERPO system [Lowe 1987]. (a) Original image of a bin of disposable razors; (b) straight

line segments; (c) the most highly ranked perceptual groupings detected from among the set of line

segments; (d) the model projected onto the image from the final calculated viewpoints. Model edges are

shown dotted where there was no match to a corresponding image segment. (Used with permission of

Elsevier Science Publishers.)

ing relational structure of surface

patches. The model knowledge consists

of a set of constraints on these rela-

tions giving supporting or refuting evi-

dence for identification hypotheses.

The papers of Fua and Hanson [1987,

1988, 19911, McKeown et al. [19851, and

Suetens et al. [1989] are other examples

of methods that initially search for sim-

ple structural patterns in the image.

They are described in Section 4 because

their hybrid strategy makes strong use of

methods for complex data.

3.2.3 Refining Matches Using Multiple

Information Sources

In this class of strategies, equivalent or

complementary information sources are

ACM Computmg Surveys, Vol. 24, No 1, March 1992

sequentially exploited. Further reliabil-

ity in the object-labeling procedure can

be achieved by integrating information

from multiple sources. Such additional

information can be either in the form of

data (e. g., stereo images) or independent

sources of semantic knowledge (e. g.,

using a library of alternately applicable
road-finding operators). As in the sys -

terns just examined, the individual infor-

mation sources themselves are typically

used in a hierarchical fashion, with ini -

tial hypotheses being progressively

refined by the application of further

knowledge. Conflicts may occur and must

be resolved.

c Herman et al. —3D MOSAIC: Object

Completion Using Additional Im-

ages. The 3D MOSAIC system
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(a)
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I

(b)
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Figure 17. Application of the ACRONYM system [Brooks 1981, 1983] to aircraft identification.

(a) Original image; (b) edges extracted from (a); (c) features such as ribbons; (d) ACRONYM

result, identifying an aircraft by combining part models. (Used with permission of the IEEE;

OIEEE 1983.)

[Herman and Kanade 19861 recon-

structs buildings from a sequence of

monocular or stereoscopic aerial im-

ages taken from different viewpoints.

It uses the multiple images as addi-

tional information sources that can

be used to improve an existing inter-

pretation.

Initially, an edge detector is applied

to the images to extract straight lines.

The shapes of the junctions formed by

pairs of lines are labeled as an L, a T,

an arrow, or a fork. Next, the 3D posi-

tions of the junctions and converging

lines are calculated. If a stereo image

pair is available, a cost optimization

strategy is applied to find the optimal

set of matching structural features. For

single images (monocular analysis),

new lines are first heuristically added

to the image to form linear connected

structures of junctions. Using depth

cues that characterize scenes consist-

ing of horizontal and vertical lines, the

relative 3D positions of the junctions

and linear segments are then calcu-

lated by propagating constraints

among the line interpretations.

The result is a 3D wire frame

description of the scene. It is elabor-

ated into a surface-based description

(object completion) in the next step.
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e

e

Incomplete faces are completed as

parallelograms or as polygons by

hypothesizing missing vertices and

edges, Finally, this result is improved

when new views become available.

Inconsistent hypothesized edges and

vertices of the existing partial inter-

pretation are replaced by newly ob-

tained elements, and modifications

propagate throughout the wire frame

to maintain overall consistency. In this

way the redundancy of image data

partly corrects for the inaccuracies

introduced by the heuristics of the

system.

Fan et al. —Matching Image Inter-

pretations Using Heuristic Search.

Like the 3D MOSAIC system, the sys-

tem of Fan et al, [1988, 19891, matches

the individual interpretations of two

images, taken from different view-

points, in order to arrive at an

improved interpretation.

The images are range images parti-

tioned into surface patches. These

patches are further grouped into graphs

whose nodes represent the patches

and whose arcs express geometric rela-

tionships between the patches. The

result is several unlinked subgraphs

that are supposed to correspond to the

distinct physical objects in the scene.

The subgraphs of both images are sub-

sequently matched using heuristic

search. A global match measure based

on all the matched nodes defines

whether the match is good enough to

be accepted.

This system uses some form of non-

monotonic reasoning; the initial group-

ing of surface patches into linked node

structures may not be perfect. By

examining the matches of different

views, graphs may be merged and/or

split to improve the correspondence

and, as a result, also the inter-

pretation. An example is shown in

Figure 18.

Bobick and Belles—Integration of

Visual Information Ov-er Time.

Bobick and Belles [1989] incrementally

construct the interpretation of an object

as new views with changing resolution

ACM Computing Surveys, Vol 24, No 1, March 1992

become available over long periods of

time. The method implemented by the

TraX system recognizes various out-

door objects when applied to a sequence

of range images.

The basic strategy is to consider dif-

ferent models when they become suit-

able; the selection of models is guided

by the computed characteristics of the

object. The models are arranged in a

directed dependency graph, called the

representation space. The TraX system,

for example, includes 2D blobs, 3D

blobs, superquadrics,z sticks, and sev-

eral semantic representations includ-

ing bush and tree. A new node in the

representation space can become active

only if one of its connecting nodes is

valid. For example, if a reliable 3D

blob description has been computed for

the object, the superquadrics and sticks

nodes can be activated. The principal

indication of validity is stability over

time, meaning that the same object

description is computed repeatedly in

subsequent images.

The work by Wang and Srihari [1988]

and McKeown and Denlinger [1988] (au-

tomatic road follower, or ARF) are other

typical systems that make use of multi-

ple information sources. The y are

described in Section 4 because their

strategy is hybrid and includes features

to cope with ambiguous data.

3.2.4 Knowledge-Based Systems

Solving problems by using a large

amount of domain-specific knowledge has

led to the notion of knowledge-based, or

expert, systems. Typically, the system

designer’s knowledge about a complex

domain evolves rapidly during develop-

ment. For such applications, it is useful

to state this knowledge in a form that

2See Barr [19811 Typical superquadric solid models

are implicit functions of the form I z I “ + I y I ~ +

I z I ~ = 1 that have spheres as hmiting forms as

the exponents approach 2.
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(a)

(b)

(d)

, ,,

(cl

(e)

WI

Figure 18. Example of the matching procedure of Fan el, al. [1988, 1!389]. (a) Original

images; (b) segmentation; (c) graph of the left scene; (d) two possible matches before

splittin~ (e) graph of the right scene; (f) final match. The table and the chair in the left

image touch each other In (d) there is only one object in the left view. By examining

the graphs and the matches, however, it is possible to split the two objects in the left

scene. (Used with permission of R, Nevatia and the IEEE; @ 1988 IEEE. )

offers flexibility. Knowledge-based sys - meaning. Such systems therefore typi -

tems attempt to achieve this goal by tally have a high degree of human

using declarative languages, as in rule- understandability.

based systems. Rules are to be considered e Ohta—- Rule-Based System for Out-

as small pieces of domain knowledge, door Scene Analysis. The goal of

and their activation produces interme- Ohta [1985] is to interpret color images

diate states with an obvious semantic of outdoor natural scenes. The model is

ACM Computing Surveys, Vol 24, No 1, March 1992
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represented as a semantic net that con-

tains properties of scene entities and

their relational constraints. An initial

set of labels is obtained by the feature-

space approach. A rough interpreta-

tion—called a plan—is obtained by

probabilistic relaxation labeling oper-

ating on large patches, tentatively

merged with surrounding small

patches into homogeneous compact

regions. Subsequently, a set of heuris-

tic rules operates both on the prelimi-

nary patches and the plan in order to

produce a detailed interpretation. The

control structure of the rule-based part

distinguishes two phases—one for ana-

lyzing the overall structure without

attending to details and one for analyz-

ing detailed structures. In contrast

with the plan generator, which uses an

optimization strategy, the assignment

of labels by the rule-based system is

heuristic and may not be optimal.

This disadvantage is partly overcome

by feeding decisions back to the

relaxation-labeling process to reevalu-

ate and update the plan, thus main-

taining the overall plan consistency. A

typical result of Ohta’s procedure,

showing the effectiveness with which

various confusing scene components is

separated, is shown in Figure 19.

Wu, Suetens, and Oosterlinck—

Rule-Based System for Chromo-

some Classification. Wu et al. [1987]

propose a rule-based system to classify

chromosomes in metaphase images.

The result of a feature-space analysis

[Green et al. 19891 is used as a hypoth-

esis. Hypotheses are verified and mod-

ified by constraints imposed by the

context and represented as if–then

rules. The gross hierarchical strategy

consists of a group classification, fol-

lowed by a more specific type classifi-

cation. The performance of the rule-

based system is a clear improvement

over conventional techniques based on

the feature-space approach alone. This

work has further been extended by us-

ing belief functions and evidential rea-

soning in order to achieve constraint

tianson

satisfaction by probabilistic relaxation

[Wu et al. 19891, a strategy that be-

longs to those described in Section 3.1.

e Nagao and Matsuyama —Rule-

Based Resegmentation. Nagao and

Matsuyama [1980] use a rule-based

system to recognize various objects

such as crop fields, forests, roads,

rivers, cars, and buildings in color

aerial images. The image is initially

partitioned into regions based on the

feature-space approach. This initial

classification uses strict conditions in

order to avoid false recognition. The

acceptance thresholds are relaxed when

additional contextual evidence is per-

ceived in the environment. This strat -

egy has the advantage that initial

decisions using the feature space are

reliable and need not be revised

afterward. Regions giving strong pho-

tometric evidence for a particular object

are classified first; they constitute a

context for other regions with weaker

photometric properties.

An important property of this sys-

tem is its ability to correct for some

segmentation errors. Rules exist that

activate a split-or-merge algorithm on

irregularly shaped regions. Although

this resegnzentation is simple and oper-

ates on the contours of the regions

instead of on the raw image data, it

contains the beginnings of some of the

methods discussed in Section 4.

In the previous systems, rules are

grouped into larger knowledge blocks,

called phases or classes, which are

initiated by metarules and applied

sequentially as the analysis progresses.

The organization of these knowledge

blocks defines the overall control struc-

ture of the system. Increasing the number

of classes, each having a few complex

coarse-grained rules, naturally leads to a

blackboard style of control, which is

characterized by a dynamically updated

list of goals, tasks, and their subparts to

keep track of what the system is trying

to do and what it will do next.

0 Draper et al. —The Schema System.

ACM Computmg Surveys, Vol. 24, No 1, March 1992
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f%

k

(a) (b)

Figure 19. (a) Image of an outdoor scene; (b) Ohta’s [1985] resulting labeled image, with

S = skv. T = tree. B = buildinz. R = road. U = Unknown. (Used with permission of Pitman

Publis~ing; 0 Pittman Publish~ng, 1985.) ‘

The Schema System [Draper et al.

1988] has adopted much of the struc-

ture of the basic blackboard system,

with a few significant adjustments. It

is demonstrated in 2D images from

natural domains (four road scenes and

three house scenes). The Schema

System partitions the available knowl-

edge about the scene in terms of natu-

ral object classes. Each class of objects,

object configurations, and object parts

has a corresponding schema that stores

the object and control knowledge spe-

cific to that class. Each schema is an

expert at recognizing one type of object.

General-purpose programs or tools,

which are not object specific, are stored

in separate knowledge sources and can

be called by the schema strategies.

Schema instances run concurrently and

exchange information through a global

blackboard mechanism.

Draper et al. [1988] serves here as

an excellent example of the blackboard

form. However, the authors state that

the low-level knowledge sources, such

as the region segmentation and the

line extraction routines, may in princi-

ple be reactivated with new parameter

values tuned to the specific image con-

tent that becomes available during the

analysis. The possibility of integrating

this knowledge-directed resegmenta-

tion [Draper et al. 1988] into the sys-

tem puts this paper on the borderline

of the combined strategies discussed in

Section 4. Other knowledge-based sys-

tems such as those of McKeown et al.

[1985] and Hwang et al. [19861 depend

strong] y on combining strategies in

order to recover missing features

in the image and are described in the

next section.

3.2.5 When to Use ibis Strategy

These methods are appropriate for scenes

with moderately complex photometry

combined with semantic complexity.

Therefore, in controlled environments

where we can depend upon low-level op-

erators to extract relevant features, the

techniques described in this section can

be very efficient. We need only run the

initial local operator once to get a set of

symbols that can then be parsed quickly

and reliably using semantic representa-

tions of the domain knowledge.

3.2.6 When to Avoid this Strategy

This strategy should be restricted to situ-

ations with reliable intermediate states

ACM Computing Surveys, Vol. 24, No, 1, March 1992
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in order to avoid backtracking that may

result in a combinatorially explosive

search. Furthermore, in uncontrolled

environments, such as natural outdoor

scenes, images will usually contain noise

and ambiguities that may completely

disrupt the reliability of most local oper-

ators. Although the semantic context

may correct for the inaccuracies intro-

duced by analyzing the local photometry,

there is usually little reason to hope that

the features found initially can be assem-

bled into reliable object labels without

using substantial additional domain

knowledge. In the next section, we dis-

cuss alternative strategies for achieving

this goal.

4. COMBINED STRATEGIES

For complex models with complex

semantics, direct optimization as

described in Section 2 may become com-

putationally impractical. In this case,

direct search can be replaced by more

complex search strategies that systemat-

ically constrain the search space by find-

ing and refining partial matches. This

approach allows the feature extraction

process to continuously refer to the image

data and to be dynamically dependent

upon the current context of the parse.

The parsing process typically includes

different methods for recovering missing

features, such as template matching,

gradient descent, and assorted low-level

operators. We now consider in detail

a number of systems exploiting hybrid

methods and hierarchical search

philosophies.

4.1 Refining Matches by Resegmentation

Refining matches by resegmentation

effectively recovers missing object fea-

tures when the image is initially under-

segmented or when additional low-level

feature data are available for use in later

stages of the analysis. This technique

exploits the fact that object features giv-

ing weak supportive evidence may be

discovered by semantically associating

them with strong (often sparse) features.

● McKeown et al. — SPAM: Region

Enlargement, Extension, Join/

Merge, and Recovering Missing

Regions by Low-Level Reseg -

mentation. The SPAM system

[McKeown et al. 19851 is an example

of a method that continually refers

back to the original image data to

refine its hypotheses of how the image

should be divided into recognizable

objects. SPAM’S specific application is

the interpretation of airport scenes

using maps and domain-specific

knowledge.

SPAM begins with an image of the

scene and a trial segmentation of

the scene into regions. The basic

premise of the system is that these

initial regions are adequate building

blocks from which to begin a rule-based

analysis. Next, domain knowledge and

image data are combined to resegment

the image (i.e., make a new version of

the segmentation regions). The

processes that can be invoked by the

context rules include region enlarge-

ment (add area to a region), region

extension (grow in a particular direc-

tion), join / merge (coalesce multiple

regions into a single one), and recover-

ing missing regions. For example, given

several linear image regions that are

collinear with one another, a new lin-

ear region is hypothesized that encom-

passes each original region. The rules

attempt to verify this hypothesis by

invoking a linear feature extraction

module using the new (hypothesized)

linear region as a guide. If, for exam-

ple, a terminal function area contains

roads and parking lots, but no parking

aprons, SPAM’S rules invoke image

analysis tools that look for regions

whose shape and texture properties

match the model of SPAM for parking

aprons. Substantial additional progress

on the process of acquiring and effi-

ciently expressing the domain knowl-

edge needed for systems of this type is

described in McKeown et al. [1989].

● Hwang, Davis, and Matsuyama—

Recovering Missing Object Parts by

Resegmentation Using a Different

ACM Computmg Surveys, Vol 24, No 1, March 1992
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Threshold or a Different Low-Level

Operator. In Hwang et al. [19861,

an image-understanding framework

is proposed, and its performance is

demonstrated on a high-resolution

aerial image of a suburban housing

development in which houses, roads,

and driveways are located.

*

The system creates an initial context

by finding bright, compact, rectangu-

lar blobs (house hypotheses) and bright,

elongated ribbons (road hypotheses).

Using this context and the topological

model knowledge, hypotheses and com-

posite hypotheses are iteratively gen-

erated and verified. Missing parts

(houses, road pieces, driveways) are

searched for in the image by using a

different low-level segmentation opera-

tor and/or different threshold values to

obtain the necessary evidence.

Wang and Srihari— Repairing

Oversegmentation and Underseg-

mentation by RethreshoIding/

Resegmemtation. Wang and Srihari

[19881 find destination address blocks

on mail pieces using a blackboard

framework. Mail pieces include

machine-written and handwritten let-

ters, magazines, newspapers, and ir-

regularly shaped parcels.

The computational solution includes

provisions for rethresholding and

resegmenting a portion of an image

using different parameters if the ini-

tial segmentation is found to overseg-

ment or undersegment the object. For

example, if the system examines the

result of machine-generated text seg-

mentation on hand-generated address

data, it may find a cluster of neighbor-

ing small blocks or a block whose size

is within the acceptable range for a

hand-generated address but too large

for a machine-generated address. In

these cases, the system will invoke the

hand-generated text segmentation tool

on that area.

@ Nazif and Levine — Expert Segmen-

tation System. The goal of the rule-

based system by Nazif and Levine

[19841 is to outline structures that sat-

isfy some basic grouping principles,

such as similarity, proximity, uniform

density, good continuity, and closure.

The system starts from edges and

homogeneous regions, extracted from

the image using standard segmenta-

tion routines. Next, a collection of

heuristic perceptual grouping rules is

applied. A region can be split along an

intersecting edge or be based on the

histogram of a feature. Regions are

merged or deleted based on continuity

and good closure. A line, for example,

may be extended by expanding the end

point along the maximum local gradi-

ent. Lines can be joined if their end

points are close together and/or if the

lines are collinear.

4.2 Refining Matches by Template

Matching

When the missing features have a pre-

cisely known shape or photometry but

cannot be found by low-level feature

extraction due to noise or occlusions in

the image data, template-matching tech-

niques may help solve the problem.

@ Shneier et al. -—Model-Driven Fea-

ture Extraction. The goal of the

system of Shneier et al. [1986] is to

maintain a description of a workspace

that consists of moving industrial parts

and fixed surfaces such as buffer tables

and machine tools. The process com-

putes how the workspace will appear

at the next cycle of sensing and how it

will be perceived by each individual

sensor; then, it predicts the images—

usually small regions— of features such

as corners. Model-driven feature

extraction is performed by processing

the image in tb e windows where fea-

tures m-e expected and by tailoring the

feature detectors to the expectations.

For example, if a corner is expected

with a particular angle, lower thresh-

olds can be set (resegmentation) to find

it. If a corner is detected, the result of

the matching process is a new feature

with ideal properties, that is, the cor-

ner’s angle is derived from the model
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●

and the position and orientation are

derived from the data. Detected fea-

tures are combined into objects and

objects into assemblies. This result is

sent back to the predictive process for

use in the next iteration.

BoIles and Horaud—3DPO: Model-

Driven Correlation-Based Hypothe-

sis Verification. The 3DP0 system

[Belles and Horaud 1986] recognizes

and locates 3D overlapping industrial

parts jumbled together in a bin, as

shown in Figure 20a. When the 3DP0

system believes it has found the pose of

an object, it verifies this hypothesis

and refines the pose estimate by back-

projecting the prediction onto the range

data, as in Figure 20b. Figure 20 illus-

trates the complexity of the 3DP0

problem domain and shows the

system’s ability to function with

incomplete information. The approach

resembles that of the SCERPO Vision

System [Lowe 1987]. But whereas

SCERPO backprojects the industrial

part onto the segmented edge data,

3DP0 compares the predicted data with

the original range data based on corre-

lation. This template-matching

approach to hypothesis verification is

restricted to rigid objects and requires

a detailed model of the physics of the

data acquisition, which is typically

more straightforward for range data

than for intensity images. More details

are given in Appendix C.

4.3 Refining Matches by Flexible Model

Matching

When complex models cannot be defined

in terms of rigid shapes but must instead

be specified by a set of generic con-

straints, template matching must be

replaced by flexible model matching.

Typically, selected model cues are used

to initiate the search for the presence of

missing model components and avoid

combinatorial explosion.

“ Levy -Mandel, Venetsanopoulos,

and Tsotsos —Model-Driven Line

Tracking. The rule-based system of

e

Levy-Mandel et al. [1986] automati-

cally localizes characteristic points

(landmarks) on x-rays of the human

skull. The system contains a heuris-

tic line tracker that starts from an

anatomical seed that provides a context

to constrain the search. The strategy is

hierarchical: The most important lines

are tracked first, and the location of

detected lines defines the appropriate

location of the seed of the subsequent

line.

Suetens et al. —lilecovering Flexible

Object Parts in the Image data. The

approach of Suetens et al. [1989]

focuses on the recognition of the coro-

nary blood vessels in single and in

stereoscopic angiograms. At each level

of the model hierarchy, an optimi-

zation procedure is started to find

missing object attributes. Blood vessel

segments are found in the image by

propagating two wave fronts, starting

from lines of maximum local intensity,

until sharp edges are encountered. The

method is similar to that used by

Tenenbaum et al. [1979] to monitor the

water level of a reservoir using aerial

images. These segments form a set of

largely disconnected blood vessels. To

create a connected tree structure, the

edges of each disconnected segment are

extrapolated in the direction of that

segment by means of the dynamic pro-

gramming technique of Gerbrands

et al. [1986]. To find long missing seg-

ments, the direction of the search is

continuously updated using the history

of the path, similar to the procedure of

Quam [1978]. Finally, missing or spu-

rious patterns in the image are

detected by exploiting the anatomical

model knowledge described m text-

books and acquired from cardiologists.

Again, missing segments are recovered

using a combination of dynamic pro-

gramming [Gerbrands et al. 1986] and

heuristic tracking [Quam 1978].

If stereoscopic images are available,

they can be used at any time to improve

the existing interpretation. We have

seen this characteristic before in the
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(a]

Figure 20. (a) Optical image of a bin of industrial

image. (Courtesy of R. Belles.)

3D MOSAIC system [Herman and

Kanade 1986]. In Suetens et al. [19891,

it is shown how missing segments in

one image are recovered using dynamic

programming and the property that

contiguous segments in one image nec-

essarily correspond to contiguous seg-

ments in the other image.

Fua and Hanson—MDL Finding

Complete Generic Objects Using

Model-Driven Optimization. The

approach of Fua and Hanson [1987,

1988, 1991] describes generic objects in

terms of a language that specifies both

photometric and geometric constraints

on the objects and their appearance in

the image. Figure 21 illustrates the

ability of the generic model approach

to generate a complex building model

instance in 3D spontaneously.

Buildings in aerial images are mod-

eled as rectilinear structures whose

internal gray level intensities are

planar, whereas roads are modeled by

pairs of parallel, smoothly curved edges

enclosing a planar intensity area. To

generate optimal descriptions, a hier-

archy of increasingly complex models

is fitted to the photometric data. These

models range from elementary edges

with the appropriate geometry to con-

e

tours that enclose areas with specific

photometric and geometric properties.

This technique frequently produces sets

of plausible but conflicting possible

parses and therefore includes a mecha-

nism based on the MDL criterion

[Leclerc 1989] to ,choose the most likely

scene labels. More details about this

work are given in Appendix C.

Pentland—Recosmizing a Generic

Part Structure tising optimization.

Pentland [1990] uses a general-purpose

“parts” representation to recognize

natural 3D objects in range images.

Objects are described in terms of shapes

of the component parts, which are

modeled as deformable superquadrics.

The system is illustrated on three

range images, one of a ThingWorld,

one of a goose, and one of a rabbit and

book.

A binary image is first obtained by

automatic thresholding of texture,

intensity, or range data, whichever is

available. A set of 2D binary patterns,

whose shapes are 2D projections of

3D superquadrics, is then fit to the

binary image by template matching.

The detected parts are considered as

hypotheses, and the MDL criterion

[Leclerc 1989] is used next to select the
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(a) (b)

Figure 21. (a) Original Image with a complex bmldmg: (b) hl~hest scoruw SD roof hwothesis Produced by
the system, with projected walls

subset of part hypotheses that best

describes the binary image data. Given

the segmentation into 2D patterns, the

corresponding 3D parts of similar

width, length, and orientation are sub-

sequently deformed in order to

minimize the error between the visible

surface of the 3D object and the avail-

able range measurements.

McKeown and Denlinger—ARF:

Road Tracking Driven ‘by Multi-

ple Road Models. The automatic road

follower (ARF) by McKeown and

Denlinger [19881 invokes two different

road trackers independently. The

first road tracker is Quam’s

correlation-based technique [Quam

19781 with several improvements. The

second is an edge tracker. Normally

they generate the same center line; but

if one of the road followers fails, the

system is able to switch from one road

tracker to the other. The authors state

that “the combined tracker is better

than either tracker alone in a signifi-

cant number of cases. ”

As compared to Quam’s road tracker,

ARF uses a second road tracker, which

exploits additional knowledge (e. g.,

additional typical road characteristics)

in order to improve the performance.

The principle of using multiple comple-

mentary information sources (cf. 3D

MOSAIC [Herman and Kanade 19861)

partly corrects for inaccuracies intro-

duced by the highly heuristic nature of

the search and the heuristic definition

of the features used to recognize roads.

4.4 When to Avoid this Strategy

A combined strategy provides additional

power but should be reserved for prob-

lems that cannot be solved in a simpler

way. Because of the potential need for

elaborate models, complex control strate-

gies, and time-consuming computation in

this method, every effort should be made

to transform a particular application into

a simpler domain. In other words, we

should make a conscientious effort to

understand each particular application

and find the least complex way to solve it

before resorting to the level of complex-

ity required to apply combined strategies.

4.5 When to Use this Strategy

Use this strategy when all else fails.

SUMMARY

When attempting to solve a complex

object recognition problem, it is difficult

to choose an appropriate strategy from
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the wealth of available techniques. In We classified the strategies according

this paper, we provided a basic introduc - to their suitability for complex models

tion to this problem and proposed an and for complex data. Using our classifi -

organizational framework that gives cation framework, we delimited the

some insight into making these difficult domains of the various techniques and

choices and understanding the tradeoffs illustrated their characteristics with

involved. selected examples from the literature.

APPENDIX A. INDEX OF LITERATURE REVIEWED

Fitting Models to Photometry

Method and Author Summary

Rigid Model Fitting

Image Statistics

Rosenfeld 1969; Hall 1979 Image subtraction and correlation

Ballard and Brown 1982

Reynolds et al. 1989

Wallace 1988 Template matching on segmented images

Mansouri et al. 1987

Hough Transform

Ballard and Brown 1982 Hough transform

Ballard 1981

Illingworth and Kittler 1988

Niblack and Petkovic 1988

Flexible Model Fitting

Dynamic Programming

Fischler et al, 1981 F*: Iterative path finding

Gerbrands et al. 1986 Resampling the search region

Nuyts et al. 1989 Parametric search region

Tenenbaum et al. 1979 Optimal path without shape constraint

Yamada et al. 1988 Noniterative procedure without resampling

Maitre and Wu 1987 Matching segmented images with line
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Fua 1989; Witkin et al. 1987a

Gardin and Meltzer 1988
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Zhang and Simaan 1987 Model-driven seed growing

Fitting Models to Symbolic Structures

Method and Author Summary

Graph Matching

Search

Murray 19s7 Depth-fwst recurswe search

Belles and Horaud 1986 3DPO: Maximum clique finding

(see also combined strategies)

Mulgaonkar et al. 1984 Matching nonidentical graphs

Horaud and Skordas 1989 Ranking maximal cliques
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Dynamic Programming

Eshera and Fu 1986

Fischler and Elschlager 1973

Relaxation Labeling

Huffman 1971

Clowes 1971

Mahk 1987

Tenenbaum and Barrow 1977

Mohan and Nevatla 1988

Mohan and Nevatia 1989

Heuristic Pruning

Ammi et al. 1989

Ayache and Faugeras 1986

Dynamic programming

Heuristic dynamic programming

Line drawing interpretation

MSYS: Discrete relaxation labeling

Constraint satisfaction network

Heuristic best-first search

HYPER: Heuristic tree pruning

Composite (Hierarchical) Model Fitting

Structural Grouping

Lowe 1987

Brooks 1981

Huertas et al 1987

Huertas and Nevatia 1988

Jain and Hoffman 1988

Refining Matches Using

Multiple Information Sources

Herman and Kanade 1986

Fan et al 1988.1989

Bobick and Belles 1989

Knowledge SelectIon by Rules

Ohta 1985

Wu et al. 1987

Nagao and Matsuyama 1980

Draper et al. 1988

SCERPO: Locating perceptual structures

ACRONYM: Invariant observable

Findmg hnear structures

Merging adjacent surface patches

3D MOSAIC: Object completion using

additional images

Match image interpretations vla heurlstlc

search

Integration of visual information over time

Rule-based system for outdoor scene

analysis

Rule-based system for chromosome

classification

Rule-based resegmentation

Schema System

Combined Strategies

Method and Author Summary

Refining Matches

by Resegmentation

McKeown et al 1985

Hwang et al 1986

Wang and Srihari 1988

Nazif and Levine 1984

Refining Matches

by Template Matching

Shneier et al 1986

Belles and Horaud 19?5

Refining Matches

by Flexlble Model Matching

Levy -Mandel et al. 1986

Suetens et al. 1989

Fua and Hanson 1991

Pentland 1990

McKeown and

Denlinger 1988

SPAM: Region recovery, enlargement,

extension, Join/merge by resegmentation

Part recovery by rethresholdmg/

resegmentation

ABLS: Repammg over and under-

segmentatlon by rethresholdmg/

resegmentation

Expert segmentation system

NBS: Model-driven feature extraction

3DP0: Model-driven correlation-based

hypothesis verification

Model-driven line tracking

Recovering flexible object parts in the

image data

MDL: Finding complete generic objects

using model-driven optimization

Recognizing a Generic Part Structure

Using Optimization

ARF: Road tracking driven by multiple road

models
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APPENDIX B. RELATED REVIEW PAPERS

AND BOOKS

B.1 Related Review Papers

The literature contains diverse survey

papers covering different aspects of comp-

utational vision. The distinctive feature

of the present article is that we system-

atically categorize a wider variety of

computational strategies than previous

articles, as well as analyzing their appro-

priateness to particular applications.

Since there have been a number of other

review papers, some of whose contents

are similar to ours, it may be useful for

us to summarize the salient features of

these articles and to contrast our

approach.

B. 1.1 Nagao: Control Strategies

Nagao [1984] uses his own research

results to illustrate merits and weak-

nesses of a number of computational

strategies. The main strategies he dis-

cusses are the feature-space approach and

hierarchical parsing. He recognizes the

need for dynamically exploiting the

image data. He says, however, that be-

cause a process that includes low-level

image processing in the scope of control

is complicated, most of the control struc-

tures are restricted to the symbolic level,

and only a few have feedback to the

image level. The paper by Nagao was

written in 1982; in the meantime, the

idea of feedback had been further elabo-

rated and had given rise to additional

computational strategies, which are dis-

cussed in our paper. Nagao further em-

phasizes the importance of declarative

programming— which we do not consider

as a computational strategy but rather

as a programming methodology— and of

the need for powerful software tools for

the development of sophisticated control

structures.

B. 1.2 Rao and Jajn: Knowledge

Representation and Control

Rao and Jain [19881 discuss the pros and

cons of different knowledge representa-

tion formalisms and different control

strategies used in computational vision.

Using their classification, they review

some well-known systems such as

Acronym and Visions. The discussion,

however, is restricted to strategies for

perfect data. The authors account for this

limitation by pointing out that the num-

ber of papers that describe some form of

top-down feedback referring to the image

data is small. They state that “all vision

systems use some form of feedback, in

fact, but people have not made an effort

to isolate and focus on this particular

aspect. ” In this paper, we emphasize the

role of this feedback in object recognition

and clearly distinguish strategies deal -

ing with interpretation of labels from

other strategies that repeatedly exploit

the image data at the pixel level to find

model instances.

B. 1.3 Kanade: The Segmentation Problem

Kanade [1980] gives a unified view of

what he calls “the problem of segmenta-

tion. ” “ Often,” according to the author,

“the ultimate goal of image analysis is to

obtain a segmentation which separates

out semantically meaningful objects or

parts of objects. ” TO discuss the problem

of region segmentation, Kanade provides

the following problem-solving paradigm:

“Given an image, cues (picture domain

cues or scene domain cues) are extracted,

which are then used to access the generic

model of the task world to generate

hypotheses, which are verified by project-

ing them back to the picture level and by

matching them w~th the input image. ”

The ~icture domain cues are the features.
observed in the image, such as line seg-

ments, homogeneous regions, and inten-

sity gradients. The scene domain cues

are the features that give rise to the

picture domain cues, such as edge

configurations, surface orientations, and

reflectance. Rather than dealing with

computational strategies, this paper dis-

cusses the role of different information

sources (signal, physical, and semantic)

to obtain a “semantic region segmenta-

tion;” that is, to assign semantic labels
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to pixels that best satisfy both the local

image feature properties and the seman-

tic constraints. In particular, the impor-

tance of exploiting the physical level of

knowledge, “the bridge between a pic-

ture and a scene,” is emphasized.

B. 1.4 Pavlidis: Progress in Image Analysis

Pavlidis [19861 surveys major trends in

the literature and identifies the reasons

that have hindered progress. He focuses

on typical works rather than striving for

completeness. The author distinguishes

image analysis (the topic of his paper)

from pattern recognition or image under-

standing, the latter implying the assign-

ment of name labels or descriptions by

matching the results of image analysis to

world models. Image understanding, such

as line-drawing interpretation work

(Huffman-Clowes, etc.) and symbolic rea-

soning systems (Acronym, etc. ) are not

covered by Pavlidis’ paper. Our paper, on

the other hand, does review such

approaches since they encompass impor-

tant computational strategies.

nition, that is, the “automated extraction

of information from signals,” using a cat-

egorization into conventional techniques

and the AI-based approach. The conven-

tional approach combines the statistical

methodology (template matching and

feature space) with the structural

methodology (syntactic pattern recog-

nition and relaxation labeling). The

AI-based approach emulates the

hypothesize-and-test paradigm and uses

heuristics to reduce the search space.

Whereas the conventional techniques

involve large amounts of numerical com-

putation and analytically well-formed

models, the AI approach is characterized

by symbolic reasoning, which implies the

importance of a suitable knowledge rep-

resentation and control structure, and

focuses on the efficient use of different

knowledge sources in various forms. The

paper by Nandhakumar and Aggarwal

mainly emphasizes the distinctions be-

tween these two broad categories and

does not discuss their domains of applica-

bility, which is one of the principal goals

of our treatment.

B. 1.5 Mantas: Methodologies m Pattern

Recognition

Mantas [19871 presents an overview of

existing “methodologies in pattern

recognition and image analysis. ” Like

Pavlidis, he makes a distinction between

image analysis, “the description of image

features into a parsable string of numbers

or characters,” and pattern recognition,

“the classification or parsing process of

the created patterns.” Segmentation and

image-to-image matching methodologies

are classified under image analysis. Sta-

tistical, syntactic, and hybrid classifica-

tion methods are the author’s main

categories of pattern recognition method-

ologies. Unlike our paper, this paper does

not review heuristic approaches to struc-

tural pattern recognition, nor does it dis-

cuss methodologies that integrate image

analysis and pattern recognition.

B. 1.6 Nandhakumar and Aggarwal: Contrast

of Conventional and Al Approaches

Nandhakumar and Aggarwal [19851

review the approaches to pattern recog-

6. 1.7 Bmford: Model-Based Vision

Binford [1982] gives a good survey and

critique of the state of the art (up to

1982) of what he calls “model-based

image analysis system s.” Model-

based image analysis is to be considered

as that part of computational vision that

involves the use of high-level models,

such as aircrafts, buildings, and ribs in

chest x-rays. The author nicely summa-

rizes the limitations of the systems that

existed at that time. One major limita-

tion, he says, is the poor performance of

“segmentation.” For example, few sys-

tems used shape information in segment-

ing regions. A second shortcoming is the

weak definition and use of models.

Models are usually image models and are

viewpoint dependent (except for

Acronym). Consequently, the ability to

relate three-space models (world knowl-

edge) to image structures is lacking. Fur-

thermore, the models described are of

specific objects, so hypothesis generation

is limited to restricted scene domains.
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Generally, this paper focuses on the mod-

eling issue rather than on computational

strategies. Since the publication of the

paper, the field of computational vision

has made progress toward overcoming

each of the limitations mentioned above.

In particular, recent developments have

led us to introduce new classes of compu-

tational strategies not discussed by

Binford.

B. 1.8 Rosen feld: Scene Descriptions from

Image Analysis

The paper by Rosenfeld [19871 reviews

the basic stages of an image analysis

process, that is, the “construction of scene

descriptions on the basis of infor-

mation extracted from images or image

sequences. ” The specific areas covered

are feature extraction, texture analysis,

surface orientation estimation, image

matching, range estimation, segmenta-

tion, object representation, and model

matching. For each of these areas,

Rosenfeld summarizes the state of the

art, then presents limitations and future

directions. With respect to computational

strategies, the author laments the lack of

a general theory of control in image

analysis and points out the need for

incorporating geometric constraints and

object semantics into the segmentation

process. Our review attempts to alleviate

both shortcomings: First, we categorize

and discuss the computational strategies

found in the literature. Second, we intro-

duce additional categories of strategies

that instantiate geometric and semantic

constraints directly in the image.

B. 1.9 Wallace; Computational Strategies for

Object Recognition in Line-Segmented

Images

The following computational strategies,

applicable to segmented images, are dis-

cussed by Wallace [19881: boundary

correlation, generalized Hough trans-

form, relational distance measures, graph

matching, heuristic search, and relax-

ation labeling. To illustrate and compare

these strategies, the problem of identify-

ing a line-segmented image of a metallic

bracket is used throughout the text.

Using a single application has the

advantage that a quantitative assess-

ment of each of Lhe strategies can be

made. On the other hand, it narrows the

study of available strategies in the liter-

ature to those that are useful for that

particular application. For example, the

class of computational strategies that

supports flexible models (see Section 2.2)

is not discussed. This derives from

the author’s particular view of the com-

putational vision process: “Image

interpretation may be considered as

a three-stage sequential process, consist-

ing of primitive extraction, grouping of

primitives into extended features, and

matching of scene descriptions to pre-

formed models.”

B. 1.10 Matsuyama: Categorization of Expert

Systems for Image Analysis

Matsuyama [19891 classifies expert sys-

tems for image analysis into four cate-

gories: (1) consultation systems for image

processing for users with little experi-

ence, (2) knowledge-based program com-

position systems that build complex

programs from abstract programs speci-

fied by the user, (3) rule-based design

systems for image segmentation repre-

senting the various heuristics common to

a segmentation method explicitly [Nazif

and Levine 1984], and (4) goal-directed

image segmentation systems that auto-

matically extract image features, such as

a rectangle with a specified area, by using

knowledge about the image processing

operators and the way to combine them.

Except for the third category, the discus-

sion is restricted to expert systems for

image analysis that use only control

knowledge about how to use image pro-

cessing operators, as in program

libraries In this paper they are called

expert systems for image processing

(ESIP). They are different from the expert

systems described in Section 3.2 and typ-

ically uae a large amount of domain-

specific knowledge of the scene and its

objects. The knowledge in ESIPS is

described explicitly and declaratively.

The author states that most ESIPS were
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developed to examine their feasibility and

cites only one commercial ESIP. ESIPS

do not solve basic computer vision prob-

lems but should rather be considered as a

new programming style and as a step

toward new flexible software environ-

ments for developing image analysis

programs.

B.2 Related Books

This paper provides a guide to the litera-

ture dealing with applied object recogni-

tion. Object recognition is a topic under

intensive study in different research

fields, such as image processing and arti-

ficial intelligence. Some familiarity with

each of these broader domains can be

acquired from the following textbooks:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.
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APPENDIX C. DETAILED DISCUSSION OF

SELECTED KEY PAPERS

C.1 Ballard —GHough: The Generalized

Hough Transform

The Hough transform [Hough 1962;

Rosenfeld 1969] was originally developed

as a statistically reliable technique for

finding parameters of straight lines in

data consisting of collections of points.

The basic concept is to take an equation

described by a certain number of param-

eters, for example, the straight line

xcos O+ysin O=c

parameterized by (0, c) and plot the val-

ues of (0, c) for all the lines passing

through a particular data point ( xl, yl).

For each additional data point ( XZ, y,),

we plot the corresponding curve in (I9, c)

space. An example of such a plot is shown

in Figure 22. The point where the den-

sity of intersecting curves is the highest

is the best candidate for the values of the

straight line parameters describing the

data. In practice, the (0, c) space is quan-

tized as an array in computer memory,

and the memory cells are treated as

counters that are incremented whenever

the (0, c) curves pass through the partic-

ular cell. This array is called the Hough

accumulator, and it is clear that its cells

contain, in effect, the number of votes

cast by the data points for each sampled

value of the line parameters (0, c).
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The concept of the Hough transform

can be extended in several directions.

The simplest is to treat other algebraic

curves with a manageable number of

parameters; circles and ellipses are typi-

cal examples. The idea is always to map

the data into a weighted space of param-

eters describing the shape to which

the data are expected to conform. The

Hough transform takes input in a data

space and produces output in an abstract

parameter space.

There is a conceptual problem, how-

ever, when we want to locate a shape

that has no straightforward parametriz-

ation as a space curve. How do we for-

mulate the accumulator array for a shape

that is a complex collection of points

rather than a straight line or a circle?

This problem was first solved by Ballard

[1981], who noted, in effect, that the rele-

vant parameter space corresponds to the

space of spatial transformations that can

be made on an arbitrary rigid curve. For

an arbitrary curve what is relevant

for the object recognition problem is the

location, rotation angle, and scale of

the curve in the image relative to the

object’s defining shape template. If an

object has orientation-determining

and/or fixed-scale features, these proper-

ties can be exploited to restrict the possi-

ble angles and scales of the template

candidates, thus decreasing the dimen-

sion of the required Hough accumulator.

For 3D objects, we can in principle

extend this concept to the space of 313

transformations of a rigid object [Ballard

and Sabbah 1981]; in practice, this may

be difficult and is less likely to be suc-

cessful than the 2D method.

C. 1.1 Implementation

For objects that appear in image data as

2D rigid curves, Ballard’s generalized

Hough transform (often abbreviated as

GHough) is formulated as follows

([Ballard 19811, or Ballard and Brown
[1982] pp. 123-131: beware of pomible

misprints):

● Digest the shape template. Define a

c

Figure 22. A plot of the allowed values of r and 0

in the equation x cos 0 + y sin 8 = c. Each curve

corresponds to a different data point (x, y); we may

deduce that the set of data points considered lies on

the straight line y = x – 1.

shape template as a discrete set of

points lying on the desired shape,

choose a reference point as the tem-

plate center, and record the angle and

distance of the reference point relative

to the points chosen on the shape out-

line. Finally, group these into bins with

the same gradient direction, deter-

mined, for example, by measuring the

normal to the template curve at each

sample point. This is called the R-table.

Define the range of the parameter

space. We may know some restrictions

on the location, orientation, and scale

of the expected objects in the image

relative to the template. If so, define a

Hough accumulator array that has the

appropriate parameter ranges and

quantization steps. For straightfor-

ward implementations of GHough, the

smaller this array, the better off you

are.

Process the image data. Run an edge

operator such as the Sobel derivative

over the image, producing both an edge

strength and a direction at each pixel.

Typically, some sort of threshold is

applied to select a strong set of edges.

Compute the index into the Hough

accumulator. Loop through the

selected image edges ( xl, y,), noting

the direction of d, of each edge. When

this direction falls in the same direc-

tion as an edge in the template
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description, look in the R-table for the

possible relative locations (r-, a) in po-

lar coordinates of the reference point

as seen from the image edge. Compute

the predicted template reference point

using the basic formula

xc= x,+ Srcos(a+ @)

y, = y, + srsin(a + d),

where (s, O) are the discrete values of

scale and orientation, respectively,

being considered. If a range of these

parameters is being considered, com-

pute separate values of ( XC, yC) for each

value of scale and orientation.

Increment the Hough accumulator.

For each image edge,-we now have the

coordinates (XC, yC) and possibly (s, O)

of a cell in the Hough accumulator

array. Increment this cell by one count.

Note that several template edges might

have the same gradient angle, so one

data point might cause several incre-

ments to the Hough accumulator, one

for each distinct value of (r, a) in the

R-table bin corresponding to that

gradient direction.

If the Hough accumulator has indis-

tinct peaks, we may achieve better results

either by changing the parameter quan -

tization or by performing local averaging

in the accumulator to produce broader

but higher peaks enabling a clearer

choice of preferred parameter values.

This method works well for particular

applications such as the location of

uniquely shaped lakes or similar land-

marks in high-altitude aerial imagery,

where the object is essentially two

dimensional and rigid. Because the pro-

cess of voting into the Hough accumula-

tors is statistical, the results continue to

be reliable even in the presence of noise,

partial data, and occlusions that can dis-

rupt techniques that use semantically

driven matching techniques. Thus

GHough is appropriate for simple models

and complex data situations.

A careful study of the limits of applica-

bility of the Hough transform has

recently been presented by Grimson and

Hanson

Huttenlocher [1990], to which we refer

the reader for additional evaluation

information.

C.2 Kass, Witkin, and Terzopoulos —

Snakes: Active Contour Models

Snakes [Kass et al. 1987] are deformable

curves that can be used to delineate

salient image contour edges, lines, and

subjective contours. These curves are

implemented as splines that deform

themselves under the influence of image

constraints designed to attract them to-

ward features of interest and of internal

continuity constraints that force them to

remain smooth, except at a selected num-

ber of discontinuity points. Both of these

constraints are represented as additive

energy fields; the best compromise

between them is achieved by deforming

the curve so as to minimize its total

energy.

C. 2.1 Constraint Formulation

The image constraint field E, used in the

snake approach is a weighted sum of

three terms:

*

*

A term proportional to the image

intensity that attracts the snake

toward either black or white lines,

depending on the sign of the weight.

A term proportional to the image gra -

client th-at ‘attracts the snake toward

edges.

e A term proportional to the curvature of

lines of constant gray level in a

smoothed image that attracts the snake

toward edge terminations.

The internal constraint field E, is the

sum of two terms: one proportional to the

integral of the square of first derivatives,

the other proportional to the integral

of the second derivatives along the curve.

Given a starting point, the snake is

described by its vertices and is viewed as

a massless object embedded in a viscous

medium and moving under the influence

of the image and internal constraint

fields. Its optimal position is found by

recursively solving the dynamic equa -
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tions until it stabilizes. Given the fact

that the smoothness term is quadratic

and its derivatives are linear, this re -

duces to solving a linear system of equa-

tions at every iteration. This system is in

fact sparse and can be solved quickly (the

computation time grows linearly with

the number of vertices).

C. 2.2 Implementation

In the implementation of the snake

method, the curves are described as poly-

gons with n equidistant vertices X =

{(~l$~,),i = 1,. ... n}. The total energy

E is the weighted sum of El derived from

the internal constraint field and E, from

the external image constraint field.

The explicit form of E, is

E, = ~lEll + P2E27

Eil = x (x, – $,.1)2 + (Y, –Y,-1)2,

i

+(~Y1 –Yt-l –Y2+1 )2

where Eil and E,2 account for the

first and second derivatives along the

curve, and Ml, p2 are weights.

E, is computed by integrating the

image field along the curve %?.For exam-

ple, when image gradients are used,

where # represents the image intensi-

ties and f(s) is a vector mapping arc

length s of the curve C to points (x, y) of

the image. In fact, VY can be precom-

puted, allowing for fast optimization.

To perform the optimization, the curve

is imbedded in a viscous medium and the

dynamical equation of the resulting

system is written as

aE dX

dX
—+a~=o,

where E = E, + AEl and a is the viscos-

ity of the medium. Since the internal

energy El is quadratic, its derivative with

respect to X is linear and, therefore,

aE*
—. = KX,
ax

where K is a pentadiagonal matrix.

Thus, each iteration of the optimization

amounts to solving the linear equation:

aEe
KXt+a(X, –X,_l)=m ~.

t–1

Because K is pentadiagonal, the solution

to this set of equations can be computed

efficiently in 0(n) time using LU decom-

position and backsubstitution. Note that

the LU decomposition need be recom-

puted only when a changes.

C. 2.3 Properties

Snakes have two key properties that

make them especially useful for delineat-

ing linear features:

e Geometric constraints are used at the

lowest level to guide the search.

e The information is integrated along the

entire length of the curve, providing

a large support while ignoring the

irrelevant information from points not

belonging to the actual contour.

The snake method has proven useful

for interactive specification of image con-

tours and can be applied to a wide range

of problems such as motion tracking and

interpretation of seismic data.

C.3 Ayache and Faugeras —HYPER:

Heuristic Pruning

The HYPER system [Ayache and

Faugeras 19861 is an example of a robust

tree-pruning approach. It identifies and

accurately locates touching and overlap-

ping flat industrial parts in an image.

Object models and segmented image pat-

terns are described by first-degree poly-

nomial approximate ions of their cent ours.

The number of model segments is typi-

cally less than 100 for effective operation

of the system.
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C. 3.1 Issues in Search Heuristics

Search efficiency can be improved if

heuristics are used to explore the most

promising paths first. For example,

depth-first search becomes equivalent to

hill climbing if the choices are ordered

according to an accurate heuristic mea-

sure of the remaining distance. Beam

search explores only the best n nodes at

each level of the search tree. Best-first

search improves the efficiency of a

breadth-first search by choosing the best

open node, no matter where it is in the

partially developed tree. In systems such

as HYPER, the heuristic measure is used

to prune the search tree, incurring the

possible risk of excluding the desired

solution and arriving at a dead end. The

appropriateness of the search heuristic is

therefore of critical importance.

C. 3.2 Implementation

The HYPER system assumes that both

the model and the image descriptions are

given by a set of linear segments, M, =

(x,, y,, l,, a,) and SJ = (x~, y~, l;, a;),

respectively; x and y are the coordinates

of the segment midpoint; 1 is the seg-

ment length, and a is the segment orien-

tation relative to the horizontal axis. It

further assumes that an image descrip-

tion of an object can be transformed into

a model description by a rotation, a seal-

ing, and a translation. This transforma-

tion is described by the parameter vector

u=(kcos 6,ksin0, tZ, tY)

that transforms an arbitrary model point

(x, y) into an image point (x*, y*) as

follows:

●

x* =tZ+xkcos O–yksin O,

y*=tY+xk sin6+ykcos0.

The method consists of three phases:

Initialization. Given a model descrip-

tion and an image description, an ini-

tial hypothesis about the position of

the model instance in the image is gen-

erated by matching a privileged
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segment, that is, one of the 10 long-

est segments of the model, to an

image segment. Matching is performed

by solving the above equations for the

two pairs of end points of the model

segment and the image segment, yield-

ing a value for the parameters k, 0, t,,

and ty and an initial estimate of the

transformation vector UO. Typically, a

few hundred hypotheses are generated.

By comparing local intrinsic features,

the compatibility between the pairs of

matched segments is calculated and

only the best hypotheses are consid-

ered for further evaluation.

Heuristic Pruning. Each generated

hypothesis is verified by a heuristic

tree search procedure. The rigid model

contour is iteratively matched to the

image segments by successively adding

compatible segments to the available

partial contour match. At each

iteration i, a dissimilarity measure dz~

between the active model segment Ml

and every image segment S1 is cal-

culated. The active model segment M,

is by definition the one closest to M,_ ~.

The active segment MZ is first trans-

formed into M,* by using the transfor-

mation vector U,_ ~; M,* is then

compared to each of the candidate

image segments S~ using both local

intrinsic features and positional con-

straints imposed by the available par-

tial contour instance. The dissimilarity

measure therefore includes terms that

encode the absolute value a,~ of the

difference between the orientation of

the two segments M: and S~, the

euclidian distance D,~ between the

midpoints of the segments, and the ab-

solute value 1,~ of the relative differ-

ence between their lengths, that is, 1.,

= (l: – ll)/ll. The terms a,,, D,J, and

1,~ have empirical upper bounds a~a,,

D ~~X, and l~,X, respectively; d,~ is then

computed as follows: If one of the terms

a ,~, D,], or 1,]is aboue its correspond-

ing upper bound, then d,~ = 1;

otherwise,

qD,l rlll
d,l=~+—— —

a m ax
D

max + lmax ‘
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where p, q, and r are positive weights

whose sum equals 1. The model seg-

ment M, is heuristically matched with

its best corresponding image segment

Sj; that is, the segment whose dissimi-

larity d,~ is minimal subject to the

constraint that it be less than 1. A

recursive least-squares technique is

then used to update the estimate of the

transformation vector U,.

Terminating the matching process.

For each of the hypotheses a quality

measure Q, at each iteration of i of

the search measures the length of the

identified model relative to the total

model length. The quality is maximal

if the model is perfectly identified in

the image. It decreases if there are

occlusions or other anomalies such as

noise, tilted objects, or segmentation

errors. At the end of the heuristic

search procedure, a final test is done

on the hypothesis with the high-

est quality measure by restarting

the whole evaluation procedure with

the more accurate value of the trans-

formation vector U. This process is

repeated until no additional model seg-

ments can be matched. The hypothesis

is accepted if the quality measure is

above a prespecified threshold;

otherwise it is rejected.

The above method is robust in the

presence of bad lighting conditions, par-

tial occlusions up to 60 percent, and scale

variations up to 40 percent. It was suc-

cessfully tested on a large number of

industrial scenes and was implemented

on a vision system coupled to a pick-and-

place robot to grasp and reposition un-

oriented and partially overlapping

industrial parts.

C.4 Brooks —ACRONYM: 3D Image

Interpretation Guided by invariant

Model Relationships

The ACRONYM system [Brooks 1981,

1983] approaches model-based vision

using the following basic concepts:

@ Generic Model Classes. ACRONYM’s

models are volumetric, 3D models

*

●

based on conjunctions of generalized

cylinders. At the lowest level, object

parts are generalized cones with data

structures containing slots called

spine, cross section and sweeping rule.

A specific object such as a motor is

then constructed from a set of these

elementary units and their geometric

relationships. ACRONYM’s modeling

philosophy, however, allows not only

specific models, it also specifies generic

classes of objects constructed by replac-

ing numbers in the structure definition

by variables obeying constraints on

their values. !%nce these constrained

variables may describe relationships

among subparts, as well as the slots

parametrizing generalized cones, a

wide variety of spatial relationships

characterizing generic model classes

may be supported.

Generic Scene Constraints. Besides

supporting flexible local models,

ACRONYM’s constraint system allows

the description of the entire scene in

terms of relevant constraints. Con-

straints on the camera coordinate

system or constraints imposed by the

terrain can limit the values of the coor-

dinate origins of individual objects.

Thus the knowledge that the camera

was pointing straight down from a

range of altitudes constrains the sizes

of object model instances on the ground,

as well as their relative positions—

airplanes, for instance, would then be

constrained to lie at the same eleva-

tion in the world and to have only the

freedom to translate at that elevation

and to rotate about the vertical axis.

Availability of preprocessed

images. Although ACRONYM is not

limited to preprocessed images at the

conceptual level, it has in practice

required data derived from images by

an independent process. This process

has no relevant knowledge of the use

to which ACRONYM will put the pro-

cessed data. Lines and simple line

structures were found by a universal

line finder and grouped into 2D rib-

bons and ellipses—the basic structures

that a 3D generalized cone might pro-
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ject to the 2D image. The original

image data are not incorporated into

the analysis, so errors in the prepro-

cessing persist throughout the proce -

dure; the original implementation of

ACRONYM is thus best suited for

images that are relatively simple pho-

tometrically, although the scene itself

may be complex.

Geometric reasoning about invari-

ant features and - relationships.

ACRONYM’s analysis relies heavily on

a geometric reasoning system that

allows constraints on obiects and their.
components to be translated into pre-

dictions about image-invariant rela-

tionship. These m-edictions are then

used /o drive ~ hierarchical local

matching system that suggests ranges

of likelv locations for clusters of

semanti~ally related ribbons and/or

ellipses. When matches consistent with

the model constraints are located in

this way, the position and orientation

of 3D model instances are determined.

ACRONYM thus deduces a 3D inter-

pretation of the scene, along with

constraints on the camera position.

The core of ACRONYM is the predic-

tion procedure, which is organized into

four principal sections, each with many

complex subcomponents. The basic con-

cepts involved can be summarized as

follows:

“ Constraint Manipulation System.

Constraints are already supported at

the level of model data structures by

allowing the replacement of numerical

values by expressions involving alge-

braic variables. Constraints then take

the form of possibly nonlinear rules

relating these variables. The system

then handles numeric and algebraic

bounds of the form

Lower-bound ( UI, Uz, . . . )

s expression

s upper-bound ( VI, Uz, . . . )

Specific examples might include a

constraint such as

10< DISK.RADIUS*DISK.RADIUS*m

to indicate a disk of area less than 10

in appropriate units.

Prediction Process. A backward-

chaining control program sets up goals

and invokes a database of about 280

rules to achieve the goals. Multiple

parameters can be passed to and from

rules, and modifications to the predic-

tion data structure itself are carried

out as side effects. The task of these

rules for a specific problem domain

(e.g., finding airplanes in an airport) is

to gather the coordinate transforma-

tions that relate objects to one another

and find features such as generalized

cone pairs that have a viewpoint-

invariant characteristic.

Shape Prediction. The discovery of

ribbons corresponding to projections

of generalized cylinders into the image

is carried out in several steps: Possible

contours of visible object parts consis-

tent with the camera position are

determined, and their dependence on

camera parameters is estimated. Then,

geometric relationships within the

parts of a generalized cone are found.

Finally, a coarse filtering process that

uses backprojection of image features

to the model is invoked to select ac-

ceptable shape matches.

Feature Relation Prediction. At this

point, families of single image features

have been identified and collected into

prediction nodes. The next step is to

create prediction arcs that relate mul

tiple shapes on a single generalized

cone, as well as shapes from different

generalized cones that characterize

composite objects. The arc types include

(1) exclusive arcs–relating features

that cannot coexist, like opposite ends

of a cylinder, (2) collinear arcs–

relating collinear features, (3) coinci-

dent arcs— when two features must

touch, (4) angle arcs—relating two

generalized cones (like a pair of verti-

cally viewed airplane wings) that must

obey a relative orientation constraint
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in the image, (5) approach ratio arcs—

relating parts that must divide one

another in fixed proportions (like the

position of a wing on a fuselage), (6)

distance arcs–for object parts that

have rigid but noncoincident relation-

ships, and (7) ribbon-contains arcs—

when one ribbon in the image must

contain another.

Once the preprocessed image data have

been analyzed in this way and matches

of invariant features have been carried

out, the scene can be labeled according to

the model instances that have been dis-

covered. An example of ACRONYM’s

analysis is shown in Figure 17. Typical

results also include constraints on the

camera position. For example, in an

aerial image of an airport, ACRONYM

may find alternative interpretations cor-

responding to a large airplane and a high

camera altitude or a small airplane and

a low camera altitude; either is consis-

tent with the image and some gen-

eric airplane model classes. The main

strengths of an ACRONYM style

approach are the generality of its

modeling philosophy and the concept of

constraining its search based on local

invariance of feature relationships. Its

weaknesses stem from the complexity of

the constraint-based modeling and con-

straint manipulation system and the lack

of a hypothesis verification step that

refers back to the original image data;

thus the range of data complexity that

can be treated is limited. This limitation,

however, can in principle be overcome by

incorporating techniques like those of the

3DP0 system, which we describe next.

C.5 Belles and Horaud —3DPO: Model-

Driven Correlation-Based Hypothesis

Verification

The 3DP0 system [Belles and Horaud

19861 addresses the question of how to

find objects having straightforward CAD

models in a bin full of overlapping parts

(Figure 20a). They assume that both

monocular gray-level imagery and range

data from a structured-light system are

available and concentrate on the ques-

tion of finding and gripping a particular

part using rapid heuristics that would

be practical in a controlled industrial

environment.

C. 5.1 Object Models

Much of 3DP0’s speed derives from the

fact that its hypothesis generation step

relies on considering a few distinctive

features, then verifying whether other

expected features of the object are found

in the original image. Such features

are determined by carrying out a

preliminary planning step to digest the

best feature clusters and evaluate their

use. This eliminates a great deal of time-

consuming computation during the

search process.

Object models in 3DP0 also have some

unique characteristics. In particular,

each model provided to the recognition

system is analyzed to provide answers to

the following questions:

● How many features are there of each

type and size?

* Which surfaces intersect to form a

particular edge?

● Do other features lie in a given plane?

● What neighboring features are avail-

able to make onle of a class of similar

features distinct from its neighbors?

The answers to these questions are

essential in constructing feature clusters

that can be used to distinguish a good

match from a bad hypothesis efficiently

with minimal effort.

Another aspect of 3DP0’s object mod-

eling philosophy is to incorporate multi-

ple object models for use in different

phases of the search strategy. A complete

model consists of a CAD model, a wire-

frame model, a planar patch model, and

a set of feature classification networks

generated by preprocessing the model to

isolate distinguishing features and fea-

ture groups. Three types of features are

used extensively in 3DP0, although for

different applications one might choose

other types. The three types are straight
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dihedrals (straight edges at the inter-

section of two planar surfaces), circular

dihedrals (like the edge around the top of

a cylinder), and straight tangential (like

the occlusion edge at the side of a cylin-

der). Each feature has its own peculiar

signature; for example, a straight dihe -

dral is characterized by its length, the

size of the included angle, and the prop-

erties of the adjacent surfaces, such as

their width and areas. To detect such

features, the system begins by detecting

discontinuities in the range data, linking

the discontinuities into edge chains, and

finding those that lie in a plane; the

procedure then analyzes the surfaces

adjacent to planar arcs and lines and

refines the edge positions based on

surface information.

C. 5.2 System Design

To implement the 3DP0 philosophy, we

would carry out the following steps:

c Primitive feature detection

0 Feature cluster formation

* Hypothesis generation

* Hypothesis verification

0 Parameter refinement

The system starts by extracting edges

from a range image, that is, locations

where orientation changes sharply or is

discontinuous. The thresholds for accept-

ing edges are set relatively low in order

to avoid missing any features. Then

the three types of edges—straight dihe -

drals, circular dihedrals, and straight

tangentials— are extracted. The recogni-

tion strategy first locates a key feature,

then adds additional related features to

form a cluster.

The accumulated feature clusters are

then used to generate hypotheses about

the potential locations of a part. This is a

critical step in the search process since, if

the chosen clusters are not sufficiently

unique, combinatorics can quickly

become overwhelming. Once a set of

hypotheses has been put forward, the

system looks back in the original image

data to locate verifying information; in

principle, we could either predict the

location of other features and search for

them or could take the features already

tabulated and see which match the pre-

dictions. The latter is less reliable in

principle since it does not reanalyze the

data and therefore is not as likely to find

things that were lost in the original

analysis. 3DP0 uses the planar patch

model of the object to predict surface nor-

mals and compare them to the range

data; this technique is effective when key

verifying features are missing due to

noise or occlusion by other parts.

The final step, parameter refinement,

is needed to improve the accuracy of the

part location and uses a method such as

least-squares fitting to accomplish its

goal. If multiple objects are to be recog-

nized in the image data, the features of

each object are deleted from the global

list of features as they are found in order

to reduce the search space for subsequent

objects.

This procedure appears to be well

suited to industrial applications because

it is fairly robust. The use of a high-level

strategy that can generate good hypothe -

ses when the feature detection system

loses features is combined with a low-

level verification step that can go back

and check hypotheses in the raw data.

The low-level comparisons complement

the feature-level hypothesis verification

procedures and reduce 3DP0’s depen-

dence on the feature extraction step.

Furthermore, direct comparison of the

hypothesis with featureless regions in

the range data can handle smooth objects

for which few distinguishing features can

be found in the original model.

C.6 Fua and Hanson — MDL: Finding

Complete Generic Objects Using

Model-Driven Optimization

Fua and Hanson [1991] describe generic

objects in terms of a language that speci-

fies both photometric and geometric

constraints on the objects and their

appearance in the image. Buildings in

aerial images are modeled as rectilinear

structures whose internal gray level
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intensities are planar, whereas roads are

modeled by pairs of parallel, smoothly

curved edges enclosing a planar intensity

area. The authors define an information-

theoretic objective function that express-

es the quality of fit to the models in an

algebraic form, then treat the problem of

finding objects as one of generating an

optimal description of the image in terms

of both the language and the objective

function.

C. 6.1 Theory

The problem of generating the best image

description in terms of a set of models is

phrased as one of maximizing the proba-

bility P = p(mo, ml,. . . . rn~l cl, . . . . e~)

that, given the evidence E = { et; i =

1 ,.. n}, describing the scene in terms of

a particular set of model instances M =

{ m,; i = 1 ...n} and a background m. is

correct. Each m, is taken to be a model

instance, whereas e, is the measurable

evidence specific to the ith model

instance, typically a set of associated

pixel intensities. Assuming that the

objects’ photometric properties are inde-

pendent, it can be shown that the proba-

bility of the parse can be rewritten as

where p(ml, . . . , m.) is the prior proba-

bility that these n instances appear in

the scene.

The objective function is taken to be

S = log, P and can be inter~reted in

terms OF encoding cost [Hamm&g

Shannon 1948]:

S=logz P= F–G,

where

+log p(e, I m,)}

G= –logp(ml, . . ..mn)

F is defined to be the encoding

tiveness of the set of models. The

1985;

effec-

– log

p(e,) terms give the number of

bits needed to describe the evidence in

the absence of the model, whereas the

– log P( e, / m,) terms give the number of

bits needed to describe the evidence using

the modeling language. The use of the

term effectiveness is thus motivated by

the fact that F represents the number of

bits saved by representing the evidence

using the model; F increases as the fit

improves. For example, the interior

intensities of an 8-bit image region are

modeled by a smooth intensity surface

with a gaussian distribution of devia-

tions from the surface. A region of area

A can be described in terms of a model

requiring p bits to describe the parame-

ters of the surface and kA bits to describe

the image intensities. Here we define

k = log u + (1/2) log (2xe),

where o is the measured variance of the

deviations from the smooth surface.

Describing the same intensities with-

out the lmodel would require 8 bits per

pixel, and the value of F therefore is

(8-k)A -p.

G is the number of bits needed to

encode the evidence-free model represen-

tation information and quantifies the

elegance of the chosen set of model

instances with respect to the model lan-

guage as well as their dependencies. For

example, G can be taken to be propor-

tional to the length of the instance

boundaries, thereby favoring compact

objects. Because all the measures are

expressed in terms of bits, distinct sources

of information can be used simul-

taneously and their output made

commensurate.

C. 6.2 Implementation

To generate optimal descriptions, a

hierarchical procedure carries out the

following steps: (1) Extract edges with

the appropriate geometry, (2) find ele-

mentary geometric relationships between

edges (such as corners or parallels), (3)

build closed cycles of related edges that

enclose areas with acceptable photomet -

ric and geometric properties, (4) invoke a
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contour completion procedure that gener-

ates closed contours, optimizes their loca-

tion, and computes their elevation, and

(5) select the highest scoring contours.

Each parsing step is designed as a fil-

tering process that both enforces some

model constraints and limits the size of

the search space, thereby preventing

combinatorial explosion of the search.

Multiple information sources (edge data,

interior pixel intensities, stereographic

information, and geometric constraints)

are combined to build and rank hypothe-

ses for generic objects of arbitrary com-

plexity, such as the one in Figure 21.

C. 6.3 Properties

The framework described here accom-

plishes the following objectives:

e

e

Generic shape extraction. For many

important tasks, the exact shapes of

objects of interest are not known. The

models used in this approach describe

common cartographic objects that obey

specific geometric constraints but can

be arbitrarily complex. The objective

function balances the goodness of fit of

model instances to the image data

against their geometric quality. The

system can therefore pick the best

object hypotheses without using rigid

geometric constraints or templates.

Integration of multiple data

sour~es. In general, obje&s are not

characterized solely by their edge or

area signatures. As a result, data-

driven edge and region segmentation

processes often fail to extract objects as

such. Geometric constraints are com-

bined with the photometric character-

istics of the enclosed areas and their

boundaries to generate and evaluate

shape hypotheses simultaneously.

When two or more images are avail-

able, stereoscopic construction can also

be carried out. All available informa-

tion is thus effectively exploited.
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