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An important theme in post-genomic research will

probably be the dissection and analysis of the complex

dynamical interactions involved in gene regulation.

Although the concepts of protein–DNA feedback loops

and network complexity are not new, experimental

advances are inducing a resurgence of interest in the

quantitative description of gene regulation. These

advances are beginning to allow a ‘modular’description

of the regulatory processes that underlie basic cellular

function1–5. In the light of nearly three decades of paral-

lel progress in the study of complex NONLINEAR and STO-

CHASTIC processes, the project of quantitatively describ-

ing gene regulatory networks is timely.

Pioneering theoretical work on gene regulatory

networks has anticipated the emergence of post-

genomic research, and has provided a mathematical

framework for the current description and analysis of

complex regulatory mechanisms6–18. Although these

studies have identified the need for a quantitative

description of gene regulation, their true significance

has only recently emerged with experimental tech-

niques that can determine their validity. The diagram

in FIG. 1 depicts some of the known components of the

regulatory network that involve the tumour-suppres-

sor protein p53 (REFS 19–20). These types of schematic

resemble circuit diagrams2,21 and in many regards this

analogy highlights the motivation for a quantitative

description of gene regulation. If this were a complex

electrical circuit, there would be an accompanying set

of equations that would faithfully describe its func-

tionality. This description would be built from a

knowledge of the properties of the individual compo-

nents (resistors, capacitors, inductors and so on) and

provide a framework for predicting behaviour that

results from modification of the circuit. An acceptable

model that describes the p53 activation network (FIG. 1)

would thus be built from knowledge of the basic regu-

latory themes and could predict the effects of genetic

perturbations to the system.

In this article, we review recent advances in the

mathematical modelling of genetic regulation. Most

of this work has focused on networks that involve

transcription factors and we restrict ourselves to work

in this class. We begin with the modelling of specific

genetic networks and discuss representative models

that have been used for several relatively simple net-

works. We then turn to the recent progress in design-

ing and testing synthetic gene networks. Although

these networks have important biotechnological

implications in their own right22,23, we highlight their

use in determining the primary themes of gene regu-

latory networks. In this regard, the accurate mathe-

matical description of synthetic networks provides

the foundation for describing complex, naturally
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remain even after the perturbation is removed.

Understanding how MULTISTABILITY arises is thus relevant

to understanding the operation of natural biological

switches (such as the lysogeny/lysis switches that occur

in viruses, for example λ-bacteriophage), as well as to

the design of synthetic switching networks. A recent

analysis29 considered a generic rate-equation model to

determine the precise conditions required for the exis-

tence of multiple stable fixed points in a two-gene sys-

tem. Another study28 used a model (derived from

REF. 17) to determine the relationship between the num-

ber of OPERATOR sites that constitute a given promoter

and the number of stable steady states that the system

could support (see below).

In addition to considering the existence of stable

fixed points, their degree of stability can be considered.

States vary in how quickly they recover from perturba-

tions, the size of perturbation they can withstand

before being forced into another state and, in noisy sys-

tems, the expected length of time it will take for noise

to induce a transition to another state. NEGATIVE FEEDBACK

increases stability in generic gene regulatory systems,

whereas POSITIVE FEEDBACK decreases stability7. It has often

been assumed that switches based on the action of

small numbers of individual molecules could not be

very stable, because small numbers of molecules gener-

ally imply that the system will be subjected to larger

fluctuations than systems with greater numbers of

molecules. However, a recent analysis, using a general

formulation applicable to any biological switch30, indi-

cates that switches based on only tens of molecules

could flip states in milliseconds and remain stable for

years. This degree of stability is an upper bound and

thus does not necessarily indicate how stable any par-

ticular biochemical switch will be; however, it does

point out the possibility of achieving the required sta-

bility. With larger numbers of molecules (hundreds

rather than tens), even greater degrees of stability

should be achievable.

Many cellular processes are characterized by oscil-

lations that are generated at the genetic level and sev-

eral investigations have focused on the general condi-

tions under which oscillations are to be expected

from a given gene network27,31–33. One of these33 con-

cludes that oscillatory behaviour cannot exist in sys-

tems with only positive-feedback interactions; this

result applies to systems with and without time

delays. Additionally, systems with only negative feed-

back can generate oscillations in the presence of time

delays34, and mixed positive and negative feedback

can also generate oscillatory behaviour32,33.

Naturally occurring gene networks

Although abstract models can offer an insight into basic

mechanisms, modelling must ultimately be connected

to specific systems so that verifiable predictions can be

made. So far, few computational modelling studies have

involved tight coupling between modelling and experi-

ment. Part of the difficulty is the high degree of com-

plexity inherent in natural systems and the difficulty of

carrying out experiments on them.

occurring networks. Throughout this review, we

ground our discussion through the use of illustrative

examples and primarily focus on modelling efforts

that are directly connected to experiments.

Modelling genetic networks

Several traditional approaches to analysing gene regula-

tion have been based on modelling specific natural sys-

tems (BOX 1). By contrast, some researchers have concen-

trated on analysing abstract models to obtain general

results. The power of the latter approach is that it can

offer insight into the behaviour of entire classes of bio-

logical system. This approach has recently been

reviewed in some detail24 and here we discuss several

representative examples.

In a typical experimental situation, regulatory net-

works are quantified by the concentrations of the con-

stitutive gene products. When a gene product is in an

equilibrium state (that is, its rate of production is bal-

anced by its rate of degradation), small perturbations

to this steady state will be accompanied by an exponen-

tial decay or rise back to equilibrium. Several studies

have focused on the conditions that are required for the

existence of multiple steady states in generic gene regu-

latory systems13,25–29. The existence of more than one

stable FIXED POINT implies the possibility of switch-like

behaviour: the system will remain near one of its stable

states until a sufficiently large perturbation drives it

into the vicinity of another stable state, in which it will

FIXED POINT

A point at which the rates of

change of all variables in a

system are exactly zero. A system

precisely at its fixed point (or

steady state) will remain there

permanently. Small

perturbations to a system that is

initially poised at a ‘stable’fixed

point will be accompanied by a

return to the stable fixed point.

MULTISTABILITY

The property of having more

than one stable fixed point.

OPERATOR

A prokaryotic DNA regulatory

element that interacts with a

repressor to control the

transcription of adjacent genes.

NEGATIVE FEEDBACK

A component of a system is

subject to negative feedback

when it inhibits its own level of

activity. For example, a gene

product that acts as a repressor

for its own gene is applying

negative feedback.
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Figure 1 | Regulatory diagram for the activation of the tumour-suppressor protein p53.

The complexity of the p53 network highlights the need for a quantitative description of genetic

circuitry. (ATM, ataxia telangiectasia mutated; ATR, AT and Rad3-related; MDM2, mouse

double minute 2; GADD45, growth arrest and DNA-damage inducible; PERP, p53 apoptosis-

associated target; KILLER/DR5, death receptor 5; P53AIP1, p53-regulated apoptosis-

inducing protein 1; Bax, Bcl2-associated X protein; PIDD, p53 protein induced, with death

domain; TSP1, tumour-suppressor region 1; BAI1, brain-specific angiogenesis inhibitor 1; GD-

AIF, glioma-derived angiogenesis inhibitory factor.)(Redrawn with permission from REF. 19 ©

(2000) Macmillan Magazines Ltd.)
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host is threatened. The key section of the phage DNA lies

in the right operator region (O
R
), in which three DNA-

binding sites are recognized by two phage-encoded regu-

latory proteins, λ-repressor protein (also called cI) and

cro. The three operator sites (O
R
1 to O

R
3) overlap the

promoter regions of the genes that encode these same

proteins: the P
RM

(where RM is repressor maintenance)

promoter controls expression of cI and the P
R

(where R is

repressor) promoter controls expression of cro (FIG. 2a).

The pattern of cI/cro binding to the three operator sites

determines whether the lysogenic or lytic pathway will be

followed (see REF.56 for an excellent review).

It is often the case that multiple operator sites consti-

tute a promoter region. In such cases, one would like to

know the probability that a particular protein–DNA

binding configuration will occur. One generally applica-

ble modelling technique uses thermodynamic quantities

derived from experimental data to formulate a model

and this technique has been applied to the λ-switch16–17.

The λ-repressor protein concentrations at which the

operator sites in the O
R

region are half-occupied57 can be

converted into a set of thermodynamic free energies16,

which can be used to calculate the probability that the

system will occupy a given state.For example, in the bind-

ing of λ-repressor to sites in O
R
, the relevant states are

eight possible patterns of binding of λ-repressor to the

three operator sites.

By examining the states in which each promoter is

repressed and calculating the probabilities of these

states, it is possible to obtain a graph of the degree of

repression of each promoter as a function of cI concen-

tration (FIG. 2b). A curve might also be calculated for the

repression of cro in the hypothetical situation in which

adjacent cI proteins do not interact. This ‘computational

experiment’, which would have been difficult or impos-

sible to do in the laboratory, supported the view16 that

cooperative interactions stabilize the lysogenic state by

tightening the repression of cro at lysogenic concentra-

tions of λ-repressor.

The model was extended to include the binding of cro

and RNA polymerase in addition to the λ-repressor17; in

the resulting formulation, there were 40 possible binding

states rather than 8. In addition, the previously static

model was extended to include the dynamics, using a

rate-equation approach. The behaviour of the resulting

model was in qualitative agreement with the known bio-

logical behaviour of the infected cell.However,no quanti-

tative evaluation of the validity of the model was possible.

Next, a rate-equation-based model was constructed

in which the parameters were tuned using experimental

results18. To be a reasonable model for the λ-switch, it

was argued that the rate equations must show BISTABILITY.

One stable state (high repressor concentration, low cro

concentration) corresponds to a lysogenic cell; the other

stable state (low repressor, high cro) corresponds to the

situation prevailing in an anti-immune bacterium in

which the lytic machinery has been decoupled from the

repressor/cro switch, so that a high level of cro does not

lyse the cell. The ranges of activity of the two promoters

for which this bistability exists can be obtained from the

model equations and the validity of the model can be

This complexity indicates that modelling efforts

should centre on describing relatively simple systems

and be closely linked with experiments. We now turn to

several representative examples in this class.As we focus

on systems in which the principal means of control is

through transcription factors, we will not discuss closely

related topics, such as bacterial chemotaxis35–41, intracel-

lular signalling42–45, and cell-cycle control1,46–50. The

modelling techniques used in these important studies

are similar in spirit to the work presented here and the

reader is encouraged to consult the primary sources for

further investigation.

Bacteriophage-λ. The λ-bacteriophage has been a fertile

topic for modelling studies. The biochemical reactions

that constitute the control of λ-phage are well character-

ized and the fundamental biochemical reactions are

understood51–55.When the virus infects a bacterium such

as Escherichia coli, one of two developmental pathways is

followed. In the lysogenic pathway, the viral DNA is

incorporated into the genome of the host and the virus

lies dormant, replicating with the bacterium. In the lytic

pathway, the virus expresses the proteins necessary to

replicate new phages, then lyses the host cell and releases

its progeny into the environment.When the host DNA is

damaged, which is signalled by activation of the bacterial

protein RecA (Recombinase A), the virus can switch from

lysogeny to lysis, allowing it to ‘abandon ship’when the

POSITIVE FEEDBACK

A component of a system is

subject to positive feedback

when it increases its own level 

of activity. For example, a gene

product that activates the

expression of its own gene is

subject to positive feedback.

COOPERATIVITY

Interaction between binding

sites in which the binding of

one molecule modifies the

ability of a subsequent molecule

of the same type to bind to its

binding site.

BISTABILITY

The property of having two

stable fixed points. See also the

definition for multistability.

Box 1 | Modelling methods  

Several levels of detail have traditionally been used in modelling gene regulation. In the

‘logical’or ‘binary’approach6–10, each gene is treated as having two discrete states, ON or

OFF, and the dynamics describe how groups of genes act to change one another’s states

over time. Such models are relatively easy to implement, simplifying the examination of

large sets of genes. A disadvantage of the logical approach is that the abstraction of genes

to ON/OFF switches makes it difficult or impossible to include many of the details of

cellular biology.

A more detailed level of description is used in the ‘chemical kinetics’or ‘rate-equation’

approach, in which the variables of interest are the concentrations of individual proteins

within the cell, and the dynamics describe the rates of production and decay of these

proteins. The models consist of a system of ordinary differential equations, permitting

the modeller to apply the analytical techniques of nonlinear dynamics. These techniques

have been developed considerably in recent decades, making the rate-equation approach

a promising avenue for combining mathematical analysis and computational simulation.

Although the basic rate-equation approach is completely deterministic (no random

component exists in the dynamical equations), the equations can be augmented with

noise terms to account for fluctuations in concentration within the cell30,94. The

‘stochastic kinetics’modelling approach3,21,58 provides the most detailed level of

description;techniques for simulating the behaviour of chemical reactions, which involve

small numbers of molecules105, are applied to the reactions involved in protein–DNA

binding, transcription and translation. This approach is impressively complete and yields

a detailed picture of the behaviour of the system modelled. However, such completeness

comes at a high computational cost and sacrifices any immediate prospect of analytical

treatment. Alternatively, the effects of internal noise can be incorporated into stochastic

terms, which have magnitudes that are concentration dependent. This approach has

recently been used to explore the reliability of genetic switches in the presence of internal

noise30. The advantage of this formulation is that stochastic effects can be viewed as a

perturbation to the deterministic picture, so that analytical tools can be used.

Each of the modelling techniques has its own merits and drawbacks, and the

appropriate level of description for a given system depends on the goals of the modelling

effort and the nature of the experiments proposed.

© 2001 Macmillan Magazines Ltd
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switch and that such an aspect was also omitted from

the standard ‘word model’that describes the behaviour

of the λ-switch. This speculation has not, so far, been

either confirmed or refuted.

Another approach to modelling the λ-phage

involved stochastic simulation techniques58. Rather than

considering switching behaviour, this study addressed

the initial decision between the two available develop-

mental pathways (lysis and lysogeny) made shortly after

a bacterium is first infected with the phage. Initially, the

two key regulatory proteins are completely absent from

the cell; in a deterministic system, fixing the initial con-

dition [cI] = 0, [cro] = 0 would lead to identical results

in every run of the simulation. In the stochastic simula-

tion, the protein concentrations (including several pro-

teins other than cI and cro) vary with a strong random

component and the fluctuations are large enough to

send some cells down the lysogenic pathway (those in

which cI rises to a high enough concentration that it

dominates and shuts off production of cro), whereas

other cells proceed down the lytic pathway (those in

which cro comes to dominate, shutting off cI produc-

tion). The predictions of the model agree quite well

with the results of experiments that measured the frac-

tion of lysogens produced in a cell population59 for vari-

ous ratios of phage particles to cells. The power of the

stochastic kinetics approach lies in its completeness and

attention to detail. Although the simulations are com-

putationally expensive compared with other methods,

the in numero experiments are still rapid compared with

in vivo work, allowing researchers to examine many

hypotheses and concentrate effort on the most promis-

ing of them. This might lead, for example, to more rapid

hypothesis testing, by indicating which experiments

would be expected to distinguish most sharply among

the competing hypotheses.

Other systems. Work on a similar system, the bacterio-

phage T7 (another lytic phage that preys on E.

coli)60 has also yielded computational results that have

been compared directly with experimental predictions.

An elaborate rate-equation model61 tracks the behav-

iour of the T7 phage from initial injection of its

genome through to the production of progeny phages;

the concentrations of each of 52 mRNA transcripts and

their corresponding protein products are simulated,

along with rates of viral genome injection and progeny

formation. Experimental comparisons were obtained

by constructing mutant phages with genomes in which

the physical position of one gene was altered relative to

the wild type. Although the model achieved some suc-

cess at predicting early mRNA concentrations and

RNA polymerase activity61, the attempt to predict the

complete phage behaviour was largely unsuccessful.

This underscores the difficulty of large-scale modelling

of natural systems and the comparative immaturity of

our understanding. Admirably, REF. 60 frankly discusses

the mismatches between the model and the experi-

ment, correctly viewing such discrepancies as opportu-

nities for gaining insight into where the problems with

the model might lie.

assessed by comparing these with experimentally deter-

mined values of the promoter activities. If the experi-

mental parameters do not correspond to a bistable state,

a flaw must exist in the model. This study provides an

excellent example of tight coupling between model and

experiment by considering a carefully chosen piece of a

larger system (here, separating the operation of the

switch from the rest of the bacterial metabolism). This

approach has become even more attractive with the

advent of tailor-made synthetic networks.

The central conclusion18 was that the experimental-

ly estimated parameter values did not place the model

in a regime in which bistability existed. Clearly, this

implies a difficulty with the assumptions underlying

the model. The authors suggested that the model omit-

ted some important aspect of the regulation of the
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Figure 2 | Modelling the λ-bacteriophage circuitry.

a | The right operator region (O
R
) of bacteriophage-λ. The three

operator sites O
R
1, O

R
2 and O

R
3 bind two proteins: 

λ-repressor (λ, encoded by cI) and cro (c). Transcription from

the P
RM

promoter (which drives expression of cI) is blocked

when either protein is bound to O
R
3 and is enhanced when the

λ-repressor binds to O
R
2. High levels of λ-transcription lead to

the lysogenic state (green arrows); high levels of cro

transcription induce phage replication and lysis (red arrows).

Transcription from the P
R

promoter (which drives the

expression of cro) has no stimulated state and proceeds 

only when O
R
3 is either unoccupied or has cro bound to it;

binding of either protein to O
R
1 or O

R
2 halts transcription 

of cro. b | Graph depicting the degree of repression of the 

P
R

and P
RM

promoters as a function of λ-repressor

concentration. The dashed curve indicates the repression

curve that would exist if there were no cooperative interactions

between adjacent λ-repressor proteins. The graph shows that

cooperative interactions between adjacent λ-repressor

proteins tighten the repression of cro (from the P
R

promoter) at

lysogenic concentrations of repressor (shaded vertical box).

(Redrawn from REF. 16.)
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promoter and the essential tryptophan biosynthetic

enzymes are produced. One of the first mathematical

models of the tryptophan operon69 used dynamical

equations to describe operon repression by the trp

repressor. The parameter estimates were based on

experimental data and the model reproduced derepres-

sion experiments. However, the model omitted interac-

tions between the trp operon and the repressor mole-

cules. A more recent model of the trp operon72,73

accounted for repression, enzyme feedback inhibition,

inherent time delays and transcriptional attenuation

(premature termination of transcription — a feature of

the trp regulatory operon). Model parameters were

closely estimated from experimental data, and numeri-

cal results from a system of differential equations were

compared with experimental results. The model suc-

cessfully predicted changes in the concentration of

biosynthetic enzymes in bacteria grown in minimal

media with and without a tryptophan supplement. In

addition, simulations qualitatively reproduced identical

growth experiments involving mutant E. coli strains.

A recent modelling study78 used rate equations to

examine the regulation of segmentation in the fruitfly

Drosophila melanogaster. The large PARAMETER SPACE of

the model was searched to find solutions that qualita-

tively matched the experimental data. The initial

assumed pattern of gene network connectivity made it

very difficult to find parameter sets that yielded the

desired behaviour, whereas the addition of several key

connections made such parameter sets relatively com-

mon. In earlier modelling work on Drosophila segmen-

tation79, the rate-equation model made no assumptions

about the nature of the connections among genes.

Rather, experimental data were used to determine the

connections by searching the parameter space for those

solutions best fitting the observed behaviour of the sys-

tem. Both studies illustrate the use of model construc-

tion in the determination of underlying network con-

nectivity. Such ‘reverse-engineering’approaches are

particularly attractive in the light of recent advances in

gene chip technology80–86.

Synthetic networks: the road to reductionism

The ability to design synthetic networks offers the excit-

ing prospect of extracting carefully chosen subsystems

from natural organisms, and focusing both modelling

and experimental effort on determination of the behav-

iour of the subsystems in isolation. The long-range goal

of such work would be to assemble increasingly com-

plete models of the behaviour of natural systems, while

maintaining at each stage the ability to test models in a

tractable experimental system. Further, simple networks

represent a first step towards logical cellular control,

whereby biological processes can be manipulated or

monitored at the DNA level87. Such control could have a

significant effect on post-genomic biotechnology.

Current examples of potential applicability range from

the use of genetically engineered microorganisms for

environmental clean-up purposes22, to the flipping of

genetic switches in mammalian neuronal cells23. From

the construction of simple switches or oscillators, the

The concept of OPERON regulation was introduced

over 40 years ago62–64 and a general descriptive theory

arose shortly thereafter65–66. Several modelling efforts

have focused on the dynamical behaviour of the lac(lac-

tose) and trp (tryptophan) operons67–77. Tryptophan is

an amino acid that is incorporated into proteins that are

essential to bacterial growth. When tryptophan is pre-

sent in the growth media, it forms a complex with the

tryptophan repressor and the complex binds to the pro-

moter of the trp operon, effectively switching off pro-

duction of tryptophan biosynthetic enzymes. In the

absence of tryptophan, the repressor cannot bind to the

OPERON

A genetic unit or cluster that

consists of one or more genes

that are transcribed as a unit

and are expressed in a

coordinated manner.

PARAMETER SPACE

The set of all possible values 

of all parameters.

PL

a

lacl

PLtetO

c

tetR–EGFP

cl Ptrc-2

PLlacO1

b

tetR-lite

cI-lite PLtetO1lacI-lite λPR

Figure 3 | Schematic diagrams of three negatively

regulated synthetic gene networks. a | The toggle

switch is composed of a two-gene co-repressive network.

The constitutive P
L

promoter drives the expression of the

lacI gene, which produces the lac repressor tetramer. The

lac repressor tetramer binds the lac operator sites adjacent

to the Ptrc-2 promoter, thereby blocking transcription of cI.

The constitutive Ptrc-2 promoter drives the expression of

the cI gene, which produces the λ-repressor dimer. The λ-

repressor dimer cooperatively binds to the operator sites

native to the P
L

promoter, which prevents transcription of

lacI. b | The repressilator is composed of a three-gene

repressive network driven by three strong constitutive

promoters. Expression of tetR-lite is driven by the

constitutive P
L
lacO1 promoter. The tet repressor binds to

the tetO1 operator sites on the P
L
tetO1 promoter, turning

off constitutive transcription of cI-lite. Transcription of cI-lite

produces a λ-repressor protein, which binds to native

operator sites on the P
R

promoter. The constitutive P
R

promoter drives the expression of lacI-lite, which produces

lac repressor. The lac repressor binds to lacO1 operator

sites on the P
L
lacO1 promoter, thus completing the

repressilator circuit. The ‘-lite’ extensions on each gene

describe the production of proteins that are encoded with a

sequence that targets them for expedient degradation by

native bacterial proteases. c | An autorepressive network is

composed of a single-gene negative-feedback circuit. The

strong constitutive P
L

promoter with tetO operator sites

drives the expression of the open reading frame consisting

of the tetR and enhanced green fluorescent protein (EGFP)

genes. Production of the tetR–EGFP fusion protein

negatively regulates its own production by binding to the

tetO operator sites on the P
L

promoter.
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designed without co-repression. Specifically, isopropyl-

β-D-thiogalactopyranoside (IPTG), which binds to lac

repressor tetramers, was used to render the lac repres-

sor unable to repress its promoter. Likewise, a tempera-

ture-sensitive cI protein was used, so that its degrada-

tion rate was an increasing function of temperature.

For detection, the green fluorescent protein (GFP GENE)

was transcribed POLYCISTRONICALLY with the cI gene, so

that GFP concentrations were proportional to the con-

centration of the λ-repressor (encoded by cI). Results

for one of the toggles are presented in FIG. 4b. The sys-

tem, beginning in the high-lac repressor/low-cI state,

was toggled to the high-cI/low-lac repressor state with

IPTG. As expected, the system remained in the high-cI

state after removal of the IPTG stimulus. Toggling to

the low-cI state was then accomplished by tuning the

temperature to 42 °C, and this state was subsequently

stable upon the return of the system to 32 °C. These

results show that synthetic toggle switches can be

designed and used in a cellular environment.

Recently, a synthetic switch based on the switching

mechanism of the λ-phage was compared with the toggle

switch91 (BOX 2). It was numerically shown that the λ-like

system offers a faster switching time from the dormant

lysogenic state to the lytic growth state than seen in the

model of the toggle switch and thus might represent a

more fruitful synthetic model.

The repressilator. In tandem with the toggle work, a

synthetic network that can generate oscillations in

the concentrations of cellular proteins was present-

ed92. Although the ideas in this study were developed

independently, the problem was approached in a

fashion similar to the toggle: model equations were

used to determine design criteria, and a functioning

network was built and studied in the context of a

mathematical model. The repressilator consisted of

three repressible promoters designed with cyclic

repressibility (FIG. 3b). Although this network can pro-

duce oscillatory behaviour, the construct, in itself, is

not sufficient for oscillations. Specific properties,

such as the protein synthesis and degradation rates

and cooperativity of protein–DNA binding, must be

properly chosen. Instead of determining these prop-

erties through the lengthy process of trial-and-error

experimentation, model equations were used as an

efficient alternative.

In determining the design criteria for the repressila-

tor, equations similar to those used for the toggle switch

were derived and analysed, and the results were summa-

rized in a parameter-space plot (FIG. 5). Taken as a whole,

FIG. 5 implies that oscillations are favoured by high syn-

thesis and degradation rates, large cooperative binding

effects and efficient repression. These conclusions led

directly to specific design choices — strong and tightly

repressible hybrid promoters were selected, and the

effective protein degradation rates were increased by

using SMALL STABLE RNA TAGS (SsrAtags).

In the experiment, a second plasmid was designed

with a tet-repressible (tetracyclin) promoter that direct-

ed the transcription of a GFP reporter gene. So, GFP

design of genetic code, or software, capable of perform-

ing increasingly elaborate functions43,88 can be imagined.

In this section, we review the recent advances in the

modelling and construction of synthetic networks.

A genetic toggle switch. Co-repressive switches have long

been proposed as a common regulatory theme89, and

the synthetic toggle switch90 serves as a model system in

which to study such networks. This study involved a

network in which each of two proteins negatively regu-

lates the synthesis of the other.A specific example of one

of the toggle designs is depicted in FIG. 3a. Intuitively, one

might anticipate that there could be two possible steady

states for this system. Because lacI production is

repressed by the cI protein, an initial high concentration

of cI would be self-sustaining and lead to a state with

high cI and low lac repressor concentrations.

Conversely, because cI production is repressed by the lac

repressor, if the lac repressor is initially present in high

concentrations, a second stable state would entail high

lac and low cI concentrations.

One counter-intuitive finding to emerge from the

toggle work was that not all co-repressive systems will

show bistability. In fact, a central feature of this work was

the use of mathematical and computational tools in

deducing a priori the criteria for a robust toggle switch.

The feasibility of a toggle switch is manifest in the exis-

tence of two stable fixed points; any initial state above the

dividing line in FIG. 4a will evolve to the fixed point that is

characterized by a high cI (low lac repressor) concentra-

tion, whereas initial states below the dividing line will

evolve to a high lac repressor (low cI) concentration. The

design of an operating toggle thus depended on parame-

ter choices that led to bistability. These criteria included

the use of strong and balanced constitutive promoters,

effective transcriptional repression, the formation of

protein multimers and similar protein degradation rates.

The reliable toggling between states was induced

experimentally through the transient introduction of

either a chemical or a thermal stimulus, and shown to

be significantly sharper than for that of a network

GFP GENE

A gene encoding the green

fluorescent protein (GFP). GFP

can be transcribed in tandem

with another gene of interest, so

that one GFP molecule is

produced for each molecule of

the target protein. The

fluorescence level in a cell then

provides an indication of the

concentration of the protein of

interest.

POLYCISTRONIC

A form of gene organization

that results in transcription of

an mRNA that codes for

multiple gene products, each of

which is independently

translated from the mRNA.

SMALL STABLE RNA TAG

(SsrA). A short peptide tag 

that is added to the carboxy-

terminal end of the incomplete

protein product of a stalled

ribosome. This trans-

translation process, which 

is catalysed by a small stable

RNA (also known as tmRNA

(tRNA-like and mRNA-like)),

targets the abnormal proteins

for proteolysis.

Box 2 | A synthetic λ-switch  

The in numero exploration of the λ-switch consisted of a model based on two plasmids.

On one was a synthetic network comprising the P
RM

promoter of λ-phage and the cI gene,

which encodes the protein λ-repressor. To this, a second plasmid was added, which

contained the P
R

promoter that was used to control the expression of cro. Each plasmid

contains the right operator regions O
R
1, O

R
2 and O

R
3, and both proteins are capable of

binding to these regions on either plasmid. On the P
RM

-promoter plasmid, transcription

of cI takes place whenever there is no protein (of either type) bound to O
R
3;when cI is

bound to O
R
2, the rate of cI transcription is enhanced. On the P

R
-promoter plasmid, cro

is transcribed only when operator site O
R
3 is either clear or has a cro dimer bound to it;

either protein being bound to O
R
1 or O

R
2 has the effect of halting the transcription of cro.

The genetic network of λ-phage switches from the dormant lysogenic state to the lytic

growth state in its host bacterium in roughly 20 minutes56. Under the conditions studied,

the λ-switch model showed a significantly faster transition between its stable states than

those seen in the model of the toggle switch. This indicates that the properties of the λ-

switch might offer an advantage in terms of the speed of transitions, indicating that it

might be fruitful to study synthetic models based on this natural system. The future

construction of a synthetic λ-switch, based on modelling results such as these, might

permit more precise statements regarding the source of this advantage.
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isons were made between single-gene networks. The

first compared networks with varying degrees of

repression, whereas the second compared networks

with varying activation. With regard to stability, the

central result was that stability is increased with

repression and decreased with activation (FIG. 6a, b).

More recently, experimental work with simple syn-

thetic networks has supported these stability predic-

tions93. In this work, both a negatively controlled pro-

moter and an unregulated promoter were used to

study the effect of repression on variations in cellular

protein concentration (FIG. 3c). To test the role of nega-

tive feedback, the system was first modelled with

equations similar to those used in the earlier work. To

compare directly with the experiment, a random term

was added to the governing equations and protein

concentration distributions were generated. In this

framework, increased stability corresponds to tighter

distributions (FIG. 6c, d).

The general experimental design used a tet-repress-

ible promoter that directed the production of a tet

repressor–EGFP (enhanced green fluorescent protein)

fusion protein. The system was first studied with repres-

sion, then the negative-feedback loop was eliminated in

two separate designs. The first involved the mutation of

the tet protein and the second entailed operator replace-

ment at the promoter. The results confirmed the predic-

tion that repression decreases the cell-to-cell fluctua-

tions in protein concentration measurements. This was

shown empirically through the measurement of protein

fluorescence distributions over a population of cells.

The findings showed that, for a repressive network, the

fluorescence distribution is significantly tightened.

Taken together with the earlier modelling study, these

results indicate that negative feedback might be used in

cellular design as a means for mitigating variations in

cellular protein concentrations. Because the number of

proteins per cell is typically small, internal fluctuations

are thought to be important and this study is relevant to

issues regarding the reliability of cellular processes in the

presence of internal noise.

Activation. The construction of an activating circuit

seems to be the next logical step. Results from model-

ling have provided an insight into two important

issues pertaining to a positive-feedback network7,94,95.

First, it has been shown that activation should

would be inversely proportional to the prevalence of tet,

so that tet oscillations would emerge as GFP oscillations.

The repressilator showed self-sustained oscillations over

the entire growth phase of the host E. coli cells.

Interestingly, the period of the oscillations was longer

than the bacterial SEPTATION PERIOD, indicating that cellular

conditions that are important to the oscillator network

might be transmitted to the progeny cells.

Although oscillations were observed as anticipated,

the repressilator results raised some additional ques-

tions regarding fluctuations. For example, only 40% of

the cells contained oscillating GFP, and significant varia-

tions in the oscillatory phases and amplitudes were

observed between daughter cells. Further modelling

indicated that, to circumvent the effects of noise, natu-

rally occurring oscillators might need some additional

form of control. Indeed, an important aspect of this

study was its focus on the use of synthetic networks as

tools for biological inference. In this regard, the repressi-

lator work provides potentially valuable information

about the design principles of other oscillatory systems,

such as circadian clocks.

Effect of regulation on stability. One of the earlier

models explored the effect of AUTOREGULATION on equi-

librium stability7. When a gene product is initially in

an equilibrium state, small perturbations to the steady

state will be accompanied by an exponential decay or

rise back to equilibrium. The stability of the fixed

point is given by the time constant in the exponential

response; high stability corresponds to a fast return to

equilibrium, whereas low stability correlates with a

slow return. In this model, two side-by-side compar-

SEPTATION PERIOD

The time that it takes a

bacterium to divide.

AUTOREGULATION

The property of a system

whereby a component of the

system controls its own activity.

See also the definitions for

positive feedback and negative

feedback.
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Figure 4 | Graphical interpretation of the toggle switch equations and illustration of 

the dynamic behaviour of the co-repressive network. a | Analysis of a bistable toggle

network with equal promoter strengths driving the expression of lacI and cI proteins. The plots

show the presence of three steady states: two stable steady states (low lacI, high cI (state 1)

and high lacI, low cI (state 2)) and one unstable steady state. b | Experimental demonstration 

of bistability of a genetic toggle switch in Escherichia coli. The response of green fluorescent

protein (GFP) is shown, which corresponds to expression of the cI gene and is inversely

proportional to expression of the lacI gene. Upon induction with isopropyl-β-D-

thiogalactopyranoside (IPTG), lac repressor protein is removed from its operator site and 

allows expression of cI and the reporter protein, GFP. As observed, after six hours, the 

system exists in a high steady state. The system remains in a high state after removal of IPTG.

Upon induction at high temperature (42 °C), the system returns to the low state and remains 

in the low state after a return to low temperature. The shaded areas indicate periods of

chemical or thermal induction. The symbols represent four toggle plasmids.
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Noise resistance and circadian clocks. The repressilator

study has led to proposals regarding the genetic archi-

tecture that underlies circadian rhythms96. As dis-

cussed above, an interesting property of the repressila-

tor oscillations was the existence of significant

cell-to-cell variations in amplitude and period, appar-

ently arising from small fluctuations in molecule num-

ber92,96. With regard to circadian clocks, it is thought

that the ability to maintain constant periodicity is

paramount98, perhaps implying that these systems

generate oscillations through mechanisms that are

qualitatively different from those of the repressilator96.

In other words, an important design principle for cir-

cadian networks might be that the resulting oscillatory

period is resilient to noise.

To circumvent variability, the use of HYSTERESIS-

based oscillations was recently proposed96. In this

work, it was shown how a model circadian network

can oscillate reliably in the presence of internal noise.

Although the underlying genetic architecture for any

of the various known circadian systems has not been

deduced, it was pointed out that these networks seem

to involve both positive and negative control

elements99. This information was used to construct a

generic model capable of oscillations that are resistant

to fluctuations.

decrease the stability of the equilibrium state (FIG. 6b),

thus leading to variations that are characterized by

wider distributions as compared with networks with-

out feedback. Second, a single-gene network with pos-

itive regulation is capable of bistability. This implies

that a single-gene switch can be constructed as an

alternative to the co-repressive toggle discussed above.

Additionally, such a switch can be used as the basic

element for an oscillator96.

As a concrete example of an activating system, con-

sider a synthetic network that consists of the P
RM

pro-

moter of λ-phage and the cI gene, which encodes the

protein λ-repressor (FIG. 2). The nonlinearity of the

governing equation for this network leads to a bistable

regime in the steady-state concentration of the repres-

sor (FIG. 7a). The bistability arises as a consequence of

the competition between the production and dimer-

ization of the repressor and its degradation. For certain

parameter values, the initial concentration is irrele-

vant, but for those that more closely balance produc-

tion and loss, the final concentration is determined by

the initial value. Because activation is the primary

mode of regulation in eukaryotes97, the experimental

demonstration of bistability in a single-gene network

should provide valuable information regarding gene

regulation in higher organisms.
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Figure 5 | Parameter-space plots and experimental

results of the repressilator. A series of parameter-space

diagrams, in which the α–β plane (protein synthesis rate

versus protein degradation rate) is divided into regions of

stable steady states (light shading) and unstable steady

states (dark shading). The unstable steady states

correspond to parameter values that lead to sustained

oscillations. a | The curve marks the boundary between the

stable and unstable steady states. b | A decrease in the

parameter corresponding to protein cooperativity shows a

smaller oscillatory region. c | A decrease in the efficiency of

repression decreases the oscillatory region further. Scrutiny

of the parameter space in the theoretical model served as

the foundation by which the investigators designed a

biologically plausible three-gene oscillator. d | Experimental

results showing oscillations that are proportional to

expression from the P
L
tetO1 promoter and inversely

proportional to TetR concentration. Cell septation events are

denoted by bars. Variations in the oscillatory properties of

the repressilator network were observed across daughter

cells in the form of phase delays. K
M
, the Michaelis constant (defined as the substrate concentration at half the maximum velocity of the reaction). 

(The dimensionless parameter α is defined as the ratio of the rates of mRNA synthesis and degradation, whereas dimensionless β is the ratio of the rates 

of protein degradation and mRNA degradation.) (Redrawn with permission from REF. 92 © (2000) Macmillan Magazines Ltd.)

HYSTERESIS

As a parameter that represents

some property of a system is

increased, the behaviour makes

a sudden jump at a particular

value of the parameter. But, as

the parameter is then decreased,

the jump back to the original

behaviour does not occur until

a much lower value. In the

region between the two jumps,

the system is bistable.
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on a second plasmid, but here it drives the gene that

encodes the protein RcsA. The crucial interaction is

between RcsA and cI; RcsA is a protease for repressor,

effectively inactivating the ability of cI to control the P
RM

promoter region100 (FIG. 7b).

The central point of REF. 96 was that hysteresis-based

oscillations are comparatively more resistant to noise.

This was shown through a side-by-side comparison of

numerical results obtained from several models. This

conclusion, although intriguing, must nevertheless be

evaluated with caution because the various alternative

models101–104 have many parameters and an extensive

The circuitry of their proposed oscillator can be

understood by considering the following hypothetical

synthetic network. The hysteretic effect in FIG. 7a can be

used to induce oscillations, provided that the network

can be coupled to a slow subsystem that effectively dri-

ves the degradation parameter. This can be done by

inserting a protease under the control of a separate pro-

moter region. The activating network is on one plasmid:

here, the P
RM

promoter controls the expression of

repressor protein cI, which stimulates its own produc-

tion at low concentrations and represses the promoter

at high concentrations. The P
RM

promoter region is also
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Figure 6 | Theoretical predictions and experimental results of an autorepressive gene network. a | The response of

autorepressive gene systems predicts decreases in repressor protein fluctuations with increases in the degree of autorepression

(curves representing increases in the degree of repression: a < b < c < d ). The system with the lowest degree of repression (a)

has the slowest temporal response to perturbation; whereas the system with the highest degree of repression (d) has the

quickest temporal response to fluctuations. b | The response of autoactivated gene systems is opposite to that of autorepressive

systems: increases in the degree of autoactivation (curves representing increases in the degree of activation: a < b < c)

correspond with increases in protein fluctuations. The system with the highest degree of activation (c) has the slowest temporal

response to perturbation and the system with the lowest degree of activation (a) has the quickest temporal response to

perturbations. (Panels a and b redrawn from REF. 7 © (1974) Macmillan Magazines Ltd.) c, d | Experimental confirmation of the

theoretical predictions. c | The autoregulated negative-feedback network in which a tetR–EGFP (enhanced green fluorescent

protein) fusion protein binds to tetO operator sites in the promoter that drives its production (top panel). Green fluorescent

protein (GFP) measurements show a tightly distributed population (bottom panel). d | An unregulated network is constructed by

mutating the DNA-binding domain of the tetR protein (grey box, top panel), thereby preventing binding at the tetO operator sites.

In the unregulated case, GFP measurements depict a wider distribution of fluorescence (bottom panels). Each circuit is

composed of an operator at position V (−33 hexamer) and an operator at position IV (−10 hexamer); untranslated region (red)

and fusion protein (blue). (Panels c and d redrawn with permission from REF. 93 © (2000) Macmillan Magazines Ltd.)
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Concluding remarks

The modelling of gene regulatory networks relies on

characterization of the behaviour of small subsys-

tems, formation of hypotheses about how these sub-

systems interconnect, translation of these hypotheses

into a mathematical model and experimentation to

yield results that indicate necessary changes to the

original hypotheses. Of course, the same general pro-

cedure might be carried out without reduction of the

hypotheses to mathematical form and much of what

we now know about gene regulation has been gar-

nered in this fashion. However, working with equa-

tions has the advantage of making it clear what

assumptions have been made and where contradic-

tions arise when comparisons are made with experi-

ment. Furthermore, the complexity of these systems

is such that it is nearly impossible to predict all of the

consequences of a given hypothesis simply by

abstract reasoning.

The synthetic network studies represent impor-

tant advances in the engineering-based methodology

of network design. In the studies presented so far, the

experimental behaviour is consistent with predic-

tions that arise from in numero modelling.

Furthermore, theoretical models were used to deter-

mine design criteria, which lent support to the idea of

an engineering-based approach to genetic network

design. These criteria included the use of strong con-

stitutive promoters, effective transcriptional repres-

sion, cooperative protein interactions and similar

protein degradation rates.

Although the experimental techniques used in

studies of this nature are certainly impressive, it is clear

that reliable theoretical tools would be of enormous

value. On a strictly practical level, such techniques

could potentially reduce the degree of trial-and-error

experimentation. More importantly, computational

and theoretical approaches will lead to testable predic-

tions regarding the current understanding of complex

biological networks.

Although it has been nearly 30 years since the pio-

neering theoretical work on interacting genetic net-

works6–10, the true significance of these studies had to

await technological advances. Current progress in the

study of both naturally occurring and synthetic

genetic networks indicates that computational mod-

elling should have an important role in the descrip-

tion and manipulation of the dynamics that underlie

cellular control.

side-by-side investigation has not been pursued. In the

future, the construction of a synthetic hysteresis-based

oscillator, such as the one described here, might pro-

vide additional information about the generation of

circadian rhythms.
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Figure 7 | A synthetic system based on the λ-switch.

a | Bifurcation plot for the steady-state concentration of

repressor versus the model parameter γ, representing the

degradation rate. Note that, for values of γ between 3.6 and

5.8, there are three possible steady-state concentrations

(arrows). The top and bottom branch values are stable

(concentrations near these values will remain nearby despite

small fluctuations), whereas the middle branch value is

unstable (any tiny fluctuation will be amplified, driving the

protein concentration towards one of the two stable states on

the upper and lower branches). b | Results from a relaxation

oscillator network in which two identical promoters each drive

the expression of different genes. Promoter P
RM

drives the

expression of λ-repressor protein, which activates its own

production as well as the production of a second protein,

RcsA (regulator of capsule synthesis A), driven by a second

copy of the P
RM

promoter. Protein RcsA cleaves the λ-

repressor protein, which prevents λ-repressor from activating

the P
RM

promoters that transcribe cI and rcsA. Oscillations

arise as the RcsA-induced degradation of repressor causes a

traversal of the hysteresis diagram. Suppose one begins with a

parameter value of γ= 4 and on the upper branch of panel a.

The large value of repressor will then serve to activate the

promoter for the RcsA. An increase in RcsA production acts as

an additive degradation term for repressor and thus effectively

induces slow motion to the right on the upper branch of panel

a. This motion will continue until the repressor concentration

falls off the upper branch at γ≈ 5.8. At this point, with the

repressor concentration at a very low value, the promoters are

essentially turned off. Then, as RcsA begins to degrade, the

repressor concentration slowly moves to the left along the

lower branch of panel a, until it encounters the bifurcation point

at γ≈ 3.6. It then jumps to its original high value, with the entire

process repeating and producing the oscillations.

Links

DATABASE LINKS p53 | RecA | SsrA | RcsA 

FURTHER INFORMATION Modelling work on eukaryotic

cell cycle control | Adam Arkin’s home page | Chaos

special Focus Issue “Molecular, Metabolic, and Genetic

Control” in March | Jeff Hasty’s home page | Farren

Isaacs’lab | James Collins’home page | James Collins’lab

ENCYCLOPEDIA OF LIFE SCIENCES Genetic networks |

Bacteriophage λ and its relatives 
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