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Glassy liquid crystalline systems are expected to show significant history-dependent effects. Two
model glassy systems are the RAN and SSS lattice models. The RAN model is a Lebwohl-Lasher
lattice model with locally coupled nematic spins, together with uncorrelated random anisotropy
fields at each site, while the SSS model has a finite concentration of impurity spins frozen in random
directions. Here Brownian simulation is used to study the effect of different sample histories in
the low temperature regime in a three dimensional (d = 3) model intermediate between SSS and
RAN, in which a finite concentration p < pc (pc the percolation threshold) of frozen spins inter-
acts with neighboring nematic spins with coupling W . Simulations were performed at temperature
T ∼ TNI/2 (TNI the bulk nematic-isotropic transition temperature) for temperature-quenched and
field-quenched histories (TQH and FQH respectively), as well as for temperature-annealed histories
(AH). The first two of these limits represent extreme histories encountered in typical experimental
studies. Using long-time averages for equilibrated systems, we calculate orientational order param-
eters and two-point correlation functions. Finite size-scaling was used to determine the range of the
orientational ordering, as a function of coupling strength W,p and sample history. Sample history
plays a significant role; for given concentration p, as disorder strength W is increased, TQH systems
sustain quasi-long-range (QLRO) and short-range-order (SRO). The data are also consistent with a
long-range order (LRO) phase at very low disorder strength. By contrast, for FQH, only LRO and
QLRO occur within the range of parameters investigated. The crossover between regimes depends
on history, but in general, the FQH phase is more ordered than than the AH phase, which is more
ordered than the TQH phase. We detect also in the QLRO phase a domain-type structural pattern,
consistent with ideas introduced by Giamarchi and Doussal [Phys. Rev. B 52, 1242 (1995)] on super-
conducting flux lattices. In phases in which short-range exponential order occurs, the orientational
correlation length in the weak-disorder limit obeys Larkin-Imry-Ma scaling ξ ∼ D−2/(4−d).

PACS numbers: 61.30.-v, 61.30.Jf, 61.30.Dk, 61.30.Hn

I. INTRODUCTION

It has long been known that the phase diagrams of flu-
ids in finite geometries are shifted as compared to their
bulk analogues [1]. Examples of such system are lay-
ers (which are effectively two-dimensional), cylindrical
pores (effectively one-dimensional) and spherical pores
(effectively zero-dimensional). A general term to de-
scribe this phenomenon is capillary condensation, al-
though strictly speaking this merely describes the finite-
geometry-induced temperature shift in the liquid-vapour
transition. Modern liquid-state theory has expended
much energy in relating phase boundary shifts to the bal-
ance between intermolecular potential energy and surface
potential energy [2]. In addition the fluctuation-induced
broadening of phase boundaries in reduced-dimensional
systems has also been the subject of much attention in
the statistical mechanical community [3].

In liquid crystals (LCs), the presence of orientational
degrees of freedom, and in particular, competition be-
tween surface anchoring and Frank-Oseen elasticity, can
complicate this picture. Sheng [4, 5], and after him, many
other workers (e.g. [6–8]) generalized capillary conden-

sation results to the nematic liquid crystal case. Inter-
estingly, in a layer-like pore, the dependence of the phase
transition temperature on inverse pore thickness r−1 is no
longer linear (and dependent on some some combination
of surface free energies), but now includes an elasticity-
dependent r−2 term [9]. But experiments on small pores
are difficult, precisely because they are small. Typical ex-
periments on LC in pores involves not just a collection,
but rather an aggregation, of pores. The system itself
will be porous, and although the local geometry of an un-
derlying matrix may be, for example, largely cylindrical,
the porous system will often be a continuously connected
system in which pores run into each other, and the order
parameter in one pore will be, at least weakly, correlated
with that of its neighbor.

Thus experiments designed to probe the phase behav-
ior of LCs in individual pores [10, 11] necessarily found
themselves, at least to some extent, rather probing the
behavior of LCs in porous systems. And indeed, such
systems carry some extra intrinsic interest with possible
technological implications, for field-induced alignment in
such materials may carry the potential for diffraction-
based rather than polarization-based switchable devices.
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Experimental studies have been carried out in porous sys-
tems, using a variety of porous media, a variety of LCs
in both nematic and smectic phases, and also using a
variety of experimental techniques.
The situation in the mid-1990s was reviewed in the

multi-author book edited by Crawford and Žumer [12].
In this paper we confine our interest to the nematic
and isotropic phases. Many experiments have been re-
ported using the nCB series, with n ranging from 5 to
8. Among experimental techniques used have been vari-
ous types of NMR studies [13–15], magnetically-induced
birefringence [16], electro-optics [17], static and dynamic
light scattering [18–22], various types of calorimetry
[10, 19, 20, 23–28], dielectric spectroscopy [13, 29] and
cross-polarized microscopy [25]. Porous systems of a
number of different related types have been employed,
e.g. anopore-membrane gels [20, 23], silica aerosil disper-
sions [15, 25, 26, 30–32], membrane filters [22], porous
glass [13, 16, 27, 28], solid polymer matrix [17], silica-
particle-based random gel [14, 17, 18], silica aerogel
[19, 21] and jammed aqueous laponite suspensions [33].
In general, transitions are rounded, order parameters re-
duced (with the degree of reduction depending on pore
size), and long-range order in the nematic phase is lost.
Much theoretical work on nematic LCs in porous media

exploits analogies with so-called random anisotropy mag-
nets (RAM), which are idealized lattice models of amor-
phous alloys containing rare earth metals. Harris, Plis-
chke and Zuckermann [34] introduced a lattice spin model
to describe these systems, which included ferromagnetic
interactions−Jmi·mj between spinsm neighboring sites

i and j, together with an interaction −D (mi · ni)
2
at

each site, with ni a random unit vector at site i provid-
ing a random anisotropy at site i:

H = −1

2
J
∑

{i,j}nn

mi ·mj −D
∑

i

(mi · ni)
2
. (1)

This system provides a textbook example of the im-
portance of dimensionality to the determination of the
ground state, and consequently the phase diagram and
statistical mechanics, of random systems. Considerable
attention has been given to comparison of the Hamil-
tonian of eq.(1) to spin-glass models [35]. In that case,
there is no random field, but rather a random interaction
between neighboring sites.
For the HPZ RAM model, an argument due to Larkin

[36] and Imry and Ma [37] was used (see e.g. Chud-
novsky [38]), but also Pelcovits et al.[39]) to show that
for lattice dimension d less than 4, even for an infinites-
imally small degree of randomness D, the magnetically
ordered (or long-range order LRO) ground state is un-
stable with respect to the formation of Larkin-Imry-Ma
(LIM) domains whose size ξ ∼ D−2/(4−d) (and whose size
diverges as d → 4). Thus in physical dimension d = 3,
ξ ∼ D−2, diverging, as anticipated, as the randomness

D → 0. Such a (low temperature) phase would possess a
two-point orientational correlation function decaying ex-
ponentially with distance. High temperature correlations
also have this property, and so there would be no dis-
continuity between low and high temperature properties.
The resulting phase is said to possess short-range order
(SRO), even though, of course, the relevant length scales
are now much larger than the interparticle distance, gov-
erning the decay of the high temperature orientational
correlations.
An alternative argument, due to Aharony and Pytte

[40], suggested that in fact the low temperature state
for these systems does not contain LIM domains, but
rather quasi-long-range order (QLRO). The magnetic
correlations in the low temperature state fall off alge-
braically, rather than the exponentially as in the LIM
case, although the LIM theorem destabilizing the mag-
netic ground state remains true. Here the magnetic phase
transition is preserved in the presence of randomness, al-
though its properties may alter significantly. Other work-
ers have concentrated, particularly in computer simula-
tions, on glassy features of random anisotropy magnets,
such as coercivity and remanence [41, 42], noting that in
many circumstances, the properties of low temperature
phases, although non-magnetic in some formal sense, are
nevertheless history-dependent, as in spin-glasses.
The use of spin lattice models to examine general fea-

tures of the nematic-isotropic transition, and more gen-
erally of the nematic LC phase, goes back to work of
Lebwohl and Lasher in 1972 [43]:

H = −1

2
J
∑

{i,j}nn

P2 (mi ·mj) , (2)

where P2(x) is the second Legendre polynomial. The
analogy with the HPZ model of (1) (itself a modified
version of the exhaustively-studied Heisenberg model) is
evident. The lattice model of eq.(2) completely neglects
liquid crystalline translational degrees of freedom. How-
ever, there is a justification for this apparently negligent
step. Fabbri and Zannoni [44] simulated this model using
the Monte Carlo method. They measured the magnitude
of (TNI − T ∗)/T ∗, where TNI is the isotropic-nematic
transition temperature, and T ∗ the implied temperature
at which the isotropic phase becomes unstable (mea-
sured by extrapolating susceptibility data). Whereas the
Maier-Saupe mean field theory [45] predicts that this
quantity is ∼ 0.1, [44] predicts a figure down by a factor
of 20, in very close agreement with experimental mea-
surements by Zink and de Jeu [46].
Two lattice models based on this paradigm have been

used to examine nematic LCs in pores. Similar models
have also been used in the context of nematic elastomers
[47, 48]. Related free energy models have been examined,
using mean field [49–52] and replica trick-renormalization
group methods [47, 48, 53–56]. The consensus of the lat-
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ter set of models is that there should be low temperature
QLRO, and in particular Feldman [53] has predicted the
QLRO exponent to be universal (i.e. independent of the
degree of randomness).
The first lattice model is the Random Anisotropy Ne-

matic [49–52, 57–60]. This is the direct Lebwohl-Lasher
nematic analogue of the HPZ model:

H = −1

2
J
∑

{i,j}nn

P2 (mi ·mj)−D
∑

i

P2 (mi · ni) , (3)

where as in eq.(1), the vector ni is a random vector at
site i of the regular lattice, and all sites are subject to
the random anisotropy term.
The second lattice model is the SSS (sprinkled silica

spin) model [22, 61–63], in which a proportion p of sites
in a Lebwohl-Lasher lattice are frozen:

H = −1

2
J
∑

{i,j}nn

P2 (mi ·mj) , (4)

subject to a random proportion p of sites k being fixed
along (different) random directions nk. Thus, whereas
the porosity of the underlying matrix is controlled by the
parameter p in the SSS model, it is controlled implicitly
by changing the parameterD in the RAN model. Experi-
ence in statistical mechanics might suggest, however, that
both models reflect some features of the surface-bulk frus-
tration implicit in nematic porous systems, that many
general features of their statistical mechanics, both equi-
librium and non-equilibrium, would be held in common,
and that the field theories which describe long-distance
behavior of the two models would likely be very similar.
The model discussed in this paper combines features of
both the RAN and the SSS models.
Simulation studies of the lattice models are equivocal,

perhaps because, as pointed out by Fish and Vink [64],
in these random systems lack of self-averaging over ran-
domness can cause problems in data interpretation. In
the RAN model, Cleaver et al. [49] found that the low
temperature phase of the RAN model, at least for one
value of D, exhibited QLRO, while Chakrabarti [58] as-
serted that there was a value of D below which LRO
was retained. Extensive simulations [65, 66] suggest that
LRO is lost even at low D in the analogous magnetic
models. The Larkin-Imry-Ma theory in the RAN case
[49] suggests that the LRO should always be unstable
at least with respect to the formation of domains, with
short-range order, and this is in general what has been
found in a number of studies on the SSS model [22, 61–
63].
However, there are history-dependent features at low

temperatures in the SSS model. Zero-field cooled (ZFC)
and field-cooled (FC) samples behave differently, and the
history dependence is related to pinning of disclination
lines [63]. Likewise in the simulated HPZ model, the
magnetic analogue of the RAN model, quenched samples

exhibit LIM domains [65]. However, slowly cooled (an-
nealed) samples possess non-universal QLRO, with the
QLRO exponent non-universal (interestingly, in appar-
ent disagreement with the predictions of ref.[53]) and de-
pending continuously on the disorder parameter D.

This paper presents a simulation study, using a
Brownian relaxation algorithm, which focuses on this
history-dependence, where understanding is still ex-
tremely patchy. In particular, we investigate the impact
of history on nematic structures in a model of a nematic
in a porous system. The underlying model, as discussed
above, is Lebwohl-Lasher [43] lattice model with parti-
cles on sites interacting with nearest neighbors through a
traditional second Legendre polynomial interaction. The
model (which we specify mathematically in the next sec-
tion) is intermediate in character between the SSS and
RAN models. The randomness in the system is speci-
fied thorough randomly distributed impurities of concen-
tration p. With each impurity site is associated a ran-
domly distributed local easy axis, and the particle at each
such site is constrained to align in the direction of local
easy axis. The impurity sites are coupled with neigh-
boring mobile sites through a Lebwohl-Lasher interac-
tion of strength W which may differ from the interaction
strength J between the mobile Lebwohl-Lasher sites.

Our paper examines LC orientational ordering proper-
ties, over a range of degrees of randomness, as defined by
parameters p and W , and also over a number of temper-
atures T . As indicated above, we concentrate, although
not exclusively so, on the effect of sample history. In
this context, “sample history” may indicate whether the
system has been cooled quickly (“quenched”) or slowly
(“annealed”), whether it has been cooled in a field (FC)
or in the absence of a field (ZFC) , and whether there is
some subsequent history (i.e. has the external field been
changed/removed and if so has this occurred suddenly or
smoothly). The consequence of changing the history can
be to change the bulk ordering properties of the sample,
which might exhibit, as discussed above, LRO, QLRO or
SRO, with in principle possible additional differences in
relaxation lengths. Our principal result is to show that,
particularly in the weak interaction regime, sample his-
tory does indeed impact strongly on the nature of the
observed low temperature phase.

The plan of the paper is as follows. The model, and
the algorithms that we use to study it, are described in
Sec.II. Some cluster mean field arguments, which are
necessary to understand the results of our simulations,
are developed in Sec.III. The simulation results are pre-
sented Sec.IV. In Sec.V we draw some conclusions from
our study.
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II. MODEL

A. Interaction energy

The model consists of molecules placed on the points
of a three-dimensional simple cubic lattice with nearest
neighbor interactions. It is based in general on the LC
lattice model of Lebwohl and Lasher [43], and in detail
on the RAN [49] and SSS [61] models of LCs in pores.
Nematic spins representing LC molecules are placed at
a fraction (1 − p) of sites. These are free to rotate in
the torque field of their neighbors. Frozen nematic spins
(impurities) are placed at a fraction p of sites selected
at random, and randomly distributed. Lengths in the
system are measured in terms of the lattice parameter
a0. A simulation box contains N = L3 sites, where L is
the dimension of the box. In production runs we typically
set L = 70, but some of our studies involve comparison
of the properties of systems of different sizes [67].
The orientation at lattice site i is denoted by unit vec-

tor Si, with, as is usual in discussion of nematic systems,
states ±Si taken to be physically equivalent. We distin-
guish between LC molecules, for which Si ≡ si (which we
refer to as nematic spins), and the impurities, for which
Si ≡ mi (which we refer to as impurity spins).
The total interaction energy of the system H, in an

external global ordering field B = BeB, is given as the
sum over lattice sites

H = −1

2

∑

{i,j}nn

Jij (Si · Sj)
2 −

∑

i

(B · si)2 , (5)

where energy double sums over lattice points are taken

over nearest neighbors and the factor of
1

2
is included to

avoid double counting of pair interaction energies. The
first term represents the intermolecular interactions. The
second term represents the interaction of LC spins with
the magnetic field. This is quadratic in field magnitude
B, and tends to align the LC spins parallel or antiparallel
to the field direction eB.
At this stage the sum is over all sites, whether LC or

impurity. We now specify that:

(a) Jij = J > 0 when {i, j} are both nematic spins;

(b) Jij = W when one of the spins is a nematic spin
and the other is an impurity;

(c) Jij = 0 when both spins are impurities.

The interaction energy J sets the energy scale for the
system. In our calculations, we set this quantity equal to

unity. We then measure temperatures T̃ =
kBT

J
, where

kB is the Boltzmann constant, T is the absolute temper-

ature, and frozen spin interactions W̃ =
W

J
in terms of

J .

Note that local ordering interaction between impurities
and LC molecules might replace the high-temperature
isotropic phase with the paranematic (P) phase exhibit-
ing a finite degree of orientational ordering. However,
in general, the frustration due to the spatial variation
of frozen impurities decreases the degree of ordering in
the low-temperature orientationally ordered phase. Such
strongly frustrated states exhibiting glassy features are
commonly referred to as the speronematic (SN ) phase
[50].

B. Simulation method

The simulation method involves relaxing nematic spins
subject to a Langevin equation with thermal noise. The
magnitude of local spins is conserved, and simulations
include this normalization constraint |si| = 1 by adding
Lagrange multipliers λi into the functional H∗, defined
as

H∗ = H+
∑

i

(si.si − 1)λi. (6)

At a finite temperature equilibrium or metastable
states are reached via a Langevin-type relaxation process.
We follow the specific technique of Bradač et al. [68], who
themselves followed a general method introduced by Er-
mack and McCammon [69] (see also Dickinson et al. [70]
and Ying and Peters [71, 72]). The LC spins si obey a
stochastic Langevin equation:

∂si
∂t

= − Dr

kBT

∂H∗

∂si
+ fi, (7)

where Dr is a rotational diffusion coefficient for spins
on the sphere and fi is a stochastic term obeying the
thermal noise relation 〈fi(t)fj(t′)〉 = 2Drδ(t−t′)δij . The
first term then corresponds to the restoring mechanical
torque, and the second term is a random torque, whose
mean absolute magnitude ensures thermalizations.
We now discretize eq.(7), yielding the following equa-

tion for the change of nematic spin components in a time
step ∆t:

si(t+∆t) = si(t)−
2Dr∆t

kBT
Ri(t) + ∆ST . (8)

Here

Ri =
1

2

∂H∗

∂si
=
∑

j

Jijg(Si,Sj) + g(Si, eB), (9)

where g(a,b) = a.b ((a.b) a− b) and ∆ST = fi∆t rep-
resents the random thermal fluctuations.
We henceforth set J = 1 and therefore measure all

the quantities in terms of J . We introduce a dimen-
sionless time ∆t̃ = Dr∆t and dimensionless temperature
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T̃ = kBT/J . In simulations we set ∆t̃ = 0.016 in order
to obtain sensible reference results in the Lebwohl-Lasher
nematic model in the absence of disorder [44]. This model
exhibits first-order isotropic-nematic (I-N ) phase transi-

tion at T̃c ∼ 1.1. In subsequent work we suppress the
tilde.

Using this method we calculate for given conditions
(i.e., concentration of impurities and coupling strengths)
the properties of steady-state quasi-equilibria, for which
macroscopic properties of the system no longer change
with time. These macroscopic states may be true equi-
libria, or may be metastable states stabilized by rela-
tively high energy barriers. A typical simulation run
takes about 2 × 104 sweeps in order to reach a steady
state, where within each sweep all nematic spin orienta-
tions are updated once.

In order to probe the effect of sample history on struc-
tural properties deep in the speronematic phase, we reach
a macroscopic state defined by temperature T using three
qualitatively different procedures. These involve:

(i) Quenching the system from an isotropic phase to
the temperature T . We denote this history as a
temperature quenched history (TQH).

(ii) Annealing the system to temperature T . This in-
volves gradually decreasing the temperature from
the isotropic phase. At each temperature we equi-
librate a structure and use its configuration for the
starting profile at the next slightly lower tempera-
ture. We denote this history as an annealed history

(AH).

(iii) At temperature T we start simulations from a
homogeneously aligned sample along a symmetry
breaking direction eB. This mimics an experimen-
tal setup in which the sample is exposed for long
period to a strong external ordering field B = BeB.
We denote this history as a field quenched history

(FQH).

We refer to these initial configurations as (i) to (iii)
respectively. TQH (i) and FQH (iii) represent extreme
complementary initial conditions, and are thus expected
to manifest extreme properties. The AH history (ii) may
be regarded as representing an intermediate situation,
and of course also corresponds to common experimental
conditions.

C. Order parameters and correlation functions

From the steady states of a system we calculate the
global tensor order parameter Q(g), average local tensor
order parameterQ(l) and the two-point orientational cor-
relation function G(r) = G(r). The nematic spin tensor

at site i can be defined in terms of the local spins by

qi =
1

2
(3si ⊗ si − I) . (10)

The global order parameter tensor describes average
global orientational degree of ordering of the system and
is the nematic spin tensor averaged over all sites:

Q(g) = 〈q〉i =
1

2
〈3si ⊗ si − I〉i

=
1

N

∑

i=1,N

1

2
(3si ⊗ si − I) . (11)

The brackets < ... > denote spatial averaging, I is the
identity matrix and ⊗ stands for the tensor product. In
a low temperature system, the mean global scalar order
parameter of the system S can be identified with the
largest eigenvector of Q(g) [73].
The local order parameter tensor describing average

local orientational degree of ordering of the system is
defined as [74]

Q(l) =
1

N

∑

i=1,N

1

Nnn

∑

j=1,nn

1

2
(3si ⊗ sj − I) (12)

where the index j runs over all the neighbors (their num-
ber is Nnn) of site i. The average local scalar order pa-
rameter s is defined as the largest eigenvector of Q(l).
The nematic two-point correlation function G(r) is de-

fined by

G(r) =
1

2

〈
3 (si · sj)2 − 1

〉

r
==

3

2
〈qi · qj〉r (13)

where < ... >r is the average over those LC spin-pairs
which are separated by the distance r, and in principle
the average is also taken over different equivalent random
spin configurations.
The spatial dependence of G(r) gives information

about the nature of the phase. For both LRO and SRO
one expects G(r) to decay exponentially with distance
toward a saturated value [49]. In our simulations, we fit
G(r) with ansatzes

(a)

G(0)(r) = a0e
−kr + b0, (14)

or

(b)

G(1)(r) =
a1e

−k1r

r
+ b1, (15)

where a0, b0, a1, b1, k and k1 are adjustable param-
eters. From eq.(13), it is evident that for a sufficiently
large system, b0 ∼ b1 ∼ Tr(Q2) ∼ S2.



6

Thus, if the phase possesses SRO, it is expected that
b0 = b1 = 0 while the length scale ξ = 1/k characterizes
the size of correlated nematic clusters. A simple mean
field theory [49], based on ideas due to Larkin [36] and
Imry and Ma [37] suggests that under a random-field
perturbation a homogeneous nematic state is unstable
with respect to break-up into clusters. The average size

of these clusters should scale as ξ ∼ D− 2

4−d , where D is
a measure of the strength of the disorder, and d is the
space dimensionality. A cluster mean-field-type estimate
given in sec III is consistent with this analysis, and for
d = 3 it suggests ξ ∝ 1/(W 2p).
An alternative scenario, observed in our previous study

of such a system [49], involves algebraic decay of corre-
lations, or quasi-long-range order (QLRO). We fit these
correlations using the ansatz

G(2)(r) =
a2
rα

+ b2 (16)

and a2, b2 and α are adjustable parameters. One expects
G(2)(r → ∞) → 0. However, the decay of correlations
with distance is relatively weak, and finite-size effects are
thus expected to be important. In particular, some of the
present authors found [49], that direct measurement of α
and b2, even for a large system, could give misleading
results. Rather, better estimates for the power law α
could be determined using a finite size scaling analysis
[73] of S = S(L), using the relationship

S ∝ L−γ . (17)

Specifically [49], for SRO, the observed mean order pa-
rameter in a system of N particles would be given by
S ∼ 1/

√
N = L−3/2, implying γ = 3/2 in this case. By

contrast, in the case of LRO, the order parameter tends
to a finite non-zero value for large system size L , and
hence γ = 0. QLRO is signalled by intermediate values
of γ, with γ = α/2, so long as α ≤ 3, although if α ≥ 3,
the SRO finite-size scaling result is recovered.

III. MESOSCOPIC ESTIMATE OF

STRUCTURAL AND PHASE BEHAVIOR

A. Formulation of problem

In this section we develop estimates of phase and struc-
tural LC behavior in presence of impurity spins within
the Larkin-Imry-Ma mesoscopic approach [36, 37]. In
this picture, randomly distributed impurities produce
random-field-type disturbances, with the consequence
that the system adopts a domain-type pattern. As dis-
cussed in section I, it appears that true equilibria do not
follow this scenario, although with some histories it is
observed. This picture serves as the reference mean field
model for such random field models.

We describe nematic ordering at mesoscopic level in
terms of the local uniaxial tensor order parameterQ(u) =
s(n⊗n−I/3), with n the nematic director field. Impuri-
ties are homogeneously distributed within the sample of

volume V with volume concentration p =
Nimvim

V
, where

vim determines the volume of an impurity and Nim is the
total impurity number inside the volume V .
The total free energy is given by [49]

F =

∫
(fc + fe) dV +

∫
fidS, (18)

where the first two terms are bulk terms, the last term is a
surface term describing the interaction at impurity-liquid
interfaces, fc is a Landau condensation term representing
the local cost of nematic ordering, and fe is an elastic
gradient term.
The condensation term is given by

fc =
3

2
a(T − T ∗)TrQ(u)2 − 9

2
bTrQ(u)3 +

9

4
c
(
TrQ(u)2

)2
,

(19)
where quantities a, b, c are positive material constants
and T ∗ stands for the bulk isotropic supercooling tem-
perature. The elastic term favors spatially homogeneous
ordering and is approximated by an isotropic gradient-
squared term:

fe =
Ln

2

∣∣∣∇Q(u)
∣∣∣
2

, (20)

where Ln is temperature independent elastic constant.
The interfacial term is modelled by

fi = −W

2
m ·Q(u)m, (21)

where W is a (positive) anchoring strength and m rep-
resents the locally preferred orientation, |m| = 1. This
ansatz locally favors alignment of n and m. We assume
that impurities are essentially homogeneously distributed
with concentration p and orientational probability distri-
bution of m is spatially isotropic.
We note [49] that the LC-impurity interaction per-

turbs the high temperature isotropic phase, replacing
it by a paranematic (P) phase, exhibiting a finite but
orientationally varying degree of orientational ordering.
Within the Larkin-Imry-Ma picture adopted in this sec-
tion, the low temperature phase exhibits SRO, but with
a locally significant degree of ordering, modulated by a
domain-type structure, often referred to as the sperone-
matic (SN ) phase [50].

B. Domain pattern

In the Larkin-Imry-Ma picture, the disorder breaks the
speronematic system into domains of characteristic size
ξ. We now estimate ξ in this phase.
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We first consider the mean free energy of a single do-

main of volume Vd ∼ ξd, within which there are N
(d)
im

impurities, with surface area aim per impurity. Within
each domain the nematic director may be regarded as
aligned, with order parameter s. The relevant free en-
ergy is given by:

∆Fd ∼
(
a(T − T ∗)s2 − bs3 + cs4 +

Lns
2

2ξ2

)
Vd

−1

3
N

(d)
im Ws 〈P2〉 aim. (22)

where 〈P2〉 = 1
2

〈
3(n ·m)2 − 1

〉
is the mean value of the

2nd Legendre polynomial of (m · n) within the domain.
The final term in eq.(22) comes from evaluating eq.(21)
over the domain, while the penultimate term evaluates
approximately the effect of the gradient term. The fi-
nal term in eq.(22) can now be reexpressed in terms of
ξ as follows. We first note that in principle the orienta-
tional distribution of orientations m is isotropic. In an
infinitely large domain one expects 〈P2〉 = 0 . However,
the cancellation will not be precise, and according to the
central limit theorem, one expects

〈P2〉 ∼
(
N

(d)
im

)−1/2

. (23)

The number of impurities and the characteristic impurity
separation lim are related by

N
(d)
im ∼

(
ξ

lim

)d

, (24)

where

lim ∼
(
vim
p

)1/d

. (25)

An expression for ξ is obtained by balancing the ξ-
dependent elastic and interface contributions in ∆Fd. For
d = 3 it follows

ξ ∼ 9L2
ns

2

4pW 2

vim
a2im

. (26)

On the other hand, the Larkin-Imry-Ma prediction for ξ
is given by [49]

ξ ∼ D−2/(4−d), (27)

yielding an expression for the effective disorder strength
for d = 3:

D ∼ 2
√
pWaim

3Lns
√
vim

. (28)

C. Phase behavior

We now consider the phase behavior in three dimen-
sions. In our estimates, we neglect temperature depen-
dence of ξ. It is convenient to introduce the following
new scaled variables:

(i) scaled order parameter q = s/s0, where s0 = s(T =
TNI , p = 0);

(ii) dimensionless temperature τ =
T − T ∗

TNI − T ∗
, where

TNI = T ∗+
b2

4ac
denotes the bulk isotropic-nematic

phase transition;

(iii) ξ(0)n =

√
Ln

a(TNI − T ∗)
, the nematic order parame-

ter correlation length calculated at T = TNI ;

(iv) d(0)e =
Lns

2
0

Ws0
, the nematic surface extrapolation

length likewise calculated at T = TNI .

Using this scaling, we can rewrite the free energy in
eq.(22) in nondimensional form:

f̃ = ∆Fd/
(
Vda(TNI − T ∗)s20

)

= q2τ − 2q3 + q4 +
ξ
(0)2
n

2ξ2
q2 − qσ, (29)

where

σ =

√
p

3

aim√
vim

ξ
(0)2
n

d
(0)
e ξ3/2

(30)

is a nondimensional measure of the degree of disorder.
In the limit of strong enough anchoring, where ξ ∼

lim ∼ (vim/p)1/3, and for spherical impurities of radius
r, one obtains

σ ∼ pξ
(0)2
n

d
(0)
e r

. (31)

It is now possible to link this model to the theory of ne-
matics in a constant external field [75]. This system is
governed by an equation identical to that of eq.(29). In
this case, so long as σ < σc ≡ 0.5, the SN-P phase tran-
sition is discontinuous, and takes place at critical scaled
temperature τc = 1 + σ. By direct analogy, in this case
also the phase transition shift is given by:

∆Tc = TNI − Tc ∼ (TIN − T ∗)

(
ξ
(0)2
n

2ξ2
− p

ξ
(0)2
n

d
(0)
e r

)
. (32)

Within this picture, the phase transition temperature
thus decreased by the elastic distortions, but increased
by the local interactions. However, for σ > σc, beyond
the nematic-paranematic critical point, the SN−P phase
transition would be replaced by gradual changes in de-
gree of ordering with increasing T .
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IV. SIMULATION RESULTS

A. Relaxation to steady state

Our main interest is to study memory effects in a non-
ergodic regime, in which the steady-state configuration
set depends on the history of the sample. We study in de-
tail steady-state properties subject to two extreme cases,
represented by the temperature quenched history (TQH)
and field quenched history (FQH). We also present a
small number of simulations for samples subject to an
annealed history (AH), which we regard as an interme-
diate case.
We confine study to relatively low temperatures (well

below TNI), where the local degree of order is substan-
tial. We first show how quantities of interest approach
a steady state. The first two figures show examples of
the time evolution of the energy H (Figs. 1), and of the
order parameter s (calculated from Q(g), see Eq.(11) )
(Figs. 2), in each case subject to FQH at T = 0.5. . In
each simulation the simulations continue typically 5000
sweeps after a plateau in H dependence was reached at
a given temperature.

B. Hysteresis

In section III, we estimated phase behavior for differ-
ent impurity-LC interaction strengths. Within a Larkin-
Imry-Ma cluster picture, it is expected that a first order
transition to a low temperature phase is retained for a
low degree of disorder. But for strong enough disorder,
this might be replaced by gradual evolution of nematic
ordering. In this context, strong enough disorder may be
the result of a high proportion of disordered sites, or of
strong coupling with a smaller proportion of sites. If the
transition to low temperature behavior is first-order, one
might expect the behavior of “up” and “down” temper-
ature scans be different, even when the scans are very
slow, as a consequence of the necessity to nucleate a new
phase. On the other hand, the absence of a first-order
transition and a gradual change of properties would only
lead to small differences between “up” and “down” tem-
perature scans.
We examine this hypothesis in Figs. 3, in which we

plot some representative examples of the evolution of the
degree of orientational order as a function of tempera-
ture for a set of different impurity concentrations with
L = 70, W = 1. In this figure we compare the degree
of nematic order in systems which are first annealed in
the absence of an external field from a high tempera-
ture (T = 1.3) down to zero temperature (this is the AH
history discussed above), and then subsequently slowly
heated back to the initial temperature. At each stage,
the temperature is reduced or increased by 0.02 in scaled
units, starting with an equilibrated configuration at the

previous temperature. The system is then allowed to re-
lax to a steady state, following the protocol shown in
Figs.1 and 2.

These systems are expected [49, 53–55] to exhibit
QLRO; we see confirmation of this expectation below.
Thus the absolute value of s(T ) is expected also to be
L-dependent. However, differences between the “up”
and “down” values of s(T ), or equivalently a peak in
∆s(T ) = s(up) − s(down) (Fig.3b) nevertheless serves as a
signal of history-dependent hysteretic effects. The peak
in ∆s(T ) seems likely to be related to the first-order
transition (which would give a qualitatively similar sig-
nature) from an isotropic phase to a speronematic phase
predicted in the Larkin-Imry-Ma picture, even though
this picture is somewhat simplified.
We observe that as p increases, and disorder strength-

ens, the ∆s(T ) peak close to the onset of speronematic
order becomes less pronounced, corresponding to a less
history-dependent system. By p = 0.25, corresponding
to a higher degree of disorder, it has essentially disap-
peared, corresponding to a smooth onset of local order.
However, the present study does not yet determine the
exact character of the phase transitions for a given choice
of coupling parameters. To investigate this problem, a
more detailed finite size analysis would be required.

C. Phase structure

We now turn to the nature of the phase and its depen-
dence on system history. As discussed in sections I and II,
we may expect, depending on system histories and choice
of parameters, phase structures possessing one of SRO,
LRO or QLRO to occur. Such phase structures can be
detected either from the properties of orientational corre-
lation function G(r), or by a finite-size scaling analysis of
the orientational order parameter dependence on system
size. In Fig. 4, we show some typical correlation function
profiles G(r).

In case of the SRO or QLRO ansatzes, we note the
possibility of more than one possible form of G(r) (e.g.
eqs.(14), (15), 16)). In the case of SRO, the best fit is
given by eq.(14), and we thus henceforth use this form,
G(0)(r) = a0e

−kr + b0, to estimate average SRO domain
size. From the G(r) profile we are able in principle to
extract the nature of the phase structure. However, in
practice, in several cases the quality of the G(0)(r) (i.e.
SRO) and G(2)(r) (eq.(16), i.e. QLRO) fits turn out to
be comparable. As a result it is difficult to establish the
properties of the phase structure conclusively using the
correlation function data alone.

As an alternative, we have analyzed the order parame-
ter results of a set of simulations at different sizes, using
finite-size scaling procedure, following Eq.(17). In Figs.
5, we show the results of finite-size-scaling analyses of
S(L) for sets of systems corresponding to those shown in
Fig. 4. We see strong evidence that, depending on the
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FIG. 1. Examples of time variation of the interaction energy in units of initial isotropic state energy H0, at relatively low
temperatures using FQH. In both cases, p = 0.1, T = 0.5, L = 80. (a) W = 1.5, (b) W = 3.
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FIG. 2. Typical time variation of degree of local orientational ordering at relatively low temperatures using FQH. In both
cases, p = 0.1, T = 0.5, L = 80. (a) W = 1.5, (b) W = 3.

governing parameters of the system, and the history, all
three phase structures (SRO, QLRO, LRO) can occur.

D. Quenched systems

We now turn specifically to TQH histories. Previous
work with random magnetic models [65] suggests that
such quenches may, at least sometimes, cause the result-
ing phases to exhibit Larkin-Imry-Ma clusters. Further-
more, the mean field analysis of section III suggests a
scaling ξ−1 ∼ W 2p in the weak disorder regime. In Figs.
6 and Figs. 7 we present representative G(r) profiles at

T =0.5 for different values of p and of W .

In both cases, it is apparent that for very weak coupling
(i.e. low p or low W ), the analysis indicates that the
systems may be exhibiting QLRO or even LRO. But for
higher degrees of disorder, the concave form of the log-
log plot strongly suggests SRO, with the range of the
order decreasing as the degree of disorder (either p or
W ) increases.

E. Field-cooled systems

We now consider structures obtained from field-
quenched histories. Some representative profiles at T =
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FIG. 3. History-dependence in annealed (AH) systems. (a) Order parameter temperature-dependence s(T ). “Up” (empty
symbols) corresponds to increasing T (0 ≤ T ≤ 1.3). “Down” (full symbols) corresponds to decreasing T (1.3 ≥ T ≥ 0)(see

text). In all plots W = 1, L = 70. (b) Behavior of ∆s(T ) = s(up) − s(down) (see discussion in text).

0.5 and p =0.1 for different values of W are depicted in
Fig. 8. One sees that in this case either apparent LRO
or QLRO is obtained depending on values of p and W .
For the case shown (p = 0.1) LRO seems to prevail for
W . 0.1 ± 0.05, although this may be a finite-size ef-
fect. Above this regime QLRO obtains over the whole
remaining regime studied.

F. Comparison of histories for specific systems

In the systems which exhibit QLRO, we have carried
out a finite size scaling analysis, This permits γ (see
Eq.(17)) to be inferred. In the case of SRO, theory sug-
gests that γ ≡ 1.5. We suppose that fitting errors may
intrude, for in some cases, our inferred values suggest
γ ≥ 1.5, but it seems likely that this too indicates SRO.
In Fig. 9 we compare the results of TQH (Subsec.

IVD), FQH (Subsec. IVE) and some extra AH simu-
lations. For comparison purposes, these simulations use
the same set of parameters, using T = 0.5, p = 0.1 and
a range of W ∈ [0.4]. In general, as might be expected,
where there are differences between samples with differ-
ent histories, the TQH samples are less ordered than the
AH samples, which in turn are less ordered than the FQH
samples.
For very low values of W ≤ 0.1, the order parameter

results alone could be consistent with long-range order
for the AH and FQH samples. However, the margin of
error does allow these systems to have γ 6= 0 for W 6= 0.
Our results are not sensitive enough to detect in this case
whether there is a critical Wc(p) such that LRO order
holds for W < Wc. For W = 0, these systems should
exhibit an equilibrium low temperature long-range order

phase, which seems likely to be accessible via a field-
quench or an annealing process.
The key result is that although each type of history

seems to indicate QLRO for small W , the precise corre-
lation power law seems to depend on the nature of the
history. The annealed (AH) and temperature-quenched
(FQH) histories give rise to similar behavior, except at
very low values of W , for which, unsurprisingly, the an-
nealed system is more ordered (i.e. γ smaller). At this
value of p, for strong enough values of W , only short-
range order (SRO) remains, but the critical value of W
required to destroy the algebraic order is W ∼ 2 for the
temperature-quenched system, but closer to W ∼ 5 for
the field-cooled system, with the annealed system some-
where in between.

G. Domain-type order

Our finite scaling analysis suggests that for W > 0.1
QLRO is established for FQH. On the other hand for
TQH we obtain either QLRO or SRO. However, fitting
G(r) dependencies by using Eq.(14) or Eq.(16) yields
comparable quality of fits. This suggests that struc-
tural properties of systems exhibit some intermediate
structural profiles (with respect to ansatzs Eq.(14) and
Eq.(16) ). For this purpose we henceforth estimate the
dependence of the correlation length ξ on W and p by
using Eq.(14) for both hystories in the regime W > 0.1.
The results are shown in Fig. 10. For ease of presenta-
tion, we fit the quantity where k = 1/ξ. In order to in-
clude a wide range of {W, p} in this plot, even when other
evidence suggests a QLRO phase, we have estimated do-
main sizes by fitting calculated G(r) profiles using ansatz
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FIG. 4. Examples of orientational correlation functions G(R), demonstrating SRO, QLRO and LRO behavior. (a)G(R) plot.
(b) Corresponding Log-Log plots , showing linear decay in the case of QLRO. Legend: SRO (squares, with disorder parameters
W = 3, p = 0.1 subject to TQH). QLRO (empty spheres, with disorder parameters W = 1.5, p = 0.1, subject to FQH). LRO

(full spheres, with disorder parameters W = 0.01, p = 0.2, subject to FQH). For all simulations, T = 0.5, L = 70.
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LRO: γ = 0; W = 0.01, p = 0.2 (FQH). (b) QLRO: γ = 0.25 ± 0.025; W = 1.5, p = 0.1 (FQH). (c) SRO: γ = 1.75 ± 0.15;
W = 3, p = 0.1 (TQH). All simulations performed at T = 0.5.
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FIG. 6. Variation of G(r) as a function of impurity concentrations p for quenched systems (TQH), at constant impurity strength
W = 1 (T = 0.5, L = 70). (a) natural plots; (b) log-log plots.
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FIG. 7. Variation of G(r) as a function of impurity strength W for quenched systems (TQH), at constant impurity concentration
p = 0.1 (T = 0.5, L = 70). (a) natural plots; (b) log-log plots.

Eq.(14).

An important result is that FQH and TQH yield com-
parable value of ξ for a given set {p,W}. This suggests
that size of imprinted domains are comparable for any
history. However, the average alignment of domains does
depend on the history.

Note that also in case of QLRO fingerprint of a domain-
type pattern might be apparent as already suggested by
Giamarchi and Doussal [76]. Within each domain cor-
relations between nematic spins are apparently stronger.
However, in the case of QLRO the structural crossover
region between neighboring domains is smoother in com-
parison with the SRO case. Estimated values of ξ = 1/k

extracted from fits using Eq.(14) are plotted in Fig. 10a
(full symbols) and Fig. 10b.

Fig. 10b, shows that in the low disorder regime, the
plots of ξ against W for different p collapse closely (al-
though not exactly) onto a single plot if plotted against
pW 2, in agreement with the predictions of eqs.(27),(28).
For higher disorder, the average domain sizes saturate.
The saturation does not follow a universal law. We com-
ment that in any case we expect that in three dimensions,
in any event we expect that ξ ≥ p−1/3, or equivalently,
that domain sizes will not be smaller than the distance
between impurities, and therefore universality would be
lost for higher pW 2.
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FIG. 8. Field-quenched histories. T = 0.5, p = 0.1, L = 70. (a) G(r) for different strengths W . (b) Corresponding Log-Log
plots.
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FIG. 9. Comparison of phase structures derived by FQH (tri-
angles), AH (full squares) and TQH (reversed triangles) for
T = 0.5, p = 0.1 and a range of W . Nature of order indicated
by value of γ obtained from finite size scaling using Eq.(17).
LRO is signaled by γ = 0 confined to very low W . QLRO
0 ≤ γ ≤ 1.5 occurs for intermediate W for TQH and is sta-
ble in the whole regime for FQH. SRO occurs at higher W
in TQH. Structural characteristics for AH are between those
obtained for FQH and TQH.

We note also that if LRO is turned off smoothly (for
whatever reason) as W → 0, then one expects that
lim
W→0

ξ−1 = 0. However, in Fig.10a in this limit one ob-

serves a finite value of ξ(W → 0)−1 which increases with
p. The reason behind this is initial sharp decay in G(r)
dependence in case of LRO for finite temperatures. In
this case 1/k measures order parameter correlation length

ξn, which is always finite. With increasing p effective in-
teractions strength among nematic spins are weakened
due to dilution (ξn ∝

√
Ln in terms of our mesoscopic

model, see Eq.(20)). Consequently, with increasing p the
correlation length is decreasing and k increasing as ob-
served in Fig. 10a.

V. CONCLUSIONS

We have studied the effect of random-field (RF)-like
disorder on orientational LC ordering using a Lebwohl-
Lasher lattice model approach. The models involves a
proportion (1−p) of coupled nematic spins, perturbed by
interaction with impurity spins at concentration p < pc,
with pc the percolation threshold. The impurity spins
are randomly placed with isotropic orientational proba-
bility distribution, and the nematic-impurity interaction
strength is measured by the dimensionless coupling con-
stant W . The time evolution of the nematic spins has
been simulated using Brownian dynamics, involving a
Langevin-type relaxation subject to thermal noise.

This random lattice system is designed to mimic liq-
uid crystals placed in a porous medium. However, we
postpone to future work the interesting question of the
relation between the topology and geometry of the under-
lying porous medium and our model parameters. In gen-
eral, both the amorphous nature of the porous medium,
and lattice models with random pinned impurities, are
expected to exhibit glassy behavior, with the equilib-
rium manifold breaking up into many inequivalent iso-
lated submanifolds, and the existence of strongly history-
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FIG. 10. Dependence of the size k = ξ−1 of Larkin-Imry-Ma domains, obtained by fitting simulation G(r) to the exponentially
decaying form given by eq.(14). In both plots, T = 0.5, L = 70.
(a) ξ(W ) alone, for different values of p; (b) (TQH only); ξ(W 2p) (see discussion in text), (c) S(W ), where S =

√
b0 (see

Eq.(14)).

dependent properties. The RAN [49] and SSS [61] RF
Lebwohl-Lasher lattice models introduced to study liquid
crystals in porous media have exhibited many interesting
properties. Detailed studies of history dependence, how-
ever, which explicitly pertain to glass properties, have
not so far been carried out. Accordingly, therefore, this
study has focused on the influence of system history on
long-time steady state properties.
The steady states which the Brownian dynamics pro-

vides for our RF systems sometimes correspond to ther-
mal equilibrium, and sometimes to metastable states
in which the nematic spins are trapped even after rel-
atively long simulation runs. In our simulations, we
have distinguished temperature quenched history (TQH),
field quenched history (FQH), and annealed history (AH).
TQH and FQH represent two limiting extremes encoun-
tered in typical experimental studies.
In TQH we quench a randomly orientationally dis-

tributed nematic spin configurations (corresponding to
T → ∞) to a low temperature T ≪ T ∗, and then allow
the system to equilibrate, insofar as it is able. In FQH, by
contrast, we allow a set of aligned nematic spins to relax.
The field (of FQH) here is implicitly assumed sufficiently
large for the nematic spins to be initially completely
aligned. In AH the temperature was reduced slowly. The
procedure involved reducing temperature in a step-wise
fashion from a high temperature T ≫ T ∗ and allowing
dynamical relaxation. The initial configuration at a given
temperature is a configuration obtained from a previous
(slightly higher) temperature. The majority of our simu-
lations involved TQH and FQH, which folklore suggests
are less likely to give rise to true thermal equilibria, and
are correspondingly more likely to involve restricted dy-
namical manifolds. However, some AH simulations were
also carried out. We note that this procedure is thought

to broaden the manifold of dynamically accessible states
[77], or in informal language, to favor thermal equilibria.
From the calculated steady-state configuration mani-

folds, we have extracted two-point correlation functions
G(r), and local and global orientational order parame-
ter. Finite-size scaling methods [73, 78] have then been
used to distinguish phases with LRO, QLRO and SRO.
In principle, discrimination between the different types of
correlation functions could also be inferred by fittingG(r)
to the model forms given in eqs.(14),(15) corresponding
to each of these regimes. In practice, however, we have
found in our simulations that finite-size scaling analyses
yield more robust results (see also [49]).
We have simulated system at relatively low temper-

atures (at T ∼ TNI/2) where local degree of order is
substantial over a range of impurity-nematic interaction
parameters W ∈]0, 4], and concentrations p ∈]0, pmax =
0.3]. The maximum concentration pmax < pc ∼ 0.31,
where pc is the percolation threshold.
The main finding of our simulations are as follows. For

TQH LRO, QLRO or SRO seem all to occur. We note
that in random field systems such as those studied in this
paper, LRO is forbidden as an equilibrium phase by the
Larkin-Imry-Ma argument. However, a quench in a ran-
dom system restricts the manifold of accessible states,
and thus the theorem does not apply. It is possible, how-
ever, that in dilute impurity systems such as ours, finite
size effects mimic LRO. Resolution of this point awaits
further study.
However, we can say that for FQH , the SRO regime

is absent. However, the definition of the phases depends
both on an analysis of the correlation function, and on a
finite-size scaling analysis of order parameters in differ-
ent simulations. As a consequence, the crossover between
regimes is difficult to define precisely. We have there-
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fore only been able to estimate crossover values of W

separating LRO-QLRO (W = W
(history)
QLRO ) and QLRO-

SRO (W = W
(TQH)
SRO ) regimes. For p = 0.1 we obtain

W
(TQH)
QLRO ∼ W

(FQH)
QLRO ∼ 0.1± 0.05 and W

(TQH)
SRO ∼ 3± 0.2.

Within structures exhibiting prevailing QLRO char-
acter a domain-type structural pattern is imprinted, as
first suggested by Giamarchi and Doussal [76]. In the
case of QLRO the structural crossover between neigh-
boring domains is on average smoother in comparison to
the SRO case. For both histories estimated character-
istic domain sizes ξ are comparable. In the weak cou-
pling regime Larkin-Imry-Ma scaling ξ ∼ D−2/(4−d) is
roughly obeyed. Our simulations roughly support our
mean-field estimate suggesting D(d = 3) ∼ √

pW . In the
temperature-annealed history simulations that we have
carried out, we obtain structures the characteristics of
which are closer to TQH case.

In summary, our study reveals that in systems of
our interest initial conditions could significantly influ-
ence even macroscopic properties of structures. The LIM
domain-type pattern is imprinted in weak enough cou-
pling regime both for QLRO and SRO structures.

The systems of our study bear at least some connec-
tions with several experimental systems. These are ei-
ther LCs confined to various porous matrices, or binary
mixtures of LCs with nano- or colloidal particles. In
the former case RF-type disorder is produced by essen-
tially random spatial variations of LC-pore interfaces. In
the case of binary mixtures RF-like disorder could be
established even in case of spherical particles of radius
R which by themselves do not enforce any preferred di-
rection in space. However, for strong enough anchoring
(R/de > 1 (where de stands for the surface extrapolation
length), they could locally enforce a preferred direction in
a low-temperature phase. For example, for strong enough
homeotropic anchoring they might locally enforce dipo-
lar, quadrupolar or even more complex symmetry [79].

In future work we intend to establish closer analogies
with magnetic systems. In magnetic systems, the termi-

nology describing different glass-like structures is rather
well-established. By analogy with the term ‘speromag-
netic’, one commonly refers to a phase with nematic low-
temperature SRO domain patterns as a ‘speronematic’
phase [80]. However, the related speromagnetic phase
[81] refers to cases of relatively strong coupling with RF
in which the local magnetic moments point essentially
along a local RF easy axis. A closer magnetic analog is
correlated spin glass, where short range correlations ex-
tend over a coherence length that is much larger than
a typical intermolecular distance. QLRO nematic struc-
tures are more reminiscent of ferromagnets with wander-

ing axis [81]. In particular, we intend to study in de-
tail external field loop hysteresis behavior in nonergodic
regimes. We note that recent studies reveal that pinning
of topological line defects in RF-type systems can play a
significant role [63]. However, nematic and magnetic sys-
tems differ significantly with respect to line defect topol-
ogy.
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