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The electronic and nonlinear optical (NLO) properties of octaphyrin derivatives were

studied by employing the DFT/TDFT at CAM-B3LYP/6-311++G (2d, 2p) level of the

theory. Thiophene, phenyl, methyl and cyano moieties were substituted on the molecular

framework of octaphyrin core, in order to observe the change in optoelectronic and

nonlinear response of these systems. The frontier molecular orbital studies and values

of electron affinity reveals that the studied compounds are stable against the oxygen

and moisture present in air. The calculated ionization energies, adiabatic electron affinity

and reorganization energy values indicate that octaphyrin derivatives can be employed as

effective n-type material for Organic Light Emitting Diodes (OLEDs). This character shows

an enhancement with the introduction of an electron withdrawing group in the octaphyrin

framework. The polarizability and hyperpolarizability values of octaphyrin derivatives

demonstrate that they are good candidates for NLO devices. The nonlinear response

of these systems shows enhancement on the introduction of electron donating groups

on octaphyrin moiety. However, these claims needs further experimental verification.

Keywords: porphyrin, reorganization energy, bond-length-alternation, mesomeric effect, polarizability,
hyperpolarizability

INTRODUCTION

The discovery of sapphyrins and expanded porphyrins have attracted the interest of researchers
attributed to their diverse applications in materials science (Sprutta and Latos-Grazyński, 2001;
Flemming and Dolphin, 2002; Pushpan et al., 2002; Silva et al., 2002a,b; Cavaleiro et al., 2003; Hata
et al., 2006; Tanaka and Osuka, 2016). The defining feature of these macrocycles is the presence of
a larger internal cavity as compared to those present in natural tetrapyrroles. More specifically,
expanded porphyrins are macrocyclic compounds containing five-membered heterocyclic units
(like pyrrole, furan, or thiophene) linked together, either directly or through spacers with internal
ring pathway contains at least 17 atoms (Sprutta and Latos-Grazyński, 2001; Flemming and
Dolphin, 2002; Pushpan et al., 2002; Silva et al., 2002a,b; Hata et al., 2006). Their distinctive physical
and structural properties have found applications in nonlinear optical (NLO) materials (Marder
et al., 1997; Zhou et al., 2002; Ahn et al., 2005; Rath et al., 2005a; Misra et al., 2006), photosensitizers
for photodynamic therapy (PDT) (Harriman et al., 1989; Maiya et al., 1989), transition or rare
earth metal ion chelates, cation and anion receptors (Shionoya et al., 1992; Jasat and Dolphin,
1997; Sessler et al., 2000a,b; Sessler and Davis, 2001; Chandrashekar and Venkatraman, 2003),
magnetic resonance imaging (MRI) contrasting agents (Charrière et al., 1993; Weghorn et al.,
1996; Werner et al., 1999) and a tool for accessing presently unknown higher aromatic systems
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(Sessler et al., 1993). These fascinating properties have inspired
synthetic efforts toward a range of expanded porphyrins differing
in ring size, ring connectivity, peripheral substituent and core
modification (Hiroto et al., 2006; Misra and Chandrashekar,
2008; Anaka et al., 2011; Mori et al., 2012a; Kido et al.,
2013; Naoda and Osuka, 2014; Anguera et al., 2015). These
modifications not solely amendment their electronic properties,
but also conjointly create structural diversity to induce ring
inversion in the resulting macrocycles. Currently, considerable
attention has been focused on the studies of organic molecules
capable of exhibiting organic light emitting properties or massive
NLO susceptibilities. Researchers have observed that the presence
of extended π-electron delocalization is the key element in the
design of organic molecules exhibiting either the OLED or NLO
applications (Geffroy et al., 2006; Sasabe and Kido, 2011, 2013a,b;
Jin and Tang, 2013; Sekine et al., 2014; Islam and Pandith, 2014a;
Romain et al., 2015).

The expanded porphyrins that display the greatest
resemblance to natural porphyrins are those containing
either meso-like bridging carbon atoms or direct links between
the heterocyclic subunits. According to the nomenclature put
forward by Franck and Nonn (Franck and Nonn, 1995), the
name of these systems consists of three parts: (1) the number
of π-electrons in the shortest conjugation pathway (in square
brackets), (2) a core name indicating the number of pyrroles
or other heterocycles (e.g., pentaphyrin, hexaphyrin), and (3)
the number of bridging carbon atoms between each pyrrole
subunit (in round brackets and separated by dots). For instance,
according to this nomenclature, the classic porphyrin macrocycle
presented in the heme group would be named as [18] tetraphyrin
(1.1.1.1). Octaphyrin (1.1.1.1.1.1.0.0) (OP), being a conjugated
π system may be the excellent candidate for the materials
science. Many research groups have reported the synthesis and
structural properties of isomers of Octaphyrin (1.1.1.1.1.1.0.0)

(Franck and Nonn, 1995; Latos-Grazynski, 2004; Shimizu et al.,
2005; Rath et al., 2005b; Geffroy et al., 2006; Hiroto et al.,
2006; Kumar et al., 2007; Misra and Chandrashekar, 2008;
Anaka et al., 2011; Sasabe and Kido, 2011, 2013a,b; Mori et al.,
2012a; Jin and Tang, 2013; Kido et al., 2013; Naoda and Osuka,
2014; Sekine et al., 2014; Islam and Pandith, 2014a; Anguera
et al., 2015; Romain et al., 2015). According to Chandershaker
et al. the core-modified expanded porphyrins containing 26,
36, and 54 π electrons because of their exceptionally massive
two-photon absorption cross- sections may be considered
among the most effective appropriate candidates, particularly
as organic NLO materials (Pushpan and Chandrashekar, 2002).
The derivatives of hexaphyrins and octaphyrins containing
meso-imidazolyl groups were prepared by research group of
Hirotaka et al. (Mori et al., 2012b). They found that hydrogen
bonding is effective for the development of Huckel antiaromatic
expanded porphyrins. The molecular framework of octaphyrin
is consistent with a 36 π-electron circuit within what can be
considered a twisted double-side (orientable) Huckel topology
(Sprutta and Latos-Grazyński, 2001; Flemming and Dolphin,
2002; Pushpan et al., 2002; Silva et al., 2002a,b; Hata et al.,
2006). According to Osuka et al. the hydrogens present near the
crossing point of the octaphyrin resonate at δ = 17.14 and 8.60
ppm in the deshielding region. These findings are consistent
with the presence of paratropic ring current and categorizing the
octaphyrin among the Huckel type antiaromatic system. Various
studies were performed for explaining the conformational
switch between Hückel planar and Möbius twisted topologies
of expanded porphyrins (Torrent-Sucarrat et al., 2012; Alonso
et al., 2013, 2014; Marcos et al., 2014). Observations revealed that
the nature of the meso-substituent is important for determining
the relative stability of the Hückel−Möbius conformers and
interconversion also between them is controlled by the barrier
height (Torrent-Sucarrat et al., 2012; Marcos et al., 2014). Proft
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et al. employed DFT at B3LYP/6-31G (d,p) level of theory to
study the conformational preferences, interconversion pathways
and aromaticity of N-fused [22] and [24] pentaphyrins. They
have observed that the choice of conformation strongly depend
upon the oxidation state, aromaticity of the π-electron system
and meso-substituents (Alonso et al., 2013, 2014).

Conjugated organic systems are principally explored as hole
transport materials for the organic light emitting devices (Fink
et al., 1998; Jurchescu et al., 2004; Park et al., 2011; Tao et al.,
2011; Kim et al., 2013; Wu et al., 2014; Islam and Pandith,
2014b; Fan et al., 2015). Because of troublesome processbility
and instability in air, the exploration, design and synthesis of
electron transport material has remained a significant challenge
and hot stock within the field of organic electronics (Pandith
and Islam, 2014; Zhao et al., 2014). Within the recent years,
conjugated nitrogen containing organic derivatives have been
found as promising n-type or p-type materials for the fabrication
of OLED (Fink et al., 1998; Jurchescu et al., 2004; Park et al.,
2011; Tao et al., 2011; Kim et al., 2013; Pandith and Islam, 2014;
Wu et al., 2014; Zhao et al., 2014; Islam and Pandith, 2014b; Fan
et al., 2015). The material acquires this property because of their
excellent optoelectronic properties, good oxidation and thermal
stabilities, large electron affinities and high electron mobilities.
In the first section of paper, we have studied optoelectronic
properties of octaphyrin derivatives (OP) (Figure 1) to explore
their potential as n-type material for OLED devices and have
calculated their reorganization energies, ionization potentials and
electron affinity values. In the second section we have explored
the octaphyrin derivatives as a class of organic molecules suitable
for NLO applications.

A significant interest still exists for novel molecular materials
with optimal NLO properties because of their primary roles
in applications in fields including optical communications and
computation, optical switching and limiting, data storage and
retrieval, and sensors (Islam et al., 2014; Dadsetani and Omidi,
2015). The nonlinear response of molecules to electromagnetic
fields has been studied over the last two decades. It provides a
way for amplification, modulation and changing the frequency
of optical signals (Liu et al., 2011; Lin et al., 2015). Materials
with massive hyperpolarizabilities have found applications in
optoelectronics, such as optical switching for optical computing
or high-density optical recording. Several experimental and
theoretical studies have been administrated to identify materials
with large hyperpolarizabilities (Datta and Pati, 2006; Lakshmi
et al., 2008; Lin et al., 2013; Rintoul et al., 2013; Dai et al.,
2014; Liu et al., 2014; Islam and Chimni, 2017). As a result of
distinctive structure octaphyrins with extended π electrons can
prove smart candidates for NLO response. So as to visualize
its optical properties, we have calculated the polarizability (α),
the first-order hyperpolarizability (β) and also the second-order
hyperpolarizability (γ) of octaphyrin. According to Dai et al.
(2014); Rintoul et al. (2013); Lin et al. (2013); Liu et al. (2014),
Datta and Pati (2006), Lakshmi et al. (2008) and Islam and
Chimni (2017) second-order response governed by the second
order hyperpolarizability offers more varied and richer behavior
than first-order NLO process due to the higher dimensionality
of the frequency space. Therefore, we have also calculated the

second-order hyperpolarizability of the octaphyrin derivatives, in
order to conclude their appropriate NLO response.

COMPUTATIONAL STUDIES

In the present study, structural and optoelectronic calculations
of OP derivatives were performed by using Density functional
theory. The geometries were optimized by employing CAM-
B3LYP (Yanai et al., 2004) functional using 6-31G (2d, 2p)
(Ditchfield et al., 1971), and 6-311++G (2d, 2p) (McLean and
Chandler, 1980) basis sets. Frequency calculations at the same
level of theory were performed to confirm each stationary point
to be a true energy minimum. The neutral molecules were
treated as closed-shell systems, while for the radical anion or
cation open-shell system optimizations were carried out using a
spin unrestricted wave functional. The parameters governing the
NLO properties calculated at CAM-B3LYP functional were found
comparbale more accurate in the previous studies (Torrent-
Sucarrat et al., 2011). The electronic absorption spectra of
OP derivatives were calculated at TD-DFT/CAM-B3LYP/6-
311++G (2d, 2p) level of theory. The calculation for the lowest
transition was derived from the Gaussian output file using the
GaussSum program (O’Boyle et al., 2008). All the calculations
were performed using the Gaussian 09 computational package
(Frisch et al., 2009).

RESULTS AND DISCUSSION

The optimized geometries of OP derivatives obtained from DFT
calculations are illustrated in Figure 2. These systems exist in
two atropisomeric forms P andM (Sprutta and Latos-Grazyński,
2001; Flemming and Dolphin, 2002; Pushpan et al., 2002; Silva
et al., 2002a,b; Cavaleiro et al., 2003; Hata et al., 2006; Tanaka and
Osuka, 2016). P and M isomeric forms are the mirrors images
of each other, which do not show any distinction in electronic
properties. The assignment of atropisomeric forms depends on
the sense of the helical twist, it could be clockwise and denoted
by P (“plus”) for a right-handed helix or be anticlockwise and
denoted by M (“minus”) for a left-handed helix. In this study
P-isomer was considered for the evaluation of electronic and
optical properties. Computational calculations display that all
the studied OP geometries vary in the orientation of pyrrole
rings and the two centers, each containing four pyrrole rings,
are coplanar to each other. In OP-I pyrrole rings are oriented
in such a manner that all the nitrogen groups are toward the
center (core) of molecule. In case ofOP-II andOP-III the methyl
and the phenyl groups present on C24 and C32 are oriented
toward the center (core) resulting in hyperbolic nonlinearity
in the derivatives respectively. However, in case of OP-IV the
pyrrole ring D and B are oriented away from the center, resulting
in chair type geometry of the derivatives. The thiophene rings
remain away from core and point toward the corner position
of the three dimensional box in OP-IV derivative. Cyano group
being linear, thus the geometry ofOP-V does not vary abundantly
from OP-I. In addition, cyano groups are directed alternatively
away and toward the center of octaphyrin segment. Comparing
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FIGURE 1 | Sketch of octaphyrin (OP) derivatives study using DFT at CAM-B3LYP/6-311++G (2d, 2p) level of theory.

the bond length of theOP derivatives, the C16-C18 bond is shorter
in case of OP-V as compared to OP-I following the trend OP-V
< OP-IV < OP-III < OP-II=OP-I. On the other hand the bond
length of C18 =C26 within derivatives is longer just in case ofOP-

V as compared toOP-I. The decrease in the C16-C18 bond length
shows some double bond character, which suggests that upon
substitution with cyano group the π electron delocalization is
enhanced over the entire frame work instead of localized between
the particular nuclei. Thus, electron delocalization leads to the
change in bond length or polarization in these systems. The
impact of substitution on the aromaticity and charge transfer
was analyzed by calculating the bond length alternation (BLA)
values. Bond length alternation is a construct that can be used to
monitor the amount of change in polarization across the bonds in
a molecule upon substitution. Fu et al. (2008) defined BLA as the
average of the difference in the length between adjacent carbon-
carbon bonds in a polymethine [(CH)n] chain. In this work we
calculated a local BLA associated with the C16-C18, C18 = C26

and C26-C48 bond lengths and consistent with the definition
given by Fu et al., BLA is given as:

BLA =
d (C16 − C18) + d (C26 − C48)

2
− d (C18 = C26) (1)

The BLA values obtained from the above equation follow the
trend OP-V (0.261) < OP-III (0.297) < OP-II (0.306) < OP-IV
(0.310) < OP-I (0.312). Thus, the substitution of hydrogen atom
with electron withdrawing groups (cyano here) has less effect on

the geometry of OP. The OP-I displays higher value followed by
OP-II, OP-III and OP-IV indicating that the presence of methyl,
phenyl and thiophene substituents have a scarce influence on the
aromaticity of the series of studied compounds.

OLED Properties
The charge transfer properties play a vital role in high
performance OLED devices. Charge transfer within the materials
is often viewed in light of two headings, i.e., hopping theory
(Lin et al., 2003) and the band theory (Cheng et al., 2003).
Under the frame of hopping theory, the charge carrier is
absolutely localized on a single molecule for the limit of thermal
disorder and therefore the charge transfer happens between small
coupled neighboring molecules. However, according to the band
theory transport of charge is an activationless process, occurring
through bands fashioned by the overlapping MOs between
neighboring molecules. Under the heading of the hopping model
the rate of charge transfer is described by the standard Marcus
electron-transfer theory. According toMarcus the rate of electron
or hole-transfer ket is given by the following equation (Marcus,
1957a,b).

ket =
(

4π2
�h

)

1H2
ab(4πλkBT)−

1
2 exp

(

−(1G0+λ)
2

�4λkBT

)

(2)
were λ and ∆Hab are the reorganization energy for the
intramolecular electron transfer and the electronic coupling
integral between donor-acceptor pair, respectively, and ∆G0 is
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FIGURE 2 | Optimized geometries of OP derivatives obtained at CAM-B3LYP/6-311++G (2d, 2p) level of calculations.

TABLE 1 | Ionization energy, adiabatic energy, and reorganization energy of OP derivatives calculated by employing DFT/CAM-B3LYP/6-311++G (2d, 2p)
level of theory.

IPadiabatic (eV) IPvertical (eV) EAadiabatic (eV) EAvertical (eV) λhole (eV) λelectron (eV)

OP-I 6.82 6.89 3.09 3.13 0.211 0.131

OP-II 6.87 6.93 3.32 3.33 0.209 0.129

OP-III 6.92 6.96 3.41 3.49 0.221 0.124

OP-IV 6.98 7.01 3.53 3.51 0.228 0.121

OP-V 7.04 7.12 3.61 3.63 0.217 0.118

Were IPadiabatic is adiabatic ionization potential, IPvertical vertical ionization potential, EAadiabatic adiabatic electron affinity, EAvertical vertical electron affinity, λhole and λelectron reorganization

energy for hole and electron transport respectively.

the Gibbs free energy change of the process. The reorganization

energy includes the contributions from the intramolecular and

intermolecular energy change during a charge transfer event. The

intramolecular reorganization energy refers to the relaxation of

the molecule involved in the charge transfer process and the

intermolecular reorganization energy refers to the relaxation of
the medium in which the charge transfer takes place. From
Equation (2) it is clear that λ should be low to get a high electron
or hole transfer rate. Various studies have defined that first-
principles quantum chemistry calculations would be productive

to investigate the charge transport properties. In this study we
have focused on estimating the intramolecular reorganization
energy (λ) to evaluate the optoelectronic properties of studied
molecule. So, the reorganization energies for the hole and
electron transfers are evaluated using the following formulas
(Tavernier and Fayer, 2000).

λh =
[

E
(

M+)]

− [E (M)]+
[

E+ (M) − E+
(

M+)]

(3)

λe =
[

E
(

M−)]

− [E (M)]+
[

E− (M) − E−
(

M−)]

(4)
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TABLE 2 | FMO (HOMO and LUMO energies) and Optical data of OP derivatives calculated by employing DFT and TDFT level of theory respectively.

HOMO (eV) LUMO (eV) 1E λmax Ege f Orbital contribution

OP-I −9.2622 −4.603 4.659 530 4.341 0.722 HOMO → LUMO 81 %

OP-II −9.1713 −4.611 4.560 538 4.217 0.718 HOMO → LUMO 69 %

OP-III −9.2099 −4.628 4.582 540 4.202 0.701 HOMO → LUMO 78 %

OP-IV −9.2326 −4.819 4.414 612 4.001 1.015 HOMO → LUMO 95 %

OP-V −9.5175 −4.986 4.532 526 4.112 0.855 HOMO → LUMO 90 %

Were HOMO is highest occupied molecular orbital energy, LUMO lowest unoccupied molecular orbital energy, ∆E energy gap between HOMO and LUMO, λmax maximum absorption

wavelength, Ege excitation energy and f oscillator strength corresponding to S0 to S1 excitation.

where E(M), E+(M+), and E−(M−) are the respective
energies of optimized neutral, cationic, and anionic
structures. E (M+)/E(M−) is the neutral energy of the
optimized cationic/anionic structure, and E+(M)/E−(M)is
the cationic/anionic energy of the optimized neutral structure.
The calculated values of intramolecular reorganization energies
for OP derivatives are given in Table 1. We have observed that
λe (reorganization energy for electron transport) values are
comparatively smaller as compared to the λh (reorganization
energy for hole-transport) values demonstrating relevance of
studied OP derivatives as n-type material for Organic Light
Emitting devices. However, upon derivatization the value of
λe further decreases and is a minimum for OP-V containing
CN-groups. The λe values obtained for OP derivatives were
found smaller as compared to reported compounds projected as
economical n-type candidates for OLED devices (Pandith and
Islam, 2014; Zhao et al., 2014; Naka et al., 2000). According to
Liu et al. (2010) the ionization potential (IP) together with the
electron affinity (EA) can be used to weigh the hole and electron
injection properties respectively. The vertical and adiabatic
ionization potential and electronic affinity of OP derivates were
calculated by using the following equations and are given in
Table 1.

IP(v)/IP (a) = E+ (M) /E+
(

M+)

− E (M) (5)

EA(v)/EA (a) = E (M) − E− (M) /E−
(

M−)

(6)

Where IP(v)/IP(a) and EA(v)/EA(a) are vertical and adiabatic
ionization potential and electron affinity respectively. The
calculated EA values for the OP derivatives are all greater than
3.00 eV defining their anionic stability toward the oxygen present
in surrounding. Based on the recent theoretical studies EA
for air stable n-type material should be greater than 2.80 eV
(Newman et al., 2004; Chang et al., 2010). Thus, according to
these observations the studied compounds are quite stable to
moisture present in air as n-type material on account of their
large adiabatic electron affinity values. On the basis of above
calculations, the electron affinity values of OP derivatives follow
the trend OP-I < OP-II < OP-III < OP-IV < OP-V (Table 1).
The OP-V scores maximum EA and IP value; therefore in case
of OP-V the holes and electrons can be consequently injected
into the emissive layer much more easily. Thus, combining
the relationships between charge injection and the values of
EA, it is concluded that the electron injection properties are
improved with the introduction of electron withdrawing groups.

All the studied octaphyrins exhibit π-character that spreads over
the entire molecule resulting in delocalization, demonstrating
their efficient charge transfer ability. The theoretical calculation
shows that these molecules have low lying HOMO and LUMO
energy levels that signifies that they possess high oxidation and
reduction stabilities. As seen from Table 2 the LUMO of the
OP derivatives reaches from −4.6 to −4.9 with the substitution.
On relating our findings with the calculations carried by Usta
et al., the studied OP can be applicable with the work function
of the metal electrode like Au (−5.1 eV) and Pt (−5.6 eV)
used in practical OFET devices (Usta et al., 2009). It has been
observed that the electron injection potential barrier for n-type
material between the OP and metal electrode decreases with the
introduction of an electron withdrawing group on OP skeleton.
The frontier molecular orbital analysis (Figure 3) displays the
change in HOMO-LUMO distribution over the OP framework
initiated either by mesomeric or inductive effect. The former has
relevance to the sharing of π-electrons between the parent and
substituents whereas the latter is expounded to the σ–electron
systems.

For the above system the LUMO energies decrease both with
electron donating as well as electron withdrawing substituents
and attributable to different decreasing degrees in HOMO
and LUMO the energy gaps for these OP derivatives become
distinguishable. Analyzing the energy gap between the HOMO
and LUMO, the OP-IV displays the lowest value and OP-I the
highest value. Thus, the potency of OP derivatives as n-type
material as per the values of EA and λe does not correlate well
with the energy gap between HOMO and LUMO. The frontier
molecular orbital (FMO) studies reveal that the highest occupied
molecular orbitals (HOMOs) of the neutral molecules delocalize
primarily over the octaphyrin skeleton with least contribution
from the substituents, whereas the lowest unoccupied molecular
orbitals (LUMOs) have an obvious electron density distribution
including contribution from Octaphyrin skeleton and as well as
from substituents. These orbital pictures defines that the energy
levels of the LUMOs rather than that of HOMOs are more
affected by the introduction of the substituent moiety. The TD-
DFT studies at CAM-B3LYP/6-311++G (2d, 2p) level of theory
reveal that in all octaphyrin moieties the absorption spectra
display a single peak with slight red shift in case of cyano group
and remarkable blue shift in case of OP-IV. From Table 2, the
primary excited state (S1) of OP derivatives originates from the
HOMO to LUMO transitions with contributions of about 95
and 69% in case OP-IV and OP-II respectively. Thus, on the
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FIGURE 3 | The frontier molecular orbitals (FMOs) of OP derivatives at DFT/ CAM-B3LYP/6-311++G (2d, 2p) level of theory.
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TABLE 3 | DFT/TDFT calculated average values of the dipole moment (in
ground (µgg) and excited state (µee), transitions dipole moment (µ2

ge),

static polarizability α (Å3), the first polarizability β (esu.) and the second
polarizability γ (esu) for OP derivatives.

µgg α (×10−23) β (×10−33) γ (×10−35) µee µ2
ge

µ2
ge�

E2
ge

OP-I 3.80 93.98 2,086.31 −3353.42 3.92 0.94 0.048

OP-II 4.54 144.29 7,906.63 −2196.50 4.69 0.99 0.056

OP-III 4.91 157.20 7,911.70 −1686.21 5.18 1.01 0.057

OP-IV 5.37 203.23 10,349.22 445.33 6.81 1.15 0.072

OP-V 3.98 111.50 4,038.53 −2122.97 4.51 1.08 0.063

basis of above calculations we will conclude that OPs sustain
position as an optoelectronic material, however, by introducing
electron withdrawing groups they will prove as an effective n-type
material for OLEDs.

Nonlinear Optical Response
Octaphyrin being a conjugated pathway can become a potential
material for NLO response. NLO techniques are considered
as among the most structure-sensitive methods to study
the molecular structures and assemblies. Quantum chemical
calculations are shown to be useful within the description
of the relationship among the electronic structure of these
systems and their NLO response. During this study, the dipole
moment, polarizability and first-order hyperpolarizability and
second order hyperpolarizability were used to evaluate the
nonlinear response of Octaphyrin derivatives. The average
linear polarizability <α>, first order hyperpolarizability <

β > and second order hyperpolarizability < γ> values have
been calculated from Gaussian output file using the following
relations.

The microscopic polarizability (P) induced in an isolated
molecule under the applied electric field (E) of an incident
electromagnetic wave can be expressed by the following equation:

P = αE + βEE (7)

Where P and E are related to the tensor quantities α and β

which are referred to as the polarizability and hyperpolarizability,
respectively.

The definition (Sajan et al., 2006; Alyar et al., 2007;
Sundaraganesan et al., 2009; Zhang et al., 2010) for the
polarizability is:

〈α〉 = 1�3

(

αxx + αyy + αzz

)

(8)

The anisotropy of polarizability is:

1α = 1/
√
2
[

(

αxx − αyy

)2 +
(

αyy − αzz

)2 + (αzz − αxx)
2

+ 6α2
xz + 6α2

xy + 6α2
yz

]½
(9)

And the first hyperpolarizability is a third rank tensor that can
be described by a 3 × 3 × 3 matrix (Thanthiriwatte and de Silva,

2002). The components of can β be calculated using the following
equation:

〈β〉 =
[

(

βxxx + βxyy + βxzz

)2 +
(

βyyy + βyzz + βyxx

)2

+
(

βzzz + βzxx + βxyy

)2
]½

(10)

or simply:

β‖ =
1

5

∑

i

(βiiz + βizi + βzii) (i from x to z) (11)

and average value of second order hyperpolarizability (Kurtz
et al., 1990) is:

< γ > =
1

5

[

γxxxx + γyyyy + γzzzz + 2
[

γxxyy + γyyzz + γxxzz
]]

(12)
From Table 3 the changes in the NLO properties were observed
after the introduction of different electron donating and
withdrawing groups into OP framework. For the neutral forms
I–V, β and γ values decrease in the order IV > III > V >

II > I. For the assorted R groups, the thiophene group is
a strong electron-donating group and the cyano is a strong
electron withdrawing group and from the values in Table 3

it is concluded that the introduction of a strong electron-
donating group into OP is favorable for improving NLO
responses. This is attributed to increase in electron density of
the OP framework resulting in enhancement in induced ring
current. However, introducing an electron withdrawing group
like CN, enhances the NLO properties still as compared to
OP-I but to a lesser extent. This unexpected NLO response
of OP-V implies that the charge transfer pattern of OP-V is
polydirectional in comparison with the OP-I. The calculated
values of α and β for the studied OP dertivative were found close
to Bianthraquinodimethane Modified [16]Annulene (Torrent-
Sucarrat et al., 2011). So as to achieve more insight into NLO
response of OP derivatives, we correlated two level model with
first and second order hyperpolarizability of these derivatives.
Oudar and Chemla by employing complex sum over states (SOS)
expression established a simple link between β and low-lying
charge-transfer transition through the two-level model (Oudar
and Chemla, 1977). According to this model the static first
hyperpolarizability is expressed by the following expression:

β ∝
(

µee − µgg

)
µ2
ge

E2ge
(13)

where µee and µgg are the ground state and excited-state dipole
moment, µge is the transition dipole, and Ege is the transition
energy.

As seen in Table 3 the improvement in β values with
increasing electron donating abilities can be attributed to the
increasing µge and decreasing Ege values. The result shows

that the µ2
ge�E2ge

values of OP derivatives follow the trend

IV > V > III > II > 1 and is in agreement with the β
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as well as γ values except in case of OP-V. On comparing
the OP-V (cyano substituted molecule) with OP-III (phenyl
substituted molecules), it is found that OP-III compound
possess smaller µ2

ge value. However, the static hyperpolarizability
of the OP-III is higher than that of the cyano substituted
molecule. The second order hyperpolarizabilities of OP-II

and OP-V do not differ much instead of huge differences
in their first order hyperpolarizabilities. Additionally, there is
a good correlation between the hyperpolarizabilities and the
BLA values on changing the donor groups. The trend for
the hyperpolarizabilities and BLA values is OP-I < OP-II <

OP-III < OP-V < OP-IV and OP-I > OP-II > OP-III <

OP-V < OP-IV respectively. Thus, the acceptor group has
little effect on the BLA value and does not contribute much
to the change in hyperpolarizabilities. However, changing the
donor groups has a better effect on the BLA value and the
hyperpolarizabilities of these systems. Thus, our investigation has
shown that substitution with electron withdrawing group like
cyano enhances the n-type ability ofOP, however the substitution
with electron donating group like thiophene multiplies the NLO
response of octaphyrins.

CONCLUSIONS

The charge transport and nonlinear performance of octaphyrin
derivatives have been studied using DFT level of theory.
Computationally calculated properties like electron affinity and
ionization energy values show that all these derivatives are stable
toward oxygen and water in the air. The reorganization energy
values show that these octaphyrin derivatives are effective as n
-type materials. The low lying orbital energy levels signify that
OP derivatives show high oxidation and reduction stabilities.
Nonlinear response of these derivatives was quantified in terms
of polarizability and hyperpolarizability values. Understanding
the above carried computational studies, it is concluded that
the n-type material character enhances by introduction of
electron withdrawing groups but the nonlinear response is solely
increased by electron donating groups.
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