
Computational systems biology of the
cell cycle
Attila Csika¤ sz-Nagy

Submitted: 2nd December 2008; Received (in revised form): 21st January 2009

Abstract
One of the early success stories of computational systems biology was the work done on cell-cycle regulation.
The earliest mathematical descriptions of cell-cycle control evolved into very complex, detailed computational
models that describe the regulation of cell division in many different cell types. On the way these models predicted
several dynamical properties and unknown components of the system that were later experimentally verified/
identified. Still, research on this field is far from over.We need to understand how the core cell-cycle machinery is
controlled by internal and external signals, also in yeast cells and in the more complex regulatory networks of higher
eukaryotes. Furthermore, there are many computational challenges what we face as new types of data appear
thanks to continuing advances in experimental techniques. We have to deal with cell-to-cell variations, revealed
by single cell measurements, as well as the tremendous amount of data flowing from high throughput machines.
We need new computational concepts and tools to handle these data and develop more detailed, more precise
models of cell-cycle regulation in various organisms. Here we review past and present of computational modeling
of cell-cycle regulation, and discuss possible future directions of the field.
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INTRODUCTION
Computational systems biology is rather a new

science [82] although its roots can be found in

theoretical and mathematical biology. This can be

nicely observed in the field of cell-cycle modeling:

from the 1960s we can find mathematical models

that try to explain some key aspects of cell-cycle

regulation from phenomenological observations

[3, 5, 6]. The field really started to explode in the

early 1990s [42, 65, 71, 73] when some data on

the underlying molecular regulatory network came

to light [83]. In recent years, with the birth of

systems biology, new experimental techniques have

led to an extension of these models, and there now

appears to be a bright future for models of cell-cycle

regulation.

Several excellent reviews are available on com-

putational modeling techniques [84, 85], on cell-

cycle regulation [86–88] and even on cell-cycle

modeling [89–93], thus we will not go over the same

ground here. Rather we review the key advances

that cell-cycle modeling gave us and discuss direc-

tions the research might go in the future.

CELL-CYCLE REGULATION
IN BRIEF
Cell cycle refers to a sequence of events that leads

to correct duplication of cells [86]. During this

process a cell must replicate its DNA (in S-phase) and

properly distribute the two copies into two daughter

nuclei during mitosis (M-phase) before the cell

divides. During this time the cell need to double

all its other components (proteins, ribosomes, etc.)

to keep the size of daughter cells similar to that of

the mother. Cells introduce two gap phases (G1 and

G2) between S and M-phases to ensure that overall

cell mass doubling is coordinated with the DNA

replication-division cycle (Figure 1). A complex

regulatory network controls the proper order of cell-

cycle events. The core controllers of this network

in all eukaryotes are complexes of Cdk and cyclin
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molecules. Various Cdk/cyclin pairs regulate the

critical transitions of the cell cycle. They initiate

DNA replication at the transition from G1 to

S-phase, and they play key roles in inducing mitosis

as well. In addition, Cdk/cyclin inhibits the last steps

of the cycle, the separation of the chromosomes at

the end of mitosis and cell division (Figure 1). Key

cell-cycle transitions are regulated by checkpoints,

which ensure that cells start DNA synthesis only

if nutrients and growth factors are present, that

mitosis can happen only after DNA replication

is properly finished, and that chromosomes can

separate only if mitotic spindles are intact (Figure 1).

In case there is a problem, the checkpoint signals

to the core Cdk/cyclin module and inhibits the

further steps of the cycle [94].

HISTORYOF CELL-CYCLE
MODELING
As mentioned above the story goes back about 50

years, when Prescott found that cells need to reach a

critical size to divide [95]. This and other phenom-

enological observations drove the first wave of

mathematical models that tried to understand how

cell division is connected to cell growth (Table 1).

Once the molecular interactions that control the cell

cycle were discovered many groups started to work

on mathematical models to figure out the key

concepts of these interactions (Table 1). The group

of Béla Novák and John J. Tyson stands out from

the rest as they produced �40 papers on cell-cycle

regulation, some of which have become benchmarks

of computational systems biology. In 1993 they

investigated the regulation of mitotic entry in eggs

of the frog Xenopus laevis and found that a model

with two positive feedback loops could provide a

reliable switch for entry into mitosis [43]. Their

model predicted that the Cdk control system can

be bistable: under certain conditions, Cdk may be

either active or inactive depending on the recent

history of the cell. This bistability and hysteresis was

verified experimentally 10 years later [96, 97]. The

same group put together the most detailed model

(so far) of cell-cycle regulation by describing the

Cdk control network in budding yeast Saccharomyces
cerevisiae. In the first version of the model they

proposed that a different hysteretic switch controlled

the entry into S phase [21]. This prediction and

Table 1: Computationalmodels of cell-cycle regulation

Modeling methodology References to models

Investigated organisms

Prokaryotes Single cell eukaryotes Multi-cellular eukaryotes Generic

Caulobacter Budding
yeast

Fission
yeast

Frog, Sea
urchin, Fly

Mammalian General
eukaryote

Phenomenological models [1^8]
Molecular Logical (Boolean) [9^13] [14] [15]
interaction Deterministic (ODE) [16^18] [19^29] [30^37] [38^46] [47^62] [63^75]
network
models

Stochastic (Langevine or SSA) [76, 77] [78, 79] [80] [81]

Models can be sortedby the organisms they investigate (columns) and by themodelingmethod they use (rows). See text for description.

Figure 1: Regulation of the cell cycle. The core cell-
cycle machinery is controlled by the activity of Cdk/
cyclin complexes, which activate the G1-S and G2-M
transitions but inhibit the M-G1 transition (labeled by
thickwhite arrows).These transitions are also controlled
by external and internal signals (black, dashed lines).
Downstream cell-cycle processes are induced by the
coremachinery (black, solid arrows).
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others were tested experimentally by Fred Cross’s

group of in a seminal paper that might be the first

case when molecular genetics lab focused solely on

verifying a mathematical model of cell-cycle regula-

tion [98]. Later the groups joined forces to create a

model that can simulate the behavior of more than

120 mutants [22]. This model also predicted the

existence and regulation of a phosphatase that later

was identified [99]. Recently other groups have

presented their own models of the budding yeast cell

cycle, focusing on various aspects of the regulatory

system [10, 19, 26, 27].

The other favorite test organism of cell-cycle

research is the fission yeast Schizosaccharomyces pombe,
for which there exist models describing its DNA

replication [31, 33], cell division [30] and the

behavior of some interesting mutants [36, 79].

Embryonic cell cycles have been modeled not only

in frogs but also in the fly, Drosophila melanogaster
[45], and in the sea urchin [46]. The most

challenging task is to model cell-cycle regulation in

mammalian cells, where multiple control mecha-

nisms exist that hold cells back from proliferation.

The physiological differences among different types

of mammalian cells make this task especially difficult.

Cancer cell lines are often (possibly always) perturbed

in their cell-cycle regulation [100], thus most existing

models describe ‘generic’ proliferating mammalian

cells at various levels of detail (Table 1). A few of

these models use some data on mouse fibroblasts;

still, no model of the cell-cycle network of a specific

mammalian cell type has yet been constructed.

Several models exist that do not focus on any

specific cell type but rather investigate some

important aspects of the regulatory modules of

the general Cdk control network (Table 1). These

approaches are biologically suitable, since it has been

shown that the key cell-cycle controllers and their

interactions are universal among eukaryotes [83].

Recent modeling studies on cell-cycle regulation

of the prokaryote Caulobacter crescentus show that,

even though the key controller genes are completely

unrelated to their eukaryotic counterparts, the

network wiring resembles the eukaryotic system

[16, 17]. This conservation of network structure

underlines certain key features of cell-cycle regula-

tion. Positive and negative feedback loops have to

be wired together for proper cell-cycle regulation.

The positive feedbacks are important for robust

transitions between cell-cycle phases and they assure

that checkpoints can stop progression through the

cell cycle, while the negative feedbacks are necessary

to reset the system to the beginning and drive

the periodic repetition of the process [101]. The

significance of positive feedback in robustness of cell-

cycle transitions has recently been shown in different

organisms [102–104].

Most of the above mentioned models based on

molecular networks use systems of ordinary differ-

ential equations (ODEs) to describe the dynamics of

the system (Table 1). This allows the use of some

mathematical analysis tools that can track the steady

states and dynamical transitions of cell-cycle control

system [20, 38, 58, 64]. As the complexity of

the known cell-cycle regulatory network increased

in the last few years, logical dynamic modeling [105]

and especially Boolean algebra became another

fashionable modeling formalism (Table 1). This

might be partially influenced by the success of Li

et al. [9], who showed in a logical model of the

budding yeast cell cycle that trajectories from 86%

of all possible initial states lead the system into one

state representing G1-phase of the cell cycle. Most

of these trajectories funneled into a path which

steps through the different phases of the cell cycle,

showing that the cell cycle is robustly designed.

Although some of these logical models were

already using stochastic updating, recently some

much more detailed formalisms have started to

consider the effects of molecular noise in the cell-

cycle regulatory network (Table 1). The two

simulation methods that have been used for such

models are Langevin-type stochastic ODEs and the

exact stochastic simulation algorithm (SSA) [106].

These stochastic models can investigate how individ-

ual cells might differ from the average behavior of

the population (the output of deterministic ODE

models). Stochastic fluctuations could be relevant for

certain mutant cell populations that show partial

viability [76]. Furthermore, recent advances in

experimental observations on single cells allow us

to measure the distribution of behaviors in a

population of cells, for example, the measurements

of the noisiness of the G1/S transition in budding

yeast cells provided by Cross’s group [107, 108].

EXPERIMENTALADVANCESTHAT
WILLHELP FUTUREMODELING
Single cell measurements and other new technolo-

gies enable us to develop much more detailed,

quantitative models of cell-cycle regulation.
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Mass spectrometry can provide data on protein level

fluctuations during the cell cycle [109], identify

members of important protein complexes [110], and

tell the phosphorylation states of Cdk-regulated

proteins [111–113]. Future targeted analysis of key

cell-cycle components could provide invaluable data

for modelers. Such time-course measurements are

already available for mRNA fluctuations during

the cell cycle of various organisms [114], but for a

detailed qualitative model of cell-cycle regulators

we need the time course data of various forms of

the proteins as well. We also need to know how

cell-cycle regulator molecules interact with each

other and how they regulate transcription and

translation. Genome-scale protein interaction data-

bases [115, 116], phosphorylation network predic-

tions [117], as well as specific cell-cycle regulatory

interaction databases [118, 119] help us address these

questions. In the case of budding yeast cells,

microarray data on mRNA levels [120, 121] was

used to computationally infer the transcriptional

regulatory loops of cell-cycle regulation [122–125].

Recently, these methods started to incorporate

ChIP-chip [126], mutant and other data types to

provide a better prediction of the transcriptional

network of cell-cycle regulation in budding yeast

[127, 128]. Furthermore, some literature mining

tools are available [129, 130] to search for specific

experimental results on molecular interactions. All

these resources support the development of more

detailed, quantitative computational models.

Models have to be tested and fitted to physiolog-

ical observations as well, not only in the case of

wild type cells but in various mutants. Investigations

on single or double gene-deletion strains [131–133]

and phenotype analysis of protein overexpressing

cells [134, 135] provide another kind of constraint

for models. The phenotypes of these mutant strains

have to be fitted by cell-cycle models. Earlier models

were parameterized by fitting similar types of data

on cell sizes, cell-cycle phase distributions and

viabilities of mutants after painstaking literature

mining [21, 22]. The above mentioned large-scale

measurements will provide modelers with the data

needed to formulate larger, more detailed, more

precise models in the future.

COMPUTATIONALCHALLENGES
Comprehensive databases force modelers to face

new challenges. They have to handle somehow this

huge amount of data, develop platforms to build

large models, and find the suitable methods to

analyze them. Conventional, hand-written systems

of ODEs have been studied by numerical simula-

tions, sensitivity analysis and bifurcation theory,

in order to understand the model’s behavior. As

our knowledge base is growing, we have reached

a point where we need new tools to build large

models [136], to code them in a platform-free

language [137] and to store them for community

use [138, 139]. For example, cell-cycle models now

have their own database with links to experimental

data [140].

Several modeling platforms have been used in

cell-cycle research [141–144]. These usually guide

the user from model building to some type of

analysis. JigCell has been developed precisely for

cell-cycle model simulations and data fitting [144].

It can run multiple parameter sets to simulate various

mutants and it includes a comparator that can test

how well the simulations fit physiological details

of mutants. Although it is difficult to define a suit-

able objective function for data that is not time

dependent, JigCell provides tools for such estima-

tions [145]. Indeed parameter optimization is one of

the major challenges for modeling. High-throughput

measurements rarely give reliable kinetic rates;

most often they should be estimated from concen-

tration profiles by a parameter optimization algo-

rithm [146–150].

Search for missing rate values is just one part of

the job that computational tools can do for us. All

models we create are some abstractions of the real

biological system, thus we know that we are missing

some part of the whole network. Experimental data

can also be used to infer yet unknown molecular

interactions, propose existence of regulating proteins,

etc. Some useful tools can handle such network data

[151] and also some methods are developed that can

help the search for missing interactions and to infer

network topology [152–155]. Since high throughput

data is available for cell cycle of various organisms

now, we can start to think about how to fuse these

data to measurements on single gene perturbations

to achieve a detailed understanding of the system.

The computational identification of cell-cycle-

related transcription factors [127, 128] is a promising

initial result on these lines.

Another layer of complexity in cell-cycle models

is the matter of spatial distribution of regulatory

molecules. Many crucial events happen in the
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nucleus and many molecules are moved in/out of

the nucleus during the cycle. Still only a few cell-

cycle models consider compartmentalization of the

cell [22, 59]. Even in compartmental models,

diffusion and protein gradients are not considered,

even though they might have important roles in

regulation [156]. Simulation packages are available

to deal with spatial distributions of proteins [157],

but experimental data on protein localization during

the cell cycle is too spotty to give meaningful

constraints for such models.

A serious problem of spatial models with many

interacting components could be the extensive com-

putational time needed for simulations. Stochastic

simulations face similar problems, in large models

with many interacting components the calculations

could slow down dramatically. In both cases, we

need reliable methods for speeding up the simula-

tions. In the case of stochastic simulations, there is

a promising idea, based on the total quasi-steady-

state assumption of enzyme kinetics [158], for

handling the coupled enzymatic reactions that are

implied by the positive and negative feedback

loops of the cell-cycle network [159, 160]. This

and other methods [106] that decouple different

time-scales can help us to handle stochastic noise in

larger models in the future.

Other advances in the field of model analysis will

extend the reach of bifurcation analysis, for tracking

qualitative changes in the dynamics of a system on

ODEs [64], and sensitivity analysis, for identifying

parameter combinations that crucially determine

specific aspects of a simulation [161]. Recently

biological modeling has been enriched by some

new concepts that help to decompose cell-cycle

models into sub-networks [162], find the exact

timing of cell-cycle transitions [25] and check the

irreversibility of these transitions [163]. The last

example uses a model-checking approach developed

by computer scientists, and it is based on the

automated verification of properties of the modeled

systems that are encoded using some temporal

logic formulae to verify if a system can reach a

given state. This approach has opened some new and

interesting research lines in biological modeling

[164–167].

Some other interesting concepts have invaded

biological modeling from computer science. Rule-

based modeling [168, 169] and especially various

process algebras [170–173] were proposed to cir-

cumvent the problem of combinatorial complexity

caused by modeling the nested network of multisite

modification processes and multi-component com-

plex formations, which are both relevant issues

for cell-cycle models [174, 175]. The Beta

Workbench modeling environment was developed

to handle this type of problem with a biologically

friendly computational language based on process

algebra [141, 176]. This tool has been thoroughly

tested and extended to handle large-scale models

of cell-cycle regulation.

OPENQUESTIONS
Evidently, the core regulatory machinery of the cell

cycle is quite well understood, thanks to experi-

mental and theoretical research over the last few

decades. The main challenge for the future is to put

this core cell-cycle machinery into larger contexts of

cell physiology, and to figure out, for example, how

a cell copes with problems at checkpoints, how

it responds to environmental changes, why some

cells leave the cell cycle and commit suicide, etc.

As Figure 1 shows the core cell-cycle module is

regulated by several incoming signals and it drives

several downstream events. The duty of this central

controller is to process the information it receives

and decide how to handle DNA replication and

nuclear division. Current models use some param-

eters as incoming signals and can tell how this

input determines the timing of cell-cycle events.

Some models already investigate how the circadian

clock interacts with the cell-cycle machinery

[80, 177, 178] and how the cell-cycle is regulated

in response to checkpoint signals [23, 48, 51, 179].

These models are very detailed either on the cell-

cycle machinery or on the signaling network, but

comprehensive models that incorporate both control

systems in detail do not exist yet.

Several models are available for pathways that

signal to the cell-cycle machinery the presence of

nutrients, pheromones, stress inducing agents, etc.

[180–186]. These could be merged with appropriate

cell-cycle models to reveal if our current knowledge

of the signaling pathway—cell-cycle network inter-

actions is indeed complete. Similarly, many other

biological pathways have been proposed to interact

with the cell cycle, such as polarized growth [187],

the NF-�B pathway [188], p53 regulation [189].

While computational models also exist for these

processes [190–193], they have yet to be connected

to cell-cycle models and to each other.
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Another perspective is to step up from the single

cell level and simulate how cell-to-cell interactions

alter cell proliferation at the tissue level. This requires

multi-scale parallel handling of the cell-cycle con-

trols within individual cells while simulating their

interactions through signaling at the same time. For

this problem we need, first of all, reliable cell-cycle

models for animal cells, desirably specific models

of specific cell types, and in addition we need

experimental measurements on the signaling

between cells. Such detailed models are far in the

future, but we already can learn from some models

that take steps in this direction [194–197].

These steps lead us to the major future goal: to

understand how perturbations of the human cell-

cycle machinery lead to tumor formation. Indeed

mathematical modeling of cancer development

is another active research field [198–201]. Various

ideas exist on how to handle tissue growth

computationally [202–204]. Predictive cell-cycle

models embedded into complex tissue models can

help us in the future to understand the dynamics

of cancer formation.
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