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Abstract: Network biology has garnered tremendous attention in understanding complex systems of
cancer, because the mechanisms underlying cancer involve the perturbations in the specific function
of molecular networks, rather than a disorder of a single gene. In this article, we review the various
computational tactics for gene regulatory network analysis, focused especially on personalized anti-
cancer therapy. This paper covers three major topics: (1) cell line’s (or patient’s) cancer characteristics
specific gene regulatory network estimation, which enables us to reveal molecular interplays under
varying conditions of cancer characteristics of cell lines (or patient); (2) computational approaches
to interpret the multitudinous and massive networks; (3) network-based application to uncover
molecular mechanisms of cancer and related marker identification. We expect that this review will
help readers understand personalized computational network biology that plays a significant role in
precision cancer medicine.

Keywords: gene regulatory network; computational cancer biology; precision medicine; oxaliplatin
and capecitabine (XELOX)

1. Introduction

Gene regulatory network describes functional interactions between genes, where the
network is presented by a graph whose nodes present the genes, and the edges between
nodes represent the regulatory interactions between genes [1,2]. Heterogeneous gene
regulatory system is a useful tool to analyse and visualize biological activities and is
crucial to understanding complex biological processes of cancer, because the molecular
mechanisms underlying diseases reflect the perturbations in a specific function of molecules
in the complex cellular network, rather than a consequence of an abnormality in a single
gene [3].

The molecular interplays between genes involved in cellular processes and pathways
can be represented by statistical and mathematical models. The computational strategies to
estimate large-scale gene networks from gene expression levels have drawn a large amount
of attention. The Gaussian graphical model (GGM), that is the probability model, has
often been used to infer the conditional dependence structure of a set of genes. The GGM
represents which genes (variables) predict one another and allows for sparse modeling of
covariance structures, highlighting potential causal relationships between genes [4]. The
Bayesian network (BN) is also a probabilistic graphical model describing a directed acyclic
graph. BN has been used to uncover cancer mechanisms, i.e., unique cancer molecular
mechanisms of clone cancer [5], causal networks of breast metastasis to bone, brain, or
lung [6], assessing the risk of breast cancer [7], etc. Boolean networks are discrete models
and one of the most widely used techniques to estimate the gene regulatory system. In the
model, gene expression levels are discretized, and each gene takes on two values, i.e., if
the gene expression is above a threshold value, then 1, otherwise 0, and the interactions
between genes are described by standard logic (Boolean) functions [8]. Various cancer
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research has been based on Boolean networks for cancer drug discovery [9], identifying
lung cancer diagnostic and prognostic biomarkers [10], uncovering the mechanisms of
tumorigenesis and possible treatment responses of prostate cancer [11], etc. Additionally,
various computational models and strategies (e.g., differential equation-based Model,
artificial neural network (ANN) approaches, correlation network, information theory, etc.)
have been developed and applied to cancer research. Furthermore, the effectiveness of
the networks-based analysis has been proven in various fields of research, e.g., cancer
prediction, drug combinations identification, and protein-protein interaction [12–14].

Although many computational tactics for gene regulatory network estimation have
been developed and numerous studies have been conducted to uncover cancer mechanisms
based on the estimated gene networks, the existing studies were conducted by an averaged
gene network for all cell lines. Thus, we cannot effectively identify crucial information for
precision cancer medicine.

In this article, we reviewed the computational strategies for the cell line’s (or patient’s)
cancer characteristics specific gene network analysis. Especially, we reviewed machine
learning approaches for varying coefficient models, where the varying coefficients describe
the strength of the interaction between genes for a specific characteristic of each cell line.
That is, the model enables us to construct a gene regulatory network for a specific status
related to cancer of the cell line. The cell line characteristic specific gene networks estimation
provides hundreds of networks for hundreds of cell lines, where each network is given as
a matrix form with about 20,000 columns for target genes, 2000 rows for regulator genes,
and the elements of the matrix indicate the strength of interaction between the regulator
and target genes. The analysis and interpretation of the multiple and massive networks
are quite difficult tasks and have remained a serious challenge in computational biology.
In this article, we also review some computational tactics for comprehensive analysis and
interpretation of the large-scale networks.

The remainder of this paper is organized as follows. In the gene regulatory network
estimation section, the regression framework to gene regulatory network estimation is
represented. The computation tactics estimate the cell line characteristic specific gene
regulatory network in the sample-specific gene network estimation section. In the section
of gene network analysis in multi-dimensional cell line space, the machine learning and
Artificial Intelligence (AI) approaches to comprehensive analysis of the estimated multiple
and massive gene regulatory network are represented. In the Applications section, the
application result of the reviewed computation strategies for network-based anti-cancer
drug prediction and related markers identification is introduced. Conclusions are provided
in the Discussion section.

2. Gene Regulatory Network Estimation

Suppose X = (x1, . . . , xn)T ∈ Rn×p is an n× p data matrix describing the expression
of p regulators that may control the transcription of `th target gene y` ∈ Rn, ` = 1, . . . , q.
Consider the linear regression model,

y` =
p

∑
j=1

β j`xj + ε`, ` = 1, . . . , q, (1)

where β j` describes the effect of the jth regulator gene on the `th target gene, and ε` is a
random error vector ε` = (ε`1, . . . , ε`n)

T that is assumed to be independently and identically
distributed with mean 0 and variance σ2. To estimate the gene regulatory network, the
following L1-type regularization methods were used successfully,

L(β`) = arg min
β`

{1
2

n

∑
i=1

(yi` −
p

∑
j=1

β j`xij)
2 + P(β`)}, (2)

where
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• ridge [15]: P(β`) = λ ∑
p
j=1 β2

j`

• lasso [16]: P(β`) = λ ∑
p
j=1 |β j`|

• elastic net [17]: P(β`) = λ ∑
p
j=1{γβ2

j` + (1− γ)|β j`|}
• etc.

and λ, γ > 0 are the regularization parameters, where λ controls model complexity, and γ
is a mixing parameter between the lasso and ridge penalties. The L1-type regularization
methods enable us to simultaneously identify crucial regulators and estimate their effect
on a target gene. In particular, the methods effectively perform analysis of the high
dimensional genomic alterations dataset.

Although the methods successfully perform edge selection and network estimation,
the approaches provide an averaged network for all n cell-lines. Thus, we cannot estimate
cell line (or patient) characteristic-specific models (i.e., molecular interplay). In other words,
the methods are not enough to extract useful information for precision medicine.

3. Sample-Specific Gene Network Estimation

To effectively extract crucial information for precision medicine, cell line (or patient)
characteristic-specific identification is a crucial issue. We reviewed computational ap-
proaches for cell-line characteristic-specific modelling, especially cell line characteristic-
specific gene regulatory network estimation. The following varying coefficient model was
used for cell-line characteristic-specific modelling [18],

y` =
p

∑
j=1

β j`(mα) · xj + ε`, ` = 1, . . . , q, α = 1, . . . , n, (3)

where β j`(mα) describes the effect of the jth regulator gene on the `th target gene in the αth

target cell line. mα is a cancer related characteristic of the αth cell lines, such as drug sensi-
tivity and survival risk of cell lines. The model enables us to describe cell-line characteristic-
(M = mα) specific molecular interplay between genes, i.e., β j`(mα).

3.1. NetworkProfiler

The varying coefficient β j`(mα) describing cell-line characteristic-specific strength
of the relationship between the jth regulator and the `th target genes in the αth cell line
can be estimated by the following kernel-based L1-type regularization method, called a
NetworkProfiler [19],

L(β`α|b`) =
1
2

n

∑
i=1
{yi`−

p

∑
j=1

β j`(mα)xij}2G(mi−mα|b`)+ P(β`α), (4)

where

G(mi −mα|b`) = exp
{−(mi−mα)2

b`

}
, (5)

is a Gaussian kernel function to control the weight of cell lines when modelling the αth target
cell line. The NetworkProfiler groups cell lines, according to the similarity of the specific
characteristics of cell lines (i.e., modulator mi for i = 1, . . . , n), and performs modelling
for αth cell lines, based only on the cell-lines in the neighbourhood around the αth cell line.
That is, the modelling for the αth cell line is based only on the cell lines having similar
modulator characteristics to with the target sample’s modulator value mα. This implies that
the NetworkProfiler can estimate cell line characteristic -specific gene regulatory networks.

The cancer-related characteristics of cell lines are not usually uniformly distributed.
Figure 1 shows the anti-cancer drug sensitivity of cell lines, where the eight drugs are
randomly selected from Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer
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Dependency Map (DepMap) projects. As shown in Figure 1, sensitivities of some anti-
cancer drugs (characteristics of cell lines: modulator) are non-uniformly distributed, i.e.,
there are cell lines having rare cancer characteristics.

Figure 1. Drug sensitivities of GDSC and DepMap databases: each of the four drugs are randomly
selected from GDSC and DepMap datsets.

Limitation: The NetworkProfiler cannot perform well when the modulator is not uni-
formly distributed, especially when modelling the target cell line with a rare
characteristic located in a sparse region of its distribution, because the method
is based on the constant bandwidth (b`) of Gaussian kernel function. In the
NetworkProfiler, the bandwidth specifies the length-scale of the kernel func-
tion and controls the weights of cell lines. It implies that the NetworkProfiler
based on the constant bandwidth performs cell line characteristic-specific
modelling without consideration of the distribution of the modulator and
location of the modulator value mα of the target sample in the distribution.
Thus, the NetworkProfiler imposes a small amount of weight to almost all
samples for modelling a target sample in a sparse region. Figure 2 shows
the values of the Gaussian kernel function (i.e., weight for cell lines) with a
constant bandwidth b` for a target sample in both sparse and dense regions,
where y-axis and x-axis indicate weights and modulator values of cell-lines,
respectively. As shown in Figure 2, the Gaussian kernel function based on the
constant bandwidth imposes the non-zero weight on only a few samples for
the modelling of the target sample in a sparse region. It leads to extremely high
dimensional data situations; thus, gene regulatory network estimation (i.e.,
edges selection and edge size estimation) cannot be appropriately performed.
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Figure 2. Gaussian kernel function to impose weight on cell lines, where y-axis and x-axis indicate
weight and modulator values of cell lines.

3.2. Adaptive NetworkProfiler

To settle on the issue, Park et al. [20] developed a novel strategy, called an adaptive
NetworkProfiler, based on the adaptive bandwidth of the Gaussian function. The adaptive
NetworkProfiler computes the weight of cell lines by using the adaptive Gaussian kernel
function, where the bandwidth is based on the k-nearest neighbour (KNN) rule, called an
adaptive bandwidth [21]. The adaptive bandwidth for an αth target cell line is based on
the Euclidean distance between the modulator value of αth cell line (mα) and its kth nearest
neighbour. By using not a constant but the adaptive bandwidth based on Euclidean distance,
the KNN-Gaussian kernel function has a relatively wide width of the kernel for modelling
a target sample, having a rare modulator value located in the sparse region, because the
kth nearest neighbourhood of αth target cell line is also far from the mα. Thus, the KNN-
Gaussian kernel function can overcome the drawback of the ordinary NetworkProfiler for
modelling a target sample in the sparse region.

The adaptive NetworkProfiler was developed based on the adaptive kennel function,
with an additional parameter incorporating dispersion of modulators (i.e., range of a
modulator: r(M)) as follows,

L(β`α|b
KNN
` , r(M)) =

1
2

n

∑
i=1
{yi`−

p

∑
j=1

β j`(mα)xij}2K(mi−mα|bKNN
`α,r(M)) + P(β`α), (6)

where

K(mi −mα|bKNN
`α , r(M)) = exp

(−(mi−mα)2

bKNN
`α · r(M)

)
, (7)

and bKNN
`α is the Euclidean distance between mα, with its kth nearest neighbour mkth

α ,

bKNN
`α =

√
(mα −mkth

α )2 for α = 1, 2, . . . , n, (8)

and r(M) is the hyperparameter, incorporating dispersion of the modulator M.
The adaptive bandwidth in the Gaussian kernel function with the additional parameter

incorporates distribution of cell line characteristics (M) and location of the characteristic
value (mα) in their distribution. Thus, the adaptive NetworkProfiler can overcome only a
small number of samples that have non-zero weight and can effectively perform cell line
characteristic-specific gene network estimation for modelling the target sample in not only
dense regions but also sparse regions.

Limitation: The NetworkProfiler and Adaptive NetworkProfiler construct the cancer
characteristics-specific gene network based on a specific cancer character-
istic. That is, the methods consider a characteristic and measure similarity of
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cell lines in one-dimensional cell line characteristic space based only on one
characteristic. Thus, the cancer characteristic-specific gene networks estimated
by the methods cannot described gene regulatory system under varying con-
ditions of various cancer characteristics because the methods are based on
a characteristic.

3.3. Gene Network Analysis in Multi-Dimensional Cell Line Space

In order to incorporate various cancer-related characteristics of cell lines and extract
more precise cell-line specific molecular interplays, the cell line characteristic specific gene
network estimation is extended to the multi-dimensional cell line space [22].

For h characteristics of cell line M = (m1, . . . , mh) ∈ Rn×h, the varying coefficient
model in (3) is given as follows,

y` =
p

∑
j=1

β j`(mα) · xj + ε`, ` = 1, . . . , q, α = 1, . . . , n, (9)

where mα = (mα1, . . . mαh). In the h-dimensional cell line space, the similarity between cell
lines is measured by the following multivariate Gaussian kernel function,

K(mi −mα|H`) = |H`|−1/2exp
{
− 1

2
(mi −mα)

T H−1
` (mi−mα)

}
(10)

where H` is the bandwidth matrix (e.g., covariance matrix). Then, the multi-dimensional
cell line characteristic specific gene network is estimated by the following multivariate
kernel-based L1-type regularization method,

L(β`α|H`) =
1
2

n

∑
i=1
{yi`−

p

∑
j=1

β j`(mα)xij}2K(mi −mα|H`)+ P(β`α). (11)

The multi-dimensional cell line characteristic specific analysis enables us to extract more
precise characterization of cell-lines, and thus we can effectively estimate precision cancer
gene regulatory networks.

Limitation: The precision cancer gene networks estimation provides hundreds of ma-
trices with more than 2000 rows for regulator genes and more than 10,000
columns for target genes. Although various computational tactics have been
developed and successfully applied to gene regulatory network estimation,
the interpretation of the large-scale gene networks remains a challenge. The
existing studies on the cell line characteristic-specific gene networks focused
only on the known markers and then interpreted the massive networks based
on the neighbourhoods of the known markers, i.e., only narrow interpretation
was performed. However, comprehensive analysis of the multiple massive
networks is essential to understand the complex mechanism of cancer. The
interpretation of the multi-layer massive network was the bottle network of
the existing studies on the precision cancer gene networks analysis.

4. Interpretation of the Multi-Layer Massive Networks

In this section, we review computational strategies to interpret the multiple and
massive gene regulatory networks.

4.1. Network Constrained Sparse Common Component Analysis (NetSCCA)

Park et al. [22] considered common structure identification of the multiple matrix
datasets to interpret multilayer massive networks. The cell line specific gene regulatory
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system can be described by the following regulatory effect of the jth regulator gene on the
`th target gene in the αth cell line [19,22],

rαl j = β̂`j(mα) · xαj, for j = 1, . . . , p, (12)

where xαj is an expression level value of the jth gene in the αth cell line. For the `th target
gene, a matrix for the regulatory effect of p regulators is given as R` = (r1`, . . . , rn`)

T ∈
Rn×p, where rα` = (rα`1, . . . , rα`p)

T .
To interpret the large-scale gene regulatory networks and identify crucial biomarkers

that play a key role in cancer-related mechanism of interest, the network-constrained sparse
common component analysis (NetSCCA) was developed. The crucial common component
of multiple datasets (R`, ` = 1, . . . , q) can be estimated by [23],

arg min
A
{

q

∑
`=1
‖R` − R`AAT‖2

F}, (13)

subject to AT A = IK.

As show in (13), the common component analysis of q datasets can be considered as
a principal component analysis (PCA) of q datasets. That is, if there is only one dataset
R1, then the model becomes a standard PCA. Wang et al. [23] showed that the common
loading matrix A in (13) can be optimized as the solution to the following problem,

arg max
A

Tr(ATGA), (14)

subject to AT A = IK.

where G = ∑
q
`=1 RT

` R`. It implies that the common loading matrix A can be estimated by
the standard PCA problem.

arg min
A
{‖Q−QAAT‖2

F}, (15)

subject to AT A = IK,

where Q is the square root of G, i.e., QTQ = G. The common component analysis enables
us to estimate the common subspace of the multiple massive networks (i.e., R`, ` = 1, . . . , q),
and extract the crucial common component of the datasets.

The common component estimation in (13) provides a fully dense projection matrix
A. That is, the common component is estimated by a linear combination of all features. It
not only leads to difficult to interpret estimated common components but also erroneous
estimation results, because the common component analysis is based on crucial and noisy
features. To settle the issue, a sparse learning-based strategy was proposed and developed
to achieve better biological interpretability, called a NetSCCA [22]. The NetSCCA estimates
the projection matrix A based only on crucial features without disturbance of noisy features
by using sparse learning and incorporates network biology knowledge that the genes
with similar molecular interactions may have similar biological function in the common
component estimation.

The NetSCCA measures the similarity between genes on networks by using the
following jaccard similarity [24]:

Wj,s =
|Nj ∩ Ns|
|Nj ∪ Ns|

(16)
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where Nj is the set of nodes that are directly connected to the jth gene via an edge in at
least one cell line. Then, the similarity between genes Wj,s is incorporated into the sparse
common loading matrix (A) estimation as follows,

arg min
Θ,A

{
q

∑
`=1
‖Q−QΘAT‖2

F}+ λ1

K

∑
k=1
‖θk‖1 + λ2

K

∑
k=1

∑
j<s

(θj,k − θs,k)
2Wj,s, (17)

where θk ∝ Ak is the p-dimensional vector and Θ = (θ1, . . . , θk). The last term (penalty
term) of (17) enables us to locally smooth the coefficients and encourage the simultaneous
selection of related genes. In other words, a large amount of weight is imposed on the
coefficients of the two genes with many common interactions, and it encourages similarity
in their coefficients of common structure estimation. Thus, the NetSCCA can provide bio-
logically interpretable results of the common component analysis of the multiple networks.

The NetSCCA algorithm is given in Algorithm 1.

Algorithm 1 NetSCCA: Network constrained sparse common component analysis.

1: Compute jaccard similarity: W .
2: For q target genes, compute the regulator effect matrices as R` for ` = 1, . . . , q and

G = ∑
q
`=1 RT

` R`.
3: For the square root of G (i.e., QTQ = G), compute sparse common loadings of q

regulator effect matrices R`, ` = 1, .., q.
3.1: Start A at V = [V1, V2, . . . , VK], which is the loading matrix from ordinary PCA
of Q.
3.2: Given a fixed A = [a1, a2, . . . , aK], solving the following problem,

θ̂k arg min
θk

{‖zk −Qθk‖2}+ λ1‖θk‖1 + λ2 ∑
j<s

(θj,k − θs,k)
2Wj,s k = 1, 2, . . . , K,

where zk = Qak. Update Θ̂ = [θ̂1, θ̂2, . . . , θ̂K].
3.3: For a fixed Θ̂, perform the singular value decomposition of QTQΘ̂ = UΓV T and
update Â = UV T (see Zou et al. [25]).
3.4: Repeat Steps 3.2–3.3, until convergence.

4: Sparse common loading is given by θ̂k
‖θ̂k‖

for k = 1, . . . , K.

Limitation: As pointed out by existing studies on network-based regularization [26,27], the
network-constrained regularisation cannot perform well when the connected
genes have opposite signs of coefficients. The limitation of the NetSCCA
can be overcome by use of the advanced network-constrained regularization
methods that incorporate signs of the regression coefficients [27].

4.2. Explainable AI for Gene Network-Based Prediction (Xprediction)

In this section, we review an explainable AI approach for the network-based prediction,
called Xprediction [28]. Although the machine learning-based AI approaches provide
effective prediction results, most of the existing approaches were developed focusing only
on mathematical/statistical accuracy. Thus, the existing AI methodologies cannot explain
their decision rules (i.e., the existing AI cannot explain how and why a decision has been
made, causing the black-box problem). However, the interpretability and explainability are
essential for use of AI strategies in various fields of research, especially medical science.

Xprediction achieves not only prediction accuracy but also interpretability of deep
learning-based AI. The method is based on the widely used machine learning and deep
learning approaches, e.g., the kernel support vector machine, random forest and deep
neural network for prediction models, and describes the cruciality of input on output by
comparison with the results of the model without the input. That is, Xprediction constructs
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a model by removing a feature (i.e., by removing a molecular interaction between `th target
and jth regulator genes) individually and performing a prediction, and the prediction is
iterated based on the randomly constructed cross-validation datasets. The cruciality of each
molecular interaction was measured by comparing with the prediction accuracy based on
all molecular interactions Acc(ŷ).

The significance of each molecular interaction is computed by the t-test between
prediction accuracies between models with and without the edge (i.e., interaction). Let N be
a number of iterations for computing prediction accuracy from the randomly constructed
cross-validation dataset, then Acc(ŷ) and sŷ are mean and standard deviation of the
prediction of accuracies in N iterations, respectively. In the model without (l, j) interaction,

corresponding notations are given N(l,j), Acc(ŷ(l,j)) and s
(ŷ(l,j))

, respectively. We performed
the following t-test,

T`j =
Acc(ŷ)−Acc(ŷ(l,j))

sp

√
1
N + 1

N(l,j)

(18)

where sp =

√
sŷ(N−1)+s

ŷ(l,j)
(N(l,j)−1)

N+N(l,j)−2
. Then, the cruciality of (l, j)th interaction I`j) on the

prediction result was measured by the p value of the t-test. The algorithm of Xprediction is
given in Algorithm 2.

Algorithm 2 Xprediction: explainable prediction.

1: Construct prediction models based on the kernel support vector machine (kSVM),
Random Forest (RF), and Neural Network (NN).

2: Compute prediction accuracies based on k-fold cross-validation (CV). The average of
the prediction accuracies of k validation sets was given as: Acc(ŷ).

3: Step 2 is iterated N times for randomly constructed k-fold CV datasets.
4: If l ≤ q, then
5: If j ≤ p, then
6: Delete (l, j) elements from regulatory effect matrices: R`, ` = 1, . . . , q
7: Compuate prediction accuracy of the model without (l, j) elements: Acc(ŷ(l,j)).
8: Step 7 is iterated N(l,j) times for randomly constructed k-fold CV datasets.
9: Perform t-test between Acc(ŷ) and Acc(ŷ(l,j)) obtained from N and N(l,j) iterations

and compute p value.
10: Cruciality of molecular interplays for AI-based prediction results are measured by on p

value of the t-test.

Limitation: The Xprediction constructs (q× p) + 1 prediction models, because prediction
accuracies of the model based on the regulatory effect without the (i, j) element
should be compared with the model based on the regulatory effect with all
elements. This leads to a great amount of computation. The computational
complexity is one of limitations of the Xprediction.

5. Applications

In this section, we introduce an application of the introduced computational strategy
to precision cancer network analysis. We consider the application of the explainable
AI, Xprediction, to identify anti-cancer drug markers. The drug sensitivity data (i.e.,
primary-screen-replicate-collapsed-logfold-change) and RNA-expression levels of genes
are obtained from the CCLE dataset (https://depmap.org/portal/, accessed on 4 August
2022). For expression levels of genes, we extracted 1922 genes that had the highest 10%
variances in cell lines. We focused on anti-cancer drugs, capecitabine, and oxaliplatin,
which are used in a chemotherapy combination known as XELOX or CAPEOX. The XELOX
is used to colorectal and gastric cancer [29–31].

https://depmap.org/portal/
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We first estimated capecitabine’s sensitivity specific gene networks by using the
NetworkProfiler. We then defined oxaliplatin sensitive and resistant cell lines based on fifth
(5P) and ninety-fifth (95P) percentiles of the drug sensitivity (DS) values, i.e., sensitive cells:
DS < 5P and resistant cells: DS > 95P. We constructed a prediction model based on the deep
learning approach (i.e., deep neural network) to predict the sensitivity of the oxaliplatin. In
our analysis, a two hidden layered, fully-connected feed-forward neural network was used.
The ReLU activation function was used on the hidden layers, and the sigmoid function
was used on the output layer. We randomly split the dataset 10-fold and evaluated the
prediction accuracy based on the 10-fold cross-validation, i.e., prediction accuracy was
given as an average of prediction accuracies of 10 test sets. By using Xprediction, crucial
molecular interactions to explain sensitivities of the oxaliplatin were identified based on p
value<0.05. Table 1 shows the identified crucial interactions and corresponding p value.

Table 1. Crucial molecular interplays to explain oxaliplatin sensitivity, where X → Y indicates
interaction from regulator gene X to target gene Y.

Interaction p Value Interaction p Value

MPZL2→SH2D3A 0.003 TP63→ITGB4 0.039
JUP→DDR1 0.008 EHF→C6orf132 0.040

DMKN→SH2D3A 0.018 PPP1R13L→LYPD3 0.040
DMKN→MPP1 0.019 IFITM1→TBX2 0.040
KRT16→S100A14 0.019 JAM3→FMN2 0.042
PRSS8→TMEM265 0.029 S100A7→KRT14 0.044

SLPI→PTK2B 0.032 KLK8→IFITM1 0.046
PI3→CALB1 0.033 EYA4→RHOD 0.046

SPRY2→ETV1 0.033 SYNE1→ZEB2 0.048
LY6K→PKP3 0.034 NECTIN4→CLDN4 0.049

SYTL1→KLK8 0.035

Figure 3 shows gene regulatory networks consisting of the identified crucial molecular
interplays to oxaliplatin sensitivity prediction, where the top and bottom indicates the
networks in drug sensitive and resistance cell lines, respectively. The edge sizes represent
the median of strengths of interactions between genes in drug-sensitive cell lines and
-resistant cell lines, respectively.

As shown in Figure 3, drug-sensitive and-resistant cell lines show different gene
regulatory systems of the identified markers. The interplay of SYNE1→ IFITM1 can be
considered as a oxaliplatin-resistant specific gene regulatory system. The interplays of
SPRY2→ ETV1 and SLPI→ PTK1B become weaker from sensitive to resistant cell lines.
It was uncovered that high expression levels of the identified drug resistant markers
SYNE1 and IFITM1 are associated with poorer chemotherapy efficacy of gastric cancer and
resistance to endocrine therapy and chemotherapy [32,33]. The existing studies support
our results that the high activities of SYNE1 and IFITM1 are characteristics of capecitabine-
resistant cell lines. On the other hand, it was demonstrated that the high expression levels
of the SPRY2 are associated with chemotherapy-sensitive cell line MEK inhibitors, BRAF
inhibitor-resistant cells, and ovarian cancer cells [34–36]. The results of the literature are
consistent with our result that the activity of SPRY2 is a signature of capecitabine-sensitive
cell lines. This implies that our gene network analysis results are strongly supported by
existing literatures.
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Gene network in Capecitabine sensitive cell lines

Gene network in Capecitabine resistant cell lines

Figure 3. Gene regulatory networks of the crucial molecular interplays to oxaliplatin sensitivity
prediction. Color of edge indicate negative (red) and positive (blue) effects of regular genes on their
target genes.

Table 2 shows that the genes consisted of the crucial interplays, related anti-cancer
drugs, and cancer, where the column “Resistant” indicates that the gene was identified
as a drug-resistant marker in existing studies. It can be seen from Table 2 that more than
half of the identified genes are confirmed as a therapeutic target for not only XELOX (i.e.,
Oxaliplatin and Capecitabine) but also various anti-cancer drugs (e.g., 5-FU, cisplatin,
Paclitaxel, etc.). Furthermore, the cancer-related mechanism of the genes has been verified
in the literature. Although the mechanism of some genes has not yet been uncovered,
it can be considered through our results and literatures that not just a single gene but
the identified molecular interplays may be crucial to understanding the mechanism of
anti-cancer drug resistance of cell lines.

We suggest though the application results of precision cancer network analysis and
literature that molecular interplays between “SYNE1 and IFITM1” may lead to capecitabine
resistance of cancer cell lines, while weakening the molecular regulatory interactions
between “SPRY2 and ETV1” and “SLPI and PTK1B” induce capecitabine-resistance in
cell lines.
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Table 2. Identified markers and their evidence.

Genes RG/TG Drugs Cancer Resistant Evidences

C6orf132 TG - -
CALB1 TG - -

CLDN4 TG 5-FU, cisplatin,
Paclitaxel, cDDP PDC, GS, CRC * [37–41]

DDR1 TG Oxaliplatin GS, CRC [42–44]
DMKN RG - CRC [45]

EHF RG - -
ETV1 TG oxaliplatin, 5-FU HCC, GS, CRC * [46–48]
EYA4 RG - - -
FMN2 TG - - -

IFITM1 RG,TG - GS, CRC, EAC,
GBC [49–51]

ITGB4 TG cisplatin, erlotinib,
5-Fu LC * [52–54]

JAM3 RG - LIC [55]
JUP RG - - -

KLK8 RG,TG oxaliplatin CRC, PC * [56,57]
KRT14 TG Erlotinib LC, BC [58,59]
KRT16 RG Erlotinib BC [59]
LY6K RG - GC, BC * [60–62]

LYPD3 TG - AML [63]
MPZL2 RG - - -

NECTIN4 RG 5-FU, Enfortumab
Vedotin CC, BC, GC, LC * [64,65]

PI3 RG - - -

PKP3 TG 5-FU, leucovorin,
oxaliplatin CRC [66]

PPP1R13L RG 5-FU GS * [67]
PRSS8 RG - - -

PTK2B TG

Midostaurin,
gilteri-

tinib/defactinib,
TKI

AML * [68]

RHOD TG - - -
S100A14 TG - GS [69]
S100A7 RG - - -

SH2D3A TG - - -
SLPI RG - - -

SPRY2 RG 5-FU CC [70]
SYNE1 RG - GC [32]
SYTL1 RG - - -

TBX2 TG platinum-ased
chemotherapy OC, CRC [71,72]

TMEM265 TG - - -

TP63 RG apatinib and
capecitabine BC [73]

ZEB2 TG
oxaliplatin and
5-FU, cisplatin,
trastuzumab

CRC, GC * [74–76]

AML: Acute myelogenous leukaemia; BC: breast cancer; CC: colon cancer; CRC: colorectal cancer; EAC:
oesophageal adenocarcinoma; GBC: gallbladder cancer; GS: gastric cancer; HCC: hepatocellular carcinoma;
LC: lung cancer; OC: ovarian cancer; PC: pancreatic cancer; PDC: pancreatic ductal carcinomas; cDDP: cis-
diamminedichloroplatinum. The * indicates that the gene was identified as a drug resistant marker in the
existing studies.

6. Discussion

In this article, we reviewed computational tactics for precision cancer network analysis.
Although many studies have been conducted to develop computational approaches to
gene regulatory network analysis and the gene network-based analysis has been applied
to cancer research, the existing studies focused on an averaged gene network for all cell
lines. Thus, we cannot extract crucial information for precision cancer research. In this
article, we have focused on cancer characteristic-specific gene networks and reviewed the
computational strategies for cell line specific modelling to identified cancer characteristic-
specific molecular interplays. We also reviewed the studies on analysis and interpretation
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of the estimated multiple and massive gene regulatory networks. Finally, we introduced the
application results of the introduced computational tactics to anti-cancer drug sensitivity-
specific gene network analysis. The application section described cell line’s characteristic-
(drug sensitivity) specific gene regulatory network analysis. Our analysis can be easily
extended to patient’s characteristic-specific gene network analysis by using expression
levels and drug sensitivities summarized in each patient. We expect that the results of a
cancer patient’s characteristic-specific gene network analysis provides crucial evidence for
precision medicine.

Although we have reviewed some computational tactics for interpretation of multiple
and massive gene networks, from cell line characteristic-specific gene network estimation
to computational network biology, interpretation and analysis of the large-scale gene
networks is still in its infancy. Thus, researchers in various fields of research are faced with
a challenge to interpret the estimated large gene networks. Explainable machine learning
and, more specifically, interpretable artificial intelligence will be a key tool to overcome
this bottleneck in the near future.
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