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Hybrid system theory lies at the intersection of the fields of engi-
neering control theory and computer science verification. It is de-
fined as the modeling, analysis, and control of systems that involve
the interaction of both discrete state systems, represented by finite

automata, and continuous state dynamics, represented by differen-
tial equations. The embedded autopilot of a modern commercial jet
is a prime example of a hybrid system: the autopilot modes corre-
spond to the application of different control laws, and the logic of
mode switching is determined by the continuous state dynamics of
the aircraft, as well as through interaction with the pilot. To under-
stand the behavior of hybrid systems, to simulate, and to control
these systems, theoretical advances, analyses, and numerical tools
are needed. In this paper, we first present a general model for a
hybrid system along with an overview of methods for verifying con-
tinuous and hybrid systems. We describe a particular verification
technique for hybrid systems, based on two-person zero-sum game
theory for automata and continuous dynamical systems. We then
outline a numerical implementation of this technique using level
set methods, and we demonstrate its use in the design and analysis
of aircraft collision avoidance protocols and in verification of au-
topilot logic.
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I. INTRODUCTION

The field of formal verification in computer science has

achieved great success in the analysis of large-scale discrete

systems: using temporal logic to express discrete sequences

of events, such as Component A will request data until

Component B sends data, researchers in verification have

uncovered design flaws in such safety-critical systems as

microprocessors that control aircraft cockpit displays and

design standards for a military hardware bus [1]. Discrete

analysis, however, is not rich enough to verify systems that

evolve according to both continuous dynamics and discrete

events. Embedded systems, or physical systems controlled

by a discrete logic, such as the current autopilot logic for

automatically controlling an aircraft, or a future automated

protocol for controlling an aircraft in the presence of other

aircraft, are prime examples of systems in which event

sequences are determined by continuous state dynamics.

These systems use discrete logic in control because discrete

abstractions make it easier to manage system complexity

and discrete representations more naturally accommodate

linguistic and qualitative information in controller design.

While engineering control theory has successfully designed

tools to verify and control continuous state systems, these

tools do not extend to systems that mix continuous and

discrete state, as in the examples above.

Hybrid systems theory lies at the intersection of the two

traditionally distinct fields of computer science verification

and engineering control theory. It is loosely defined as the

modeling and analysis of systems that involve the interac-

tion of both discrete event systems (represented by finite

automata) and continuous time dynamics (represented by

differential equations). The goals of this research are in the

design of verification techniques for hybrid systems, the

development of a software toolkit for efficient application

of these techniques, and the use of these tools in the analysis
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and control of large-scale systems. In this paper, we present

a summary of recent research results, and a detailed set of

references, on the development of tools for the verification

of hybrid systems and on the application of these tools to

some interesting examples.

The problem that has received much recent research at-

tention has been the verification of the safety property of hy-

brid systems, which seeks a mathematically precise answer

to the question: is a potentially unsafe configuration, or state,

reachable from an initial configuration? For discrete systems,

this problem has a long history in mathematics and computer

science and may be solved by posing the system dynamics

as a discrete game [2], [3]; in the continuous domain, con-

trol problems of the safety type have been addressed in the

context of differential games [4]. For systems involving con-

tinuous dynamics, it is very difficult to compute and rep-

resent the set of states reachable from some initial set. In

this paper, we present recent solutions to the problem, in-

cluding a method, based on the level set techniques of Osher

and Sethian [5], which determines an implicit representation

of the boundary of this reachable set. This method is based

on the theorem, which is proved in [6] using a two-person

zero-sum game theory for continuous dynamical systems,

that the solution to a particular Hamilton–Jacobi partial dif-

ferential equation corresponds exactly to the boundary of the

reachable set. In addition, we show that useful information

for the control of such systems can be extracted from this

boundary computation.

Much of the excitement in hybrid system research stems

from the potential applications. With techniques such as the

one above, it is now possible to verify and design safe, au-

tomated control schemes for low-dimensional systems. We

present two interesting examples in the verification of proto-

cols for aircraft collision avoidance and of mode-switching

logic in autopilots. We survey other applications that have

been studied in this framework.

We conclude with a discussion of problem complexity

and new directions that will enable treatment of problems of

higher dimension.

The material in this paper is based on the hybrid system

algorithm of [7], the level set implementation of [6] and [8],

and the aircraft landing examples of [9] and [10].

II. HYBRID MODEL AND VERIFICATION METHODOLOGY

A. Continuous, Discrete, and Hybrid Systems

Much of control theory is built around continuous-state

models of system behavior. For example, the differential

equation model given by

(1)

describes a system with state that evolves con-

tinuously in time according to the dynamical system

, a function of .

In general, is used to represent variables that can be con-

trolled, called control inputs, and represents disturbance

inputs, which are variables that cannot be controlled, such as

the actions of another system in the environment. The initial

state is assumed to belong to a set of al-

lowable initial conditions. A trajectory of (1) is represented

as , such that , and satisfies

the differential equation (1) for control and disturbance input

trajectories and . We recommend [11] and [12] as

current references for continuous-state control systems.

Discrete-state models, such as finite automata, are also

prevalent in control. The finite automaton given by

(2)

models a system that is a finite set of discrete state vari-

ables , a set of input variables that is the

union of control actions and disturbance actions

, a set of initial states , and a transition

relation that maps the state and input

space to subsets of the state space . A trajectory of (2) is

a sequence of states and inputs, written as , where

and for index .

The original work of Ramadge and Wonham [13] brought

the use of discrete state systems to control, though parallels

can be drawn between this work and that of Church, Büchi,

and Landweber [3], [14], who originally analyzed the von

Neumann–Morgenstern [2] discrete games. A comprehen-

sive reference for modeling and control of discrete state sys-

tems is [15].

Control algorithms design a signal, either a continuous or

discrete function of time, which when applied to the system

causes the system state to exhibit desirable properties. These

properties should hold despite possible disruptive action of

the disturbance. A concrete example of a continuous-state

control problem is in the control of an aircraft: here, the state

(position, orientation, velocity) of the aircraft evolves con-

tinuously over time in response to control inputs (throttle,

control surfaces), as well as to disturbances (wind, hostile

aircraft).

A hybrid automaton combines continuous-state and dis-

crete-state dynamic systems in order to model systems that

evolve both continuously and according to discrete jumps. A

hybrid automaton is defined to be a collection

(3)

where is the union of discrete and continuous

states, is a set of initial states,

is the union of actions and inputs, is a function that

takes state and input and maps to a new state ,

is a domain, and is a transition

relation.

The state of the hybrid automaton is represented as a

pair , describing the discrete and continuous state

of the system. The continuous-state control system is

“indexed” by the mode and, thus, may change as the

system changes modes. describes, for each mode,

the subset of the continuous state space within which

the continuous state may exist, and describes the

transition logic of the system, which may depend on

continuous state and input, as well as discrete state and

action. A trajectory of this hybrid system is defined as
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Fig. 1. Difference between backward and forward reachable sets.

the tuple in

which evolves according to discrete jumps,

obeying the transition relation ; for fixed

evolves continuously according to the control system

. The introduction

of disturbance parameters to both the control system defined

by and the reset relation defined by will allow us to

treat uncertainties, environmental disturbances, and actions

of other systems.

This hybrid automaton model presented above allows for

general nonlinear dynamics, and is a slight simplification of

the model used in [7]. This model was developed from the

early control work of [16]–[19]. The emphasis of this work

has been on extending the standard modeling, reachability

and stability analyses, and controller design techniques to

capture the interaction between the continuous and discrete

dynamics. Other approaches to modeling hybrid systems in-

volve extending finite automata to include simple continuous

dynamics: these include timed automata [20], linear hybrid

automata [21]–[24], and hybrid input/output automata [25].

B. Safety Verification

Much of the research in hybrid systems has been moti-

vated by the need to verify the behavior of safety-critical

system components. The problem of safety verification may

be encoded as a condition on the region of operation in the

system’s state space: given a region of the state space that

represents unsafe operation, prove that the set of states from

which the system can enter this unsafe region has empty in-

tersection with the system’s set of initial states.

This problem may be posed as a property of the system’s

reachable set of states. There are two basic types of reach-

able sets. For a forward reachable set, we specify the initial

conditions and seek to determine the set of all states that can

be reached along trajectories that start in that set. Conversely,

for a backward reachable set, we specify a final or target set

of states and seek to determine the set of states from which

trajectories start that can reach that target set. It is interesting

to note that the forward and backward reachable sets are not

simply time reversals of each other. The difference is illus-

trated in Fig. 1 for generic target and initial sets, in which the

arrows represent trajectories of the system. Fig. 2 illustrates

how a backward reachable set may be used to verify system

safety.

Powerful software tools for the automatic safety verifica-

tion of discrete systems have existed for some time, such as

Mur [26], PVS [27], SMV [28], and SPIN [29]. The verifi-

cation of hybrid systems presents a more difficult challenge,

Fig. 2. Using the backward reachable set to verify safety.

Fig. 3. Discrete abstraction with appropriate control information.

primarily due to the uncountable number of distinct states in

the continuous state space. In order to design and implement

a methodology for hybrid system verification, we first need

to be able to represent reachable sets of continuous systems

and to evolve these reachable sets according to the system’s

dynamics.

It comes as no surprise that the size and shape of the

reachable set depends on the control and disturbance inputs

in the system: control variables may be chosen so as to

minimize the size of the backward reachable set from an

unsafe target, whereas the full range of disturbance variables

must be taken into account in this computation. Thus, the

methodology for safety verification has two components.

The first involves computing the backward reachable set

from an a priori specified unsafe target set; the second

involves extracting from this computation the control law

that must be used on the boundary of the backward reachable

set in order to keep the system state out of this reachable

set. Application of this methodology results in a system

description with three simple modes (see Fig. 3). Outside of

the backward reachable set, and away from its boundary, the

system may use any control law it likes and it will remain
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safe (labeled as “safe” in Fig. 3). When the system state

touches the reachable set or unsafe target set boundary, the

particular control law that is guaranteed to keep the system

from entering the interior of the reachable set must be used.

Inside the reachable set (labeled as “outside safe set” in

Fig. 3), there is no control law that will guarantee safety;

however, application of the particular optimal control law

used to compute the boundary may still result in the system

becoming safe if the disturbance is not playing optimally

for itself.

In the following section, we first summarize different

methods for computing reachable sets for continuous

systems. We then provide an overview of our algorithm,

which uses an implicit surface function representation of

the reachable set, and a differential game theoretic method

for its evolution. In the ensuing sections, we illustrate how

this reachable set computation may be embedded as the key

component in safety verification of hybrid systems.

III. VERIFYING CONTINUOUS SYSTEMS

Computing reachable sets for safety specifications has

been a main focus of the control and computer-aided veri-

fication communities for the past several years. In the past

three years, several experimental reachability tools have

been developed and may be classified according to how

sets of states are represented and the assumptions on the

dynamics under which states are propagated. We classify

as “overapproximative” a group of methods that seek an

efficient overapproximation of the reachable set. The tools

[30], [31] and Checkmate [32], [33] represent sets

as convex polyhedra and propagate these polyhedra under

linear and affine dynamics, which could represent overap-

proximations of nonlinear dynamics along each surface of

the polyhedra. Piecewise affine systems are used in [34],

[35]. VeriSHIFT [36] uses ellipsoidal overapproximations of

reach sets for linear systems with linear input; it implements

techniques developed in [37]. Polygonal overapproxima-

tions of reachable sets for some classes of nonlinear systems

are treated in [38]. The tool Coho, developed in [39] and

[40], uses as set representation two-dimensional projections

of higher dimensional nonconvex polyhedra and evolves

these “projectagons” under affine overapproximations of

nonlinear dynamics using linear programming. In [41], the

authors present a solution using sets specified by linear

inequalities, for discrete-time linear dynamics. A recent

algorithm [42] proposes to divide the continuous state

space into a finite number of sets and then to compute

the reachable set using a discrete algorithm. The method

works for polynomial dynamics and the subzero level sets of

polynomials as set representation: by partitioning the state

space into a “cylindrical algebraic decomposition” based

on the system polynomials, a discrete approximation of the

dynamics can be constructed.

A second group of methods is based on computing

“convergent approximations” to reachable sets: here, the

goal is to represent as closely as possible the true reachable

set. Methods include numerical computation of solutions

to static Hamilton–Jacobi equations [43] and to techniques

from viability theory and set valued analysis [44]. In our

work, we have developed a reachability computation method

based on level set techniques [5], [45], [46] and viscosity

solutions to Hamilton–Jacobi equations [47], [48] using the

ideas presented in [7] and [49]. We represent a set as the zero

sublevel set of an appropriate function, and the boundary of

this set is propagated under the nonlinear dynamics using

a validated numerical approximation of a time-dependent

Hamilton–Jacobi–Isaacs (HJI) partial differential equation

(PDE) governing system dynamics [6], [50], [51]. These

convergent approximative methods allow for both control

inputs and disturbance inputs in the problem formulation,

and they compute a numerical solution on a fixed grid (the

mesh points do not move during the computation).

In most of the overapproximative schemes, the reachable

set representation scales polynomially with the continuous

state space dimension . Exceptions include orthogonal

polyhedra, which is exponential in , and the algorithm

based on cylindrical algebraic decomposition, in which the

representation size depends on the dimension of the poly-

nomials involved. Since algorithm execution time and its

memory requirements generally scale linearly with the size

of the representation of the reachable set, overapproximative

schemes in which the set representation scales polynomially

with have a significant advantage over other schemes.

However, these overapproximative schemes are generally

too imprecise for problems in which the dynamics are

nonlinear and for which the shape of the reachable set is not

a polygon or an ellipse. The schemes based on convergent

approximations are exponential in and, thus, are not

practical for problems of dimension greater than about five

or six. However, these schemes can all handle nonlinear

dynamics, they work within a differential game setting, and

they make no assumptions about the shape of the reachable

set.

In this section, using as motivation a classical pursuit–

evasion game involving two identical vehicles, we present

our methodology and results for computing reachable sets

for continuous systems (1). The material in this section is

presented in detail in [6], [8], [52], and [53].

A. A Game of Two Identical Vehicles

As our demonstration example, we will adapt a classical

pursuit evasion game involving two identical vehicles (see

[53] and [54] for more details). If the vehicles get too

close to each other, a collision occurs. One of the vehicles

(the pursuer) wants to cause a collision, while the other

(the evader) wants to avoid one. Each vehicle has a three-

dimensional (3-D) state vector consisting of a location in the

plane and a heading. Isaacs [4] pioneered a framework for

solving such games using a method similar to the method

of characteristics [55].

We study the problem in relative coordinates (see Fig. 4).

We draw our vehicles as aircraft, as we have used the solu-

tion to this example as inspiration for verifying two-aircraft

tactical conflict avoidance strategies in Air Traffic Control.
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Fig. 4. Relative coordinate system. Origin is located at the center of the evader.

Fixing the evader at the planar origin and facing to the

right, the relative model of pursuer with respect to evader is

(4)

where the three state dimensions are relative planar loca-

tion and relative heading , and

is the linear velocity of each aircraft. In Fig. 4, the

relative heading is measured counterclockwise from the hori-

zontal. The control input is the angular velocity of the evader,

, and the disturbance input is

, the pursuer’s angular velocity. A collision occurs

if for any value of , in this collision

set is a cylinder of radius centered on the axis. To solve

this pursuit evasion game, we would like to determine the set

of initial states from which the pursuer can cause a collision

despite the best efforts of the evader.

B. Computing Reachable Sets for Continuous Dynamic

Games

The backward reachable set is the set of initial conditions

giving rise to trajectories that lead to some target set. More

formally, let be the target set, be the backward reach-

able set over finite horizon denote a trajectory

of the system, and be the state of that trajectory at time

. Then, is the set of such that for

some . The choice of input values over time in-

fluences how a trajectory evolves. For systems with in-

puts, the backward reachable set is the set of such

that for every possible control input , there exists a distur-

bance input that results in for some

(where we abuse notation and refer interchangeably to the

input signal over time and its instantaneous value).

The solution to the pursuit evasion game described in the

previous section is a backward reachable set. Let the target

set be the collision set

(5)

Then, is the set of initial configurations such that for any

possible control input chosen by the evader, the pursuer can

generate a disturbance input that leads to a collision within

time units.

We use the very general implicit surface function represen-

tation for the reachable set: for example, consider the cylin-

drical target set (5) for the collision avoidance example. We

represent this set as the zero sublevel set of a scalar function

defined over the state space

Thus, a point is inside if is negative, outside

if is positive, and on the boundary of if .

Constructing this signed distance function representation

for is straightforward for basic geometric shapes. Using

negation, minimum, and maximum operators, we can

construct functions that are unions, intersections, and set

differences. For example, if is represented by , then

represents

represents , and represents

.

In [6], we proved that an implicit surface representation of

the backward reachable set can be found by solving a mod-

ified HJI PDE. Using to represent the gradient of , the

modified HJI PDE is

(6)

with Hamiltonian

(7)

and terminal conditions

(8)

990 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 7, JULY 2003



Fig. 5. Growth of the reachable set [6] (animation at [60]).

Fig. 6. Other views of the reachable set [6] (animation at [60]).

If is the zero sublevel set of , then the zero sublevel

set of the viscosity solution to (6)–(8) specifies the

backward reachable set as

Notice that (6) is solved from time backward to some

.

There are several interesting points to make about the HJI

PDE (6)–(8). First, the formulation in (6) ensures

that the reachable set only grows as increases. This for-

mulation effectively “freezes” the system evolution when the

state enters the target set, which enforces the property that a

state which is labeled as “unsafe” cannot become “safe” at

a future time. Second, we note that the opera-

tion in computing the Hamiltonian (7) results in a solution

that is not necessarily a “no regret,” or saddle, solution to the

differential game. By ordering the optimization so that the

maximization occurs first, the control input is effectively

“playing” against an unknown disturbance—it is this order

that produces a conservative solution appropriate for the ap-

plication to system verification under uncertainty. Third, it

is proven in [6] that out of many possible weak solutions,

the viscosity solution [47] of (6)–(8) yields the reachable set

boundary. The significance of this last point is that it enables

us to draw from the well-developed numerical schemes of

the level set literature to compute accurate approximations

of .

To compute numerical approximations of the viscosity

solution to (6)–(8), we have developed a C++ implementa-

tion based on high resolution level set methods (an excellent

introduction to these schemes can be found in [46]). We use

a fifth-order accurate weighted, essentially nonoscillatory

(WENO) stencil [45], [56] to approximate , al-

though we have also implemented a basic first-order scheme

for speed [5], [57]. We use the well-studied Lax–Friedrichs

(LF) approximation [58] to numerically compute Hamil-

tonian (7). Finally, we treat the time derivative in (6) with

the method of lines and a second-order total variation

diminishing (TVD) Runge–Kutta scheme [59]. Numerical

convergence of our algorithm is demonstrated and validated

in [6] and [51].

Fig. 7. Annotated frame from collision avoidance example
animation.

C. Collision Avoidance Example Results

We can apply our numerical methods to the collision

avoidance problem. In Fig. 5, the target set for the

example appears on the far left (the cylinder); the remaining

images show how grows as increases from zero. For

the parameters chosen in Section III-A, the reachable set

converges to a fixed point for . Fig. 6 shows several

views of this fixed point. Should the pursuer start anywhere

within this reachable set, it can cause a collision by choosing

an appropriate input no matter what input the evader

might choose. Conversely, if the pursuer starts outside this

reachable set, then there exists an input that the evader can

choose that will avoid a collision no matter what input the

pursuer might choose. Thus, for initial conditions outside

this set, the system can be verified to be safe.

We note that the shape of the reachable set in this example

complies with our intuition—the relative heading coordinate

is the vertical coordinate in these figures, so a horizontal

slice represents all possible relative planar coordinates of

the two vehicles at a fixed relative heading. Consider a slice

through the most extended part of the helical bulge (that oc-

curs at the midpoint of the set on the vertical axis). The rel-

ative heading for this slice is , which is the case in

which the two aircraft have exactly opposite headings. It is

not surprising that the reachable set is largest at this relative

heading, and smallest for slices at the top and bottom of the

reachable set, where and, thus, the aircraft have the

same heading.

Fig. 7 shows an annotated frame from an animation of

the collision avoidance system, and a series of frames from

that animation are shown in Fig. 8, progressing from left to

right. The evader starts on the left surrounded by the collision

TOMLIN et al.: COMPUTATIONAL TECHNIQUES FOR THE VERIFICATION OF HYBRID SYSTEMS 991



Fig. 8. Evader keeps pursuer from entering reachable set and, hence, avoids collision (animation at
[60]).

Fig. 9. Pursuer starts within the reachable set, and can thus cause a collision despite the evader’s
efforts (animation at [60]).

circle, while the pursuer starts on the right. The dotted shape

surrounding the evader is the slice of the reachable set for the

current relative heading of the two vehicles; for example, in

the leftmost figure, the vehicles have relative heading

and so the horizontal midplane slice of the reachable set is

shown. The evader wants to continue to the right, and the

pursuer simply wants to cause a collision. By choosing its

safe input according to (7), as the pursuer approaches the

boundary of the reachable set, the evader keeps the pursuer

from entering the reachable set and, thus, from causing a col-

lision. Fig. 9 shows a sequence in which the pursuer starts

within the reachable set and can cause a collision.

The computations discussed in this section are expensive

to perform: they require gridding the state space and, thus,

their complexity is exponential in the continuous state di-

mension. The set in Fig. 6 took about 5 min to compute on

a 3-D grid using a standard Pentium III laptop; four-dimen-

sional problems can take a few days to run. In Section VI, we

will discuss our current work in computing projective over-

approximations to decrease the computation time to achieve

a useful result.

IV. VERIFYING HYBRID SYSTEMS

In the previous section, we demonstrated the concept il-

lustrated in Fig. 3, in which the problem of verification of

safety for continuous systems may be solved by a reach-

able set computation. This computation abstracts an uncount-

able number of states into the three classes: inside safe set,

boundary of safe set, and outside safe set. We showed that

this implicit surface function representation contains infor-

mation that may be used for designing a safe control law. This

safe control law could be used to filter any other control law

as the system state approaches the reachable set boundary.

We now consider the problem of computing reachable

sets for hybrid systems. Assuming that tools for discrete

and continuous reachability are available, computing reach-

able sets for hybrid systems requires keeping track of the

interplay between these discrete and continuous tools. Fun-

damentally, reachability analysis in discrete, continuous, or

hybrid systems seeks to partition states into two categories:

those that are reachable from the initial conditions, and those

that are not. Early work in this area focused on decidable

classes: it was shown that decidability results exist for timed

and some classes of linear hybrid automata [61]. Software

tools were designed to automatically compute reachable

sets for these systems: Uppaal [62] and Kronos [63] for

timed automata, and HyTech [64], [65] for linear hybrid

automata. Some of these tools allow symbolic parameters

in the model, and researchers began to study the problem

of synthesizing values for these parameters in order to sat-

isfy some kind of control objective, such as minimizing

the size of the backward reachable set. The procedure that

we describe here was motivated by the work of [66] and

[67] for reachability computation and controller synthesis

on timed automata, and that of [68] for controller synthesis

on linear hybrid automata. Tools based on the analysis of

piecewise linear systems, using mathematical programming

tools such as CPLEX [34], have found success in several

industrial applications.

Our hybrid system analysis algorithm [7] is built upon our

implicit reachable set representation and level set implemen-

tation for continuous systems. Thus, we are able to represent

and analyze nonlinear hybrid systems with generally shaped

sets. In this sense, our work is related to that of the viability

community [44], [69], which has extended concepts from

viability to hybrid systems [70] though the numerical tech-

niques presented here differ from theirs. Other hybrid system

reachability algorithms fall within this framework; the differ-

ences lie in their discrete and continuous reachability solvers

and the types of initial conditions, inputs, invariants, and

guards that they admit. Tools such as , Checkmate, and

VeriSHIFT have been designed using the different methods

of continuous reachable set calculation surveyed in the pre-

vious section [30], [31], [33], [36], [41]: the complexity of

these tools is essentially the complexity of the algorithm used

to compute reachable sets in the corresponding continuous

state space.
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Methods for hybrid system verification listed above have

found application in automotive control problems [34],

[71], experimental industrial batch plants [72], vehicle

collision avoidance problems [73], [74], as well as envelope

protection problems [9], [75]. The problems that have been

solved to date are generally of low dimension: to the best

of our knowledge, even the overapproximative methods to

date have not been directly applied to systems of continuous

dimension greater than six. In the next section, we present

results for envelope protection on nonlinear hybrid systems

with three continuous dimensions, representing the longitu-

dinal dynamics of jet aircraft under hybrid control.

A. Computing Reachable Sets for Hybrid Systems

We describe the algorithm first with a picture, and then

present the details of a few key components. The full details

of the algorithm are in [7], with new implementation results

presented in [8].

Consider the sequence of eight diagrams in Fig. 10.

We draw the hybrid automaton as a set of discrete states

with a transition logic represented by (the

arrows indicate the possible discrete state transitions; the de-

pendence on continuous state and input variables is implied

but not shown in the figure). Associated to each discrete state

are the continuous dynamics

and domain , neither of which are shown on

the diagram. For illustrative purposes, we consider only one

step of our algorithm applied in state , from which there

exist transitions to states and (shown in diagram 2).

We initialize with the unsafe target sets (shown as sets in

and in diagram 3), and sets that are known to be safe

(shown as the “safe” set in in diagram 4). We augment

the unsafe target set in with states from which there exists

an uncontrolled transition to the unsafe set in (that is

represented as a dashed arrow on diagram 5). Uncontrolled

transitions may be caused by reset relations affected by

disturbance actions. In the absence of other transitions

out of state , the set of states backward reachable from

the unsafe target set in may be computed using the

reachable set algorithm of Section III on the dynamics

(diagram 6).

However, there may exist regions of the state space in

from which controllable transitions exist—these transitions

could reset the system to a safe region in another discrete

state. This is illustrated in diagram 7, with the region in

which the system may “escape” to safety from . Thus, the

backward reachable set of interest in this case is the set of

states from which trajectories can reach the unsafe target

set, without hitting this safe “escape” set first. We call this

reachable set the reach-avoid set, and it is illustrated in

diagram 8.

The algorithm illustrated above is implemented in the

following way. The target set can include

different subsets of the continuous state space for each

discrete mode

(9)

for a level set function . We seek to

construct the largest set of states for which the control,

with action/input pair can guarantee that the safety

property is met despite the disturbance action/input pair

.

For a given set , we define the control-

lable predecessor and the uncontrollable prede-

cessor (where refers to the complement of the

set in ) by

(10)

Therefore, contains all states in for which con-

trollable actions can force the state to remain in for

at least one step in the discrete evolution. , on the

other hand, contains all states in , as well as all states from

which uncontrollable actions may be able to force the

state outside of .

Consider two subsets and such

that . The reach-avoid operator is defined as

Reach

and

such that

and for

(11)

where is the continuous state trajectory of

starting at .

Now, consider the following algorithm:

Initialization:

while do

end while

In the first step of this algorithm, we remove from (the

complement of ) all states from which a disturbance forces

the system either outside or to states from which a dis-

turbance action may cause transitions outside , without

first touching the set of states from which there is a con-

trol action keeping the system inside . Since at each step

, the set decreases monotonically in size as

decreases. If the algorithm terminates, we denote the fixed

point as . The set is used to verify the safety of the

system. Recall once more from Fig. 3: if the system starts in-

side , then there exists a control law, extractable from our

computational method, for which the system is guaranteed to

be safe.

Returning to our pictorial description of the algorithm

in Fig. 10, and concentrating on the result of one step of
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Fig. 10. Illustration of our algorithm for computing reachable sets for hybrid systems.

the algorithm detailed in Fig. 11, we note that, for itera-

tion , and

.

To implement this algorithm, we need to compute

, and . The computation of and

requires inversion of the transition relation subject to

the quantifiers and ; the existence of this inverse can

be guaranteed subject to conditions on the map . In our

examples, we perform this inversion by hand. The algorithm

for computing is a direct modification of

the reachable set calculation of Section III; the details are

presented in [8]. Finally, we remark that this algorithm is

semidecidable when the operators and

are computable: when the continuous state dynamics are

constant and the guards and resets are polyhedra, then the

algorithm reduces to that for linear hybrid automata [68].

V. FLIGHT MANAGEMENT SYSTEM EXAMPLE

In this section, we demonstrate our hybrid systems anal-

ysis on an interesting and current example, the landing of

a civilian aircraft. This example is discussed in detail in [9]

and [10]. In addition to the examples presented here, we have

solved a range of multimode aircraft collision avoidance ex-

amples. Please refer to [8], [73] for these examples.

Fig. 11. Detail of the reach-avoid set from diagram 8 of Fig. 10.

The autopilots of modern jets are highly automated

systems that assist the pilot in constructing and flying

four-dimensional trajectories, as well as altering these tra-

jectories online in response to Air Traffic Control directives.

The autopilot typically controls the throttle input and the

vertical and lateral trajectories of the aircraft to automati-

cally perform such functions as acquiring a specified altitude

and then leveling, holding a specified altitude, acquiring a

specified vertical climb or descend rate, automatic vertical

or lateral navigation between specified way points, or

holding a specified throttle value. The combination of these

throttle–vertical–lateral modes is referred to as the flight

mode of the aircraft. A typical commercial autopilot has
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Fig. 12. Discrete transition diagram of flap deflection settings. Clean wing represents no deflection,
25d represents a deflection of 25 , and 50d represents a deflection of 50 . The modes 0u! 25d
and 25d! 50d are timed modes to reflect deflection time: if the pilot selects mode 25d from clean
wing, for example, the model will transition into an “intermediate” mode for 10 s, before entering
25d. Thus, the transitions from clean wing to 0u! 25d and from 25d to 25d! 50d are controlled
transitions (� ) in our analysis; the others are uncontrolled transitions (� ).

several hundred flight modes—it is interesting to note that

these flight modes were designed to automate the way pilots

fly aircraft manually: by controlling the lateral and vertical

states of the aircraft to set points for fixed periods of time,

pilots simplify the complex task of flying an aircraft. Those

autopilot functions that are specific to aircraft landing are

among the most safety critical, as reliable automation is

necessary when there is little room for altitude deviations.

Thus, the need for automation designs that guarantee safe

operation of the aircraft has become paramount. Testing

and simulation may overlook trajectories to unsafe states:

“automation surprises” have been extensively studied [76]

after the unsafe situation occurs, and “band-aids” are added

to the design to ensure the same problem does not occur

again. We believe that the computation of accurate reachable

sets inside the aerodynamic flight envelope may be used

to influence flight procedures and may help to prevent the

occurrence of automation surprises.

A. Flap Deflection in a Landing Aircraft

In this example, we examine a landing aircraft, and we

focus our attention on the flap setting choices available to

the pilot. While flap extension and retraction are physically

continuous operations, the pilot is presented with a button or

lever with a set of discrete settings and the dynamic effect of

deflecting flaps is assumed to be minor. Thus, we choose to

model the flap setting as a discrete variable. The results in

this section are taken from [51].

A simple point mass model for aircraft vertical naviga-

tion is used, which accounts for lift , drag , thrust , and

weight (see [77] and references therein). We model the

nonlinear longitudinal dynamics

(12)

in which the state includes the aircraft’s

speed , flight path angle , and altitude . We assume the

control input , with aircraft thrust and angle of

attack . The mass of the aircraft is denoted . The functions

and are modeled based on empirical data

[78] and Prandtl’s lifting line theory [79]

(13)

where is the density of air, is wing area, and and

are the dimensionless lift and drag coefficients.

In determining , we will follow standard au-

toland procedure and assume that the aircraft switches

between three fixed flap deflections

and (with slats either extended or retracted),

thus constituting a hybrid system with different nonlinear

dynamics in each mode. This model is representative of

current aircraft technology; for example, in civil jet cockpits

the pilot uses a lever to select among four predefined

flap deflection settings. We assume a linear form for the

lift coefficient , where parameters

and are determined

from experimental data for a DC9-30 [78]. The value of

at which the vehicle stalls decreases with increasing flap

deflection: ; slat

deflection adds to the in each mode. The drag

coefficient is computed from the lift coefficient as [79]

and includes flap deflection,

slat extension, and gear deployment corrections. Thus, for

a DC9-30 landing at sea level and for all ,

the lift and drag terms in (12) are given by

In our implementation, we consider three operational modes:

, which represents with undeflected slats; ,

which represents with deflected slats; and , for

with deflected slats.

Approximately 10 s are required for a change in flap

deflection. For our implementation, we define transition

modes and with timers, in which

the aerodynamics are those of (12) with coefficients that

interpolate those of the bounding operational modes. The

corresponding discrete automaton is shown in Fig. 12.

Transition modes have only a timed switch at , so

controlled switches will be separated by at least time
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Fig. 13. Maximally controllable safe envelopes for the multimode landing example. From left to
right, the columns represent modes 0u; 25d; and 50d.

units and the system is nonzeno. For the executions shown

below, s.

The aircraft enters its final stage of landing close to 50 feet

above ground level ([78], [80]). Restrictions on the flight path

angle, aircraft velocity, and touchdown (TD) speed are used

to determine the initial safe set

landing or has landed

faster than stall speed

slower than limit speed

limited TD speed

monotonic descent

aircraft in the air

faster than stall speed

slower than limit speed

limited descent flight path

monotonic descent

(14)

We again draw on numerical values for a DC9-30 [78]: stall

speeds m/s, m/s, m/s,

maximal touchdown speed m/s, and maximal

velocity m/s. The aircraft’s input range is re-

stricted to a fixed thrust at 20% of its maximal value

, and .

The results of our fixed point computation are shown in

Figs. 13 and 14. The interior of the surface shown in the first

row of Fig. 13 represents the initial envelopes for each

of the and modes. The second row of the figure

shows the maximally controllable subset of the envelope for

each mode individually, as determined by the reachable set

computation for continuous systems. The clean wing config-

uration becomes almost completely uncontrollable, while

the remaining modes are partially controllable. The subset of

the envelope that cannot be controlled in these high lift/high

drag configurations can be divided into two components. For

low speeds, the aircraft will tend to stall. For values of near

zero and low flight path angles , the aircraft cannot pull up

in time to avoid landing gear damage at touchdown. The third

row shows the results for the hybrid reachable set computa-

tion. Here, both modes and are almost completely

controllable, since they can switch quickly to the fully de-

flected mode . However, no mode can control the states

near zero and low , because no mode can pull up in time to

avoid landing gear damage. Fig. 14 shows a slice through the

reach and avoid sets for the hybrid analysis at a fixed altitude

of m, for each of the and modes. Here,

the grayscale represents the following: dark gray is the subset

of the initial escape set that is also safe in the current mode,

mid-gray is the initial escape set, light gray is the known un-

safe set, and white is the computed reach set, or those states

from which the system can neither remain in the same mode

nor switch to safety.

B. Take Off/Go Around Analysis

We now examine another aircraft landing example with

the goal of using hybrid system verification in order to prove

desirable qualities about the pilot’s display. Naturally, only a

subset of all information about the aircraft is displayed to the

pilot—but how much information is enough? When the pilot

does not have the required information at his disposal, au-

tomation surprises and mode confusion can occur. Currently,

extensive flight simulation and testing are used to validate

autopilot systems and their displays. However, discovering
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Fig. 14. Slices through the reach and avoid sets for the hybrid analysis at a fixed altitude
of h = 5 m. From left to right, the columns represent modes 0u; 25d; and 50d.

Table 1

Aerodynamic Constants for Autoland Modes Indexed by
_x = f (x; u)

design errors as early as possible in the design process is im-

portant, and hybrid verification tools can aid in this process.

The results in this section are taken from [10], which uses the

same form of longitudinal dynamic model (12) as the pre-

vious section, with new parameters for a large commercial

aircraft.

In modeling and as in (13), we define

and .

The constants and represent a particular

aircraft configuration, as indicated in Table 1.

in all modes. The aircraft has mass kg,

wing surface area m/s , and maximum

thrust N. Here, the symbology Flaps-20,

Flaps-25, Flaps-30 represents an increasing flap deflection:

in the determination of the aerodynamic coefficients, we

used 30 , 40 , and 50 , respectively, for these values.

The model for this example also varies from the previous

example in that we directly account for the user’s actions

in the hybrid system. We assume that the pilot operates the

aircraft according to strict procedure, shown in Fig. 15.

During landing, if for any reason the pilot or air traffic

controller deems the landing unacceptable (debris on the

runway, a potential conflict with another aircraft, or severe

wind shear near the runway, for example), the pilot must

initiate a go-around maneuver. A go-around can be initiated

at any time after the glideslope has been captured and before

the aircraft touches down. Pushing the go-around button

engages a sequence of events designed to make the aircraft

climb as quickly as possible to a preset missed-approach

altitude, feet.

The initial state of the procedural model

(Fig. 15) is , with flaps at Flaps-30 and thrust fixed

at idle. When a pilot initiates a go-around maneuver (often

called a “TOGA” due to the “Take-Off/Go-Around” in-

Fig. 15. Hybrid procedural automaton H . The dynamics
f (x; u) = f(q ; x; u) differ in the values of aerodynamic
coefficients affecting lift and drag.

Table 2
State Bounds for Autoland Modes of H

dicator on the pilot display), the pilot changes the flaps

to Flaps-20 and the autothrottle forces the thrust to

. When the aircraft obtains a positive rate of

climb, the pilot raises the landing gear, and the autothrottle

allows . The aircraft continues to

climb to the missed approach altitude, , then automat-

ically switches into an altitude-holding mode, ,

to prepare for the next approach (with the landing gear

down). If a go-around is not initiated from , the aircraft

switches to when it lands. (We do not model the

aircraft’s behavior after touchdown.)

Although go-arounds may be required at any time during

the autoland prior to touchdown, we model as a con-

trolled transition because the pilot must initiate the go-around

for it to occur. Certain events occur simultaneously: changing

the flaps to Flaps-30 and event , raising the landing

gear and , and lowering the landing gear and .

Each mode in the procedural automaton is subject to state

and input bounds, due to constraints arising from aircraft

aerodynamics and desired aircraft behavior. These bounds,

shown in Table 2, form the boundary of the initial envelope

. Bounds on and are determined by stall speeds and
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Fig. 16. Safe regionW ; the outer box is (W ) .

Fig. 17. Safe regionW ; the outer box is (W ) .

structural limitations for each flap setting. Bounds on and

are determined by the desired maneuver [81]. Addition-

ally, at touchdown, to prevent a tail strike,

and m/s to prevent damage to the landing gear.

We separate the hybrid procedural model (Fig. 15) across

the user-controlled switch , into two hybrid subsys-

tems: and . encompasses and ,

and encompasses , and .

Computationally, automatic transitions are smoothly accom-

plished by concatenating modes across automatic transitions,

so that the change in dynamics across the switching surface

is modeled as another nonlinearity in the dynamics. Addi-

tionally, we assume in that if the aircraft leaves the top

of the computational domain ( m) without exceeding

its flight envelope, it is capable of reaching mode,

which we consider to be completely safe.

The initial flight envelopes for and and

, are determined by state bounds on each mode given

in Table 2. We perform the reachable set computation on

and separately to obtain the safe flight envelopes and

. Fig. 16 shows , and Fig. 17 shows in

and modes. (Note that the boundary of along

corresponds with the transition boundary of be-

tween and , .)

Fig. 18 shows the continuous region from which

we can guarantee both a safe landing and a safe go-around.

Notice that this set is smaller than , the region from which

a safe landing is possible: the pilot is further restricted in

Fig. 18. Solid shape is the safe regionW \W , from which
safe landing and safe go-around is possible. The meshes depict
W andW .

executing a go-around. There are states from which a safe

landing is possible, but a safe go-around is not.

Verification within a hybrid framework allows us to ac-

count for the inherently complicated dynamics underlying

the simple, discrete representations displayed to the pilot. In

this example, in order to safely supervise the system, the pilot

should have enough information to know before entering a

go-around maneuver whether or not the aircraft will remain

safe; thus, the pilot could respond to this information by in-

creasing speed, decreasing ascent rate, or decreasing angle

of attack.

VI. SUMMARY

We have presented a method and algorithm for hybrid

systems analysis, specifically for the verification of safety

properties of hybrid systems. We have also given a brief

summary of other available methods. All techniques rely

on the ability to compute reachable sets of hybrid systems,

and they differ mainly in the assumptions made about the

representation of sets and evolution of the continuous state

dynamics. We have described and demonstrated our algo-

rithm, which represents a set implicitly as the zero sublevel

set of a given function, and computes its evolution through

the hybrid dynamics using a combination of constrained

level set methods and discrete mappings through transition

functions.

Many directions for further work are available, and we

are pursuing several of them. Our algorithm is currently

constrained by computational complexity: examples with

four continuous dimensions take several days to run on

our standard desktop computers, while five dimensional

problems take weeks. We are working on a variant of our

algorithm that first projects the high-dimensional target into

a set of lower dimensional subspaces of the state space,

computes the reachable sets of these projections (quickly, as

they are in low dimensions), and then “backprojects” these

sets to form, in high dimensions, an overapproximation of

the actual reachable set. The actual reachable set need never

be computed, and overapproximations of unsafe sets can be

used to verify safety. Our initial algorithmic and experimental

results are presented in [52], in which we show that a fairly
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tight overapproximation of the set shown in Fig. 6 may

be computed in less than 1 min (compared to 5 min for

the full set). We are also developing methods to compute

tight polyhedral overapproximations of the reachable set

for general nonlinear hybrid systems [38]—these methods

scale well in continuous dimension, as they do not require

gridding the state space.

Perhaps more exciting are the applications that we are cur-

rently working on: we have used reachable set computations

to design safe emergency escape maneuvers for dual aircraft

closely spaced parallel approaches [82], and we are currently

working with Boeing St. Louis on a real-time application of

our pursuit-evasion game (under the DARPA Software En-

abled Control program). Also, we believe that these algo-

rithms have great potential for human–automation interface

design.
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