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Existing tools for the preprocessing of EEG data provide a large choice of methods to

suitably prepare and analyse a given dataset. Yet it remains a challenge for the average

user to integrate methods for batch processing of the increasingly large datasets of

modern research, and compare methods to choose an optimal approach across the

many possible parameter configurations. Additionally, many tools still require a high

degree of manual decision making for, e.g., the classification of artifacts in channels,

epochs or segments. This introduces extra subjectivity, is slow, and is not reproducible.

Batching and well-designed automation can help to regularize EEG preprocessing, and

thus reduce human effort, subjectivity, and consequent error. The Computational Testing

for Automated Preprocessing (CTAP) toolbox facilitates: (i) batch processing that is easy

for experts and novices alike; (ii) testing and comparison of preprocessing methods.

Here we demonstrate the application of CTAP to high-resolution EEG data in three

modes of use. First, a linear processing pipeline with mostly default parameters illustrates

ease-of-use for naive users. Second, a branching pipeline illustrates CTAP’s support for

comparison of competing methods. Third, a pipeline with built-in parameter-sweeping

illustrates CTAP’s capability to support data-driven method parameterization. CTAP

extends the existing functions and data structure from the well-known EEGLAB toolbox,

based on Matlab, and produces extensive quality control outputs. CTAP is available

under MIT open-source licence from https://github.com/bwrc/ctap.

Keywords: EEG, electroencephalography, EEGLAB, scientific workflow system, workflow management,

computational testing, automated preprocessing, parameter sweep

1. INTRODUCTION

Recording electroencephalography (EEG) data has become more affordable, scalable, and feasible
in disparate conditions inside and outside the lab (Cowley et al., 2016, pp. 50–66), with research-
and consumer-grade devices (Badcock et al., 2013). Methods and computing power to handle
EEG datasets have also grown in complexity and power. It has consequentially become more and
more important to manage the scientific data-processing workflow of recording EEG, to achieve best
results.
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In this regard, EEG research follows a similar trend to other
data-intensive disciplines, e.g., bioinformatics (Leipzig, 2016),
such that it requires a scientific workflow management system
(SWMS) to give standardized, comparable results at scale. The
needs of such an SWMS include:

1. enabling basic features for management of analysis pipelines,
2. enabling comparison of outputs between unrelated recording

setups/analysis pipelines1,
3. reducing or removing reliance on trial and error for parameter

optimization (Holl et al., 2014).

This paper describes a system for managing the pre-
processing workflow for EEG recordings: implemented as
the Computational Testing for Automated Preprocessing
(CTAP) toolbox. CTAP is implemented for Matlab 2016b and
above, based on the data-specification and functions from the
popular EEGLAB toolbox (Delorme et al., 2011). The basic
features of CTAP have previously been described in Cowley
et al. (2017); therefore here we have a more practical focus on
illustrating the usage of CTAP.

This paper describes three functional analysis pipelines,
with separate Methods and Results subsections for each one,
demonstrating CTAP’s approach to each need 1–3 above. They
are available from the CTAP repository at https://github.com/
bwrc/ctap, as follows:

• ctap/templates/Frontiers_manuscript_examples/
runctap_manu2_basic.m

• ctap/templates/Frontiers_manuscript_examples/
runctap_manu2_branch.m

• ctap/templates/Frontiers_manuscript_examples/
runctap_manu2_hydra.m

Each pipe processes EEG data obtained from a server hosted by
the Schwartz Centre for Computational Neuroscience (SCCN),
University of California San Diego. The final output of each
pipe is a simple event-related potential (ERP) visualization of the
conditions recorded in the dataset; any more complete analysis is
assumed to depend on the user’s own research question.

First, the management of analyses is illustrated with a
basic linear pipeline, which shows the core CTAP structure of
processing steps, quality control outputs, and usage options that
help with processing management.

Second, comparison of outputs is illustrated with a branching
pipeline. A branching tree structure of pipes enables users to
extend the core functionality into a configuration that can
compare competing processing approaches, while remaining a
single project.

Third, parameter optimization is illustrated with a pipeline
that utilizes repeated analyses of a given parameter range to
discover the best performing value. By embedding a parameter
optimization step in their pipe, users can go from testing a
single parameter value to sweeping a range or set of values,
extending the capability of CTAP to find an optimal analysis

1In this paper we discuss “recording setups” to refer to hardware, protocols and

environment with which data was recorded; and “analysis pipelines” to refer to

software/hardware the data is processed with.

approach with controlled and tidy workflow management. The
so-called HYDRA method (standing for Handler for sYnthetic
Data Repeated Analysis), is still under development, yet to be
published but available in the development branch of CTAP
repository.

Note that there is considerable overlap between each way
of using CTAP, and the three pipelines above focus on
distinct themes merely for clarity. The ultimate use of CTAP
is envisaged as a branching, parameter optimizing analysis
manager, integrating all three themes.

Existing SWMSs tend to operate at a larger and more general
scale than CTAP, targeting whole disciplines rather than just a
single type of data (Curcin and Ghanem, 2008). Such systems
allow automation of the repetitive cycle of configuring data
for analysis, launching computations, and managing storage of
results (Deelman et al., 2009). SWMSs thus aim to let scientists
focus on research, not computationmanagement. Already almost
10 years ago, reviews attempted to create a taxonomy of SWMSs
(Curcin and Ghanem, 2008; Deelman et al., 2009), describing
most workflow platforms and languages as originating in a
particular application domain. On the other hand, the workflows
themselves can usually conform to a finite set of patterns or
“motifs” (Garijo et al., 2014). This has driven further research on
interoperability (Terstyanszky et al., 2014) and search (Starlinger
et al., 2016) to help integrate SWMSs; while also implying
that separate SWMSs can retain a more intra-disciplinary focus
(supported by recent reviews Liu et al., 2015; Leipzig, 2016).
A particularly interesting development for EEG-researchers is
the investigation of optimization of workflow computation costs
(Kougka and Gounaris, 2014), and/or optimization of factors
within workflows, e.g., process parameters (Holl et al., 2014).

There are several criteria that an SWMS should meet. Saxena
and Dubey (2011) specified four:

1. provide facilities for specifying workflows: inputs/outputs,
intermediate steps, and parameters,

2. provide facilities for managing data provenance,
3. provide facilities to monitor the progress of the workflow,

include facilities to detect anomalies, isolate faults and provide
recovery actions, and

4. manage the execution of the workflow based on specified
parameters/configurations.

For ease of reference, we summarize these criteria
as (1) replicable, (2) traceable, (3) self-monitoring, (4)
configurable/scalable. To these four criteria we add a fifth,
based on recent advances in the literature (Holl et al., 2014;
Kougka and Gounaris, 2014): (5) data-driven, i.e., providing
facilities to adapt/optimize processes with respect to input
variability.

We have previously described how CTAP relates to the state
of the art for processing EEG, in a recently published open access
article (Cowley et al., 2017). This discussion can be summarized
as such: CTAP aims to address a niche need in the EEGLAB
ecosystem, rather than aim to compete with existing standalone
solutions. More recently, a number of contributions have been
made following a similar agenda as CTAP, several gathered
in this Research Topic. Frömer et al. (2018) present an EEG
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processing pipeline based on EEGLAB (and other) functions,
which aims to support single-trial processing for robust statistical
analysis. Gabard-Durnam et al. (2018) describe an automated
EEG processing pipeline aimed at high-artifact data. In the realm
of magnetoencephalography processing, Andersen (2018) details
a pipeline based on the popular MNE-Python software, which
aims at reproducible group analysis. At the time of writing, these
tools seem to have somewhat similar philosophy yet different
motivations. It seems likely that the literature is experiencing a
“zeitgeist” of developing support for workflows and automation;
thus all these contributions represent functionality that could
complement each other, if further developed.

Based on the described state of the art and established SWMS
criteria, CTAP can be considered as a highly specific form
of SWMS, integrating workflow management and parameter
optimization together with the rich existing body of methods and
tools in the EEGLAB ecosystem.

In this paper, we will discuss CTAP usage, both as defined
in three example pipelines, and also more subtle usage
considerations such as how data storage affects use. Thus we
focus on how CTAP is used, and leave to other sources (Cowley
et al., 2017) the question of how CTAP works. We focus on each
pipeline in turn, describing how each one works in the Methods
subsections, and their outcomes in the Results subsections. In
the Discussion, we describe how each SWMS criterion is met via
one or more of the three usage scenarios of CTAP, and point out
further capabilities, limitations, and future work.

2. METHODS

In the text below, code elements (including script names) are
listed in courier; functions are marked by “()”; scripts are
marked by “.m.”

2.1. Materials
Continuous EEG data was obtained from the database of HeadIT
(Human Electrophysiology, Anatomic Data and Integrated Tools
Resource). The data set is freely and permanently available, is
described file-by-file at the source website2, and was chosen due
to its simple and classic oddball trial structure. The protocol was
an auditory two-choice response task with an ignored feature
difference, i.e., participants categorized tones as either long or
short, and were told to ignore the slightly higher pitch of the
“deviant” ∼10% of tones. Data was recorded with a Biosemi
amplifier from 254 active-reference electrodes3, at sampling rate
256 Hz and 24-bit A/D resolution. Out of 12 participants, two
had multiple recordings due to experiment interruption (subjects
three and seven), and these were discarded from analysis in order
to simplify the demonstration code.

2The page http://headit.ucsd.edu/studies/9d557882-a236-11e2-9420-

0050563f2612 links to data with a complete description of each recording.
3Note, the channel locations DO NOT match the locations of the Biosemi 256

channel cap published on the Biosemi website. Only channel location files found

on the HeadIT website should be used. Channel location settings used in this

paper have been verified by correspondence with Julie Onton, one of the original

experimenters at SCCN.

All data was downloaded to the same directory, and files
(which are all named “eeg_recording_1.bdf”) were renamed
to the form “sNN_eeg_1.bdf” (where NN is a two digit
number from [01..12]), to facilitate programmatic loading. The
same procedure was applied to channel location files. This
approach enables the simpler form of data loading in CTAP, i.e.,
programmatically building a Matlab data structure to represent
all files with a given extension in a given folder. Another approach
is discussed below.

For this paper, CTAP was run on a laboratory PC with
Intel Core i7-7700, 3.6Ghz processor, 32GB RAM, Windows
10 Enterprise operating system. Timings of each pipeline are
reported in Results.

2.2. The CTAP System
CTAP was introduced in Cowley et al. (2017)4. For this paper, the
relevant points are as follows:

• CTAP is based on Matlab (version 2016b or later) and
EEGLAB, latest versions preferred.

• CTAP is not compatible with EEGLAB graphical user interface
(GUI), and therefore is not found in the EEGLAB list of
plugins.

• CTAP is operated via scripts called from the Matlab command
line (either with or without the Matlab desktop GUI).

• Example scripts provided are designed to run without editing
(i.e., reasonable default parameters are provided), but will
always require at least specification of relative data location.

• Despite the above point, it is advised to always tune one’s
parameters to the task at hand.

2.3. Analysis Management: Basic CTAP
Pipeline
The basic pipeline, runctap_manu2_basic.m, is defined
to load the HeadIT data and channel locations from a single
directory and preprocess it. A post-processing function follows
preprocessing, to extract and plot grand average ERPs of the
standard and deviant tones in short- and long-tone conditions.
An electrode location above the left super-lateral temporal lobe
was used to calculate ERPs (A31 in the HeadIT montage, close to
T7 in the 10/20 system). ERPs lasted ±1 s around the stimulus
onset, were baseline corrected by the mean of the signal within
−1 . . . 0 s, and smoothed using a moving average of one quarter
of the sample rate.

In Cowley et al. (2017), Figure 2 showed a schematic of the
generic CTAP pipeline operative flow. Here, Figure 1 shows a
similar schema for the basic pipeline. All CTAP pipelines are built
around the “step set” structure, which is simply a list of function
handles with an identifier string and possibly other control fields
(e.g., save = true/false).

In runctap_manu2_basic.m, the first code section (lines
35–52) defines parameters that allow configuration of CTAP
itself: usage variations can be obtained by, e.g., electing to

4And see documentation at http://github.com/bwrc/ctap/wiki – in this paper, the

term “wiki” will refer to this URL.
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FIGURE 1 | The schematic functional structure and data flow in the CTAP basic pipeline, showing the flow of data via arrows between functions (in white boxes) and

scripted operations (marked by asterix). The colored, rounded-corner boxes show parts that a user must define (from left to right): (1) “configuration” box represents

the main script with global parameters and calls to required functions. (2) the “analysis pipe” is defined in the “sbf_cfg()” subfunction, returning the Cfg structure.

(3) the “measurement config” field of the Cfg structure, “Cfg.MC,” is obtained by scanning a given directory using “confilt_meas_dir().” Cfg is then processed

by “ctap_auto_config()” and passed to “CTAP_pipeline_looper(),” directing the latter function from where to load and how to preprocess the data. The

final output is then created by “oddball_erps().” The dashed-line inset shows a schema of the core operational process of the basic pipeline, consisting of two

sequential step sets S1, S2; each containing multiple functions.

overwrite old results, process subsets of subjects, or call subsets
of the step sets.

The next section (lines 55–67) calls the necessary functions
to create the key data structure Cfg. Initially, Cfg is defined in
terms of functional steps, arguments to functions, and important
fields such as preferred reference montage (e.g., average), labels
of EOG channels to use for artifact detection, etc. Such code is
wrapped in a sub-function sbf_cfg() for code readability, but
can take any form. The subsequent lines are required to further
specify which measurements to process and which steps to run.
Finally Cfg is passed to ctap_auto_config() to check it is
well-formed and has all required parts, and match arguments to
functions.

The next two sections (lines 70–94) call the functional parts
of CTAP: CTAP_pipeline_looper() preprocesses
the EEG according to the step sets in Cfg; and
ctap_manu2_oddball_erps() calculates and plots
condition-wise ERPs. The step sets are simple. First, 1_load
contains the steps to prepare data: loading, re-referencing,
temporal blink classification, highpass filter, and Independent
Components (ICs) Analysis (ICA) decomposition. The second
step set, 2_artifact_correction, provides detection
of ICs related to horizontal saccades (using ADJUST toolbox
Mognon et al., 2011), and to blinks (using CTAP’s built in
method Cowley et al., 2017); then detection of bad channels
by variance of the Median Absolute Deviation (MAD—of a

channel from the dataset). Each detection routine is followed by
a function that either rejects or corrects the bad data, and the bad
channels are interpolated.

Step set 2 is sandwiched by taking two “peeks,” or snapshots, of
the data state. The peeks serve to assess the state of the data before
and after artifacts are removed, providing raw-data plots and
statistical moments of segments of data which are synchronized
between different points in the pipeline.

In addition to outputs that the user generates specifically
via the pipeline (saved mainly as visual diagnostics from
each function), CTAP stores the history of all operations and
parameters in the EEG data structure. This history is also logged,
showing in human-readable format all steps taken and their
outcomes. Separate log files record all data rejected/corrected.

2.4. Output Comparison: Branched CTAP
Pipeline
The branched pipeline, runctap_manu2_branch.m,
presents two alternative approaches to artifact detection (so
represents the simplest form of branched tree). The code
directly extends the basic pipeline, with the same step 1 and
two alternative steps 2. Each step, 1, 2A, 2B, is encoded in
a separate subfunction, which can be considered as separate
pipes. Thus, pipe 1 is the “trunk” of the tree, and pipes 2A
and 2B are two separate branches. These subfunctions are
referenced in a cell array of function handles, which is passed
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to CTAP_pipeline_brancher() to process all requested
parts. This brancher function loops through each pipe, and
handles path creation and validating the Cfg structure. Figure 2
shows the structure of the branching pipeline.

The steps in pipes 1 and 2A replicate the steps in the
basic pipeline. In order to illustrate parameter usage, we
experiment with a small tweak of the parameters for bad channel
detection in 2A, to try improving the noise rejection. The
method “variance” is retained, but the MAD value is tweaked
by the parameter “bounds” (a tuple representing lower and
higher MAD at [−5; 2.5]), and the outcome is constrained to
the worst 5% (12) channels. Another pipe, 2B, is added for
comparison. 2B attempts to do a general artifact detection over
ICs, using methods from the FASTER toolbox (Nolan et al.,
2010); and bad channel detection using the spectral method in
EEGLAB.

In general usage, the branching approach changes from the
linear approach as follows:

• step sets must be defined in subfunctions, so that they can
become function handles in the pipe array;

• each pipe (after the trunk) must define one or more source
pipes, from which data will be loaded, where source =

pipe_ID#step_ID;
• each pipe must itself define the steps to run;

• when multiple calls to a single function are defined in an
unbranched pipe, such as CTAP_peek_data() in the basic
pipe, then arguments to that function can be declared just once
(if they do not change across calls). In contrast, for branched
pipes each pipe must declare arguments for its functions
separately;

• as in the basic pipe, an ID is needed: here the ID is created
inside each pipe, for clarity.

2.4.1. Comparing Branches
The branched pipeline creates similar outputs to the basic
pipeline, but also provides the opportunity to compare branches.
This can take two forms: comparisons between changes to data,
and between data after change.

Comparing data after change is primarily done via the
function CTAP_peek_data(). This function provides many
options (documented in function help comments, Cowley et al.,
2017, and the CTAP wiki) to output visual and statistical
summary data from segments of EEG data selected at given
or random time points. CTAP_peek_data() can also save
the EEG and ICA-activation data within the peek segment
(not set by default). Thus peeks can help compare between
the outputs of different pipes. For numerical data (statistics
or EEG/IC data), this process can be automated using the

FIGURE 2 | Schema of functions and data flow in CTAP branched pipeline. Scripted configuration has fewer specifications than in basic pipeline, because they are

internal to pipe subfunctions. Each pipe subfunction is handled by CTAP_pipeline_brancher(), which configures the relationship to other pipes in terms of

ordering and directories, and then invokes CTAP_pipeline_looper(). The same process can be repeated in CTAP_postproc_brancher(), calling a custom

post-processing function on each “branch” of preprocessed data. The dashed-line inset again shows the core operational process, this time based on pipes (which

here contain a single step set each). Despite the relative (compared to basic pipeline) complexity of the functional schema on the right, the inset shows the simplicity of

the branched pipeline’s topography.
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CTAP_postproc_brancher() function and simply taking
the difference between earlier and later outputs. Reduction in
range, skewness, kurtosis, for example, would all tend to indicate
an improvement in signal to noise ratio (SNR).

In runctap_manu2_branch.m pipes are compared with
a single final “peekpipe.” Peekpipe is given multiple source pipes:
1, 2A, and 2B; and will thus create multiple output directories,
which are automatically labeled by the concatenated pipe ID and
source ID. Peekpipe contains one step set with one function,
CTAP_peek_data(). In this case, we set the step set “save”
field to false, because the data is not meaningfully changed.

Changes by rejection of bad data are recorded in .mat

file format in the pipe’s “quality_control” directory, and can
therefore be directly compared in Matlab. If changes to the data
are of similar kind, e.g., rejection of bad channel artifacts by two
separate methods, then the simple principle of parsimony can
apply: given final data of similar quality, the method that rejects
the least data should be preferred.

2.5. Parameter Optimization: HYDRA
Pipeline
The HYDRA pipeline operates exactly as other pipelines,
depending on which type it is based on: here, the branched
pipeline. What distinguishes HYDRA pipelines is the inclusion

of the function CTAP_sweep(), which attempts to find the
optimal value from a range, for a given parameter of a target
function. It does this by repeatedly testing the data against each
value in the given range or set. The optimal value, selected
by an objective function, is then passed back to the calling
pipe to serve as the parameter value for a later call to the
given function. This is all illustrated by the example pipeline
runctap_manu2_hydra.m. Figure 3 shows the schematic
structure of the HYDRA pipeline.

In this pipeline, the pipes 1 and 2 are similar to
runctap_manu2_branch.m pipes 1 and 2A. Pipe 2 includes
one extra function, CTAP_sweep(), placed right before its
target function, CTAP_detect_bad_channels(). Thus
the sweeping deals with data at that point, right after two types of
bad component detection and handling. As well as the name of
the function it will target, CTAP_sweep() takes as arguments
the target function; the method for detection, variance; the
parameter to sweep, “bounds”; and the range of values to
sweep. Here, the parameter bounds is in the range 1 to 6 MAD,
incrementing by steps of 0.2. This MAD range was chosen by
empirical observation, noting that the extreme values result in
either very few or very many channels rejected.

CTAP_sweep() also takes a “mini-pipe” parameter,
SWPipe, which defines a step set that tests each value.
CTAP_sweep(), by default, selects a final parameter value

FIGURE 3 | Schema of functions and data flow in HYDRA parameter-optimization pipe, based on the branched pipe. The branch 2B has been left out, and branch 2

defines a sweep step instead. The function CTAP_sweep() executes a given “mini-pipe” in a separate instance of CTAP_pipeline_looper() for each value in

the given parameter range. The consequent range of outcome values (in terms of bad channels, ICs, segments, or epochs) is used to select a final value for the

optimized parameter according to a simple criterion function. The dashed-line inset shows the relatively simple sweep process.
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based on an estimate of the inflection point in the curve of
outcome values. This point is defined here as the parameter
value for which the change in outcome value from step i to i+1
is closest to 1 standard deviation (SD) of the range of outcomes
(where i is in [1..n-1], n = size of parameter range). The approach
of selecting the parameter value by calculating the inflection
point is chosen as a simple way to express a change in the
signal which is big enough (i.e., not merely a fluctuation in the
“plateau”), but not too big (i.e., following the steepest period of
change).

The final value selected by CTAP_sweep() is passed back to
pipe 2, becoming the “bounds” parameter for the subsequent
call to CTAP_detect_bad_channels().

3. RESULTS

Having run the pipelines on the HeadIT data, the user will be able
to access extensive results as follows.

3.1. Basic CTAP Pipeline Outcome
Basic pipe completed preprocessing for each subject/EEG
recording in ∼40 min, on average. ERP creation then took ∼270
s per subject.

The various human- and computer-readable bookkeeping
performed by CTAP is documented, in Cowley et al. (2017)
and on the repository wiki. The basic pipeline saves informative
logs and quality control reports in the output directory. For
example, the file logs/all_rejections.txt shows (after extracting
suitable comparisons) that artifact routines removed ∼11%
of bad components, and ∼5% of bad channels. The file
logs/peek_stats_log.xlsx indicates that the minimum-to-
maximum range and SD are both reduced by about 40%, to a
between-subjects average value of 3,611 and 33 µV, respectively.

The peek stats included a Kolmogorov-Smirnov test, which
indicated that every channel was approximately normally
distributed. Thus, we can estimate that ∼95% of the data lies
within 2 SDs of the mean, which equates to a group average data
spread of 136 µV (reasonable for EEG data in an ERP-analysis
context).

The 40% reduction in data magnitude suggests that significant
artifact removal occurred. The final range (>3.5 V), however,
is higher than expected from neural sources, suggesting some
artifact remained. The effect of time-locked signal averaging will
enhance time-locked activations, diminish non-systematic noise,
and reduce amplitude overall. Thus, we can look at ERPs to
discover whether systemic noise is reduced to acceptable levels.

The ERPs derived from the basic pipeline are shown below
in Figure 4, for the data after step set 1 “initial loading” (top
row), and after step set 2 “artifact correction” (bottom row).
These ERPs show that little systematic change was induced
by artifact correction, i.e., the upper (Figures 4A,B) and lower
(Figures 4C,D) panels have the same amplitude ranges and
very similar morphology. ERPs show an expected deviant-trial
activation difference, especially at peak P300.

Examining the peek statistics by subject, it is clear that subject
12 is an outlier, with values an order of magnitude greater
than any other subject, both before and after artifact correction

(nevertheless, correction reduced range and SD by 43%). An
experimenter could thus choose to remove this subject and
proceed with the remaining data with good confidence. On the
other hand, we can also examine this subject’s CTAP output in
more detail to identify why the data was not cleaned more, and
determine how to improve results.

CTAP artifact detection steps illustrate their outcomes with
visuals saved subject-by-subject under the quality_control

directory. For the basic pipeline, this includes bad IC detection
by ADJUST toolbox (Mognon et al., 2011), blink detection by
CTAP’s template method (Cowley et al., 2017), and bad channel
detection by channel variance.

First, a scalp map plot shows at a glance the spatial activations
of all the ICs detected by ADJUST: for subject 12 they all appear
to be genuine artifacts. Check here:

quality_control/CTAP_detect_bad_comps/set2_fun2/

We can double check this by studying spectra and ERP-image
for each IC, under:

quality_control/CTAP_reject_data/set2_fun3-

badcomps/s12_eeg_1_session_meas/

Second, a scalp map plot shows spatial activations of any
ICs identified as blink related: for subject 12 this appears quite
blink–like. Check:

quality_control/CTAP_detect_bad_comps/set2_fun4/

We can then check the spectra and ERP-image of this IC:
however the ERP-image (labeled “Continuous data”) does not
show the characteristic pattern of a blink IC (short strong bursts
of activation in an otherwise quiet signal). See:

quality_control/CTAP_filter_blink_ica/set2_fun5-

blinkICs/s12_eeg_1_session_meas/

We can then examine the raw data ERP of vertical EOG and
vertex channels, which shows no change from before to after
correction (by filtering). Check here:

quality_control/CTAP_filter_blink_ica/set2_fun5-

blinkERP/

This suggests that blink–related activations remained in the
data which could explain its large final magnitude. Blink-
detection visualizations are shown in Figure 5.

Bad channel detection is the last step to check, starting with a
histogram of channel variance values. See:

quality_control/CTAP_detect_bad_channels/set2_fun6-

variance/

For subject 12, a subset of channels has variance lying far
outside the threshold, while the rest are grouped near themedian.

The function CTAP_reject_data() records the bad
channels’ scalp location and a raw data snapshot. See:

quality_control/CTAP_reject_data/set2_fun7-

badchans/s12_eeg_1_session_meas/

The scalp map shows that all bad channels are located in
the frontal scalp region, and thus probably dominated by ocular
artifacts, which seems supported by the corresponding raw data.
The co-located grouping of channels implies that interpolation
from neighboring channels cannot provide a solution, and this
recording cannot be used or processed further without solving
the ocular artifact problem.

From these outputs, we can conclude that the pre-processing
of (at least) subject 12 failed, but the failure was due to
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FIGURE 4 | ERPs from basic pipeline data. (A,B) Show the short and long tone conditions, respectively, for data after step set 1. (C,D) Show short and long tone

ERPs after step set 2. In all ERPs, blue colors are standard trials and red colors are deviant trials. Two thick foreground lines show the grand average, while

per-subject averages are shown by narrow lines in background, illustrating group variance. Ordinate and abscissa are µVolts and time in seconds, respectively. Zero

time marks the stimulus onset. Deviant trials show greater responding at peak P300.

cascading effects of faulty blink removal, and thus the data
might be salvageable with another approach. CTAP’s branching
functionality helps to more easily compare approaches.

3.2. Branched Pipeline Outcome
For each subject / EEG recording, branched pipe completed pipe
1 in∼25min; pipe 2A in∼01:45; pipe 2B in∼04:50; and the peek
pipe in∼3 min.

ERPs derived from the branched pipeline are shown in
Figure 6, for the data after pipes 2A and 2B (data after pipe 1
are identical to basic pipe, step set 1). The outcome of pipe 2A
is again similar to basic pipeline steps 1 and 2: the tweak of bad
channel parameters had no significant effect, except to raise the
channel rejection rate to 7% (bad ICs remained ∼11%). The lack
of effect might be explained by the observations regarding ocular
artifacts in basic pipeline.

The outcome of pipe 2B is more productive: both short and
long tone conditions show reductions in amplitude of 30 and
33%; while both conditions show greatly reduced variance of
subject-wise averages in the pre-stimulus period. This followed
data rejection rates of∼10% for bad ICs (by FASTERNolan et al.,
2010) and∼2% for bad channels (by EEGLAB’s spectral method).
The reduction in channel rejection rates (5 → 2%), while
retaining good outcomes, may indicate improved specificity in
bad IC detection. In pipe 2B, the FASTER toolbox is the primary
means of removing troublesome artifacts that are temporally and
spatially limited but still frequent enough to show in an ERP. The
outcome of FASTER is visible in the scalp maps of detected bad
ICs; see:

quality_control/CTAP_detect_bad_comps/set3_fun1/

Here, subject 12 for example shows at least 10
strongly-activating frontally-located ICs. Examining the spectra
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FIGURE 5 | Subject 12 blink detection quality-control visuals. (A) The scalp map (top left), power spectrum (top right), and “Continuous data” ERP-image (below) of

the IC detected as blink–related. The fact that the ERP-image does not contain blink–like activations especially suggests that selection of this IC (as a blink template)

was a false positive. (B) ERP plot of the raw data during identified blink events, for vertical EOG and vertex channels. The ERP is clearly unchanged after correction

(and very artifactual besides).

and ERP-image plots of rejected ICs, we can see the first four ICs
correspond to temporally- and spatially-isolated single-impulse
signals of relatively large amplitude. See Figure 7, and compare
with the outputs obtained after running the pipeline:

quality_control/CTAP_reject_data/set3_fun2

_badcomps/s12_eeg_1_session_meas/

These components were not evident in the ICs detected
by pipe 2A, probably because (a) the ADJUST toolbox was
restricted to look for horizontal saccade-type ICs, and (b) the
large activations are not blink–related and so would not be
caught by CTAP’s blink-template method. Overall, FASTER
was programmed to be more liberal by setting the parameter
match_logic = @any, meaning the detection function
would trigger for any of FASTER’s inbuilt metrics. Despite this,
less bad ICs were detected for subject 12 using FASTER (25) than
using ADJUST + blink-template (32+1).

Finally, no bad channels were detected for subject 12 after
rejection of bad ICs detected by FASTER. This does not seem to
be a mere failure of the spectral method, because (a) bad channels
were detected for all other subjects, proving the method does
work for this data; and (b) peek outputs for subject 12 do not
show any clearly artifactual channels in either raw data or IC
activations. See the peek at:

quality_control/CTAP_peek_data/set4_fun1/s12_eeg_

1_session_meas/

This implies that the main problem with subject 12 was
neither ocular nor channel artifacts, but strong impulse signals
in frontal scalp locations (possibly the subject touched the
electrodes).

3.3. HYDRA Pipeline Outcome
For each subject / EEG recording, HYDRA pipe completed pipe
1 in ∼24 min; pipe 2 in ∼10 min; and the peek pipe again in ∼3
min.

ERPs derived from the HYDRA pipeline are shown in
Figure 8, for the data after pipe 2. These ERPs are of comparable
quality to branched pipe 2B, especially in the pre-stimulus period.

The pipeline log logs/all_rejections.txt indicates that 10% of
ICs (unchanged from branched pipe 2B) and 21% of channels
were marked as bad, which is quite a large proportion. On the
other hand, the large number of recorded channels implies that
even losing a large fraction of them would not be catastrophic, so
long as the bad channels were spatially distributed widely across
the scalp. This can be determined from the scalp maps saved
when channels are rejected, see:

quality_control/CTAP_reject_data/set2_fun5_

badchans/

Unfortunately, the example subject 12 returned 88/∼34% bad
channels, many clustered around the frontal scalp area. This
suggests that (a) bad channel detection by variance may be a non-
optimal method in this case; and (b) the method for selecting the
final parameter value in the sweeping functionmay be too greedy.

The sweeps detected a number of artifactual channels which
tended to follow an expected exponential decay, as shown in
Figure 9. The discovered “inflection points” (shown in Figure 9

as red arrows) mark theMAD value which was then chosen as the
final parameter to pass to the pipeline. The selected values tend
to be quite low in the range, which seems problematic for cases
with rapidly falling numbers of detected channels. More robust
methods under development are discussed below.

4. DISCUSSION

Comparison of all pipeline outputs suggests that branched pipe
2B gives best performance, based on IC detection by FASTER
toolbox, and channel detection based on spectral profile. Pipe
2B appears to provide the best distinction between standard and
deviant conditions at the key P300 component, for both long and
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FIGURE 6 | ERPs from branch pipeline data. (A–D) Show short and long tone conditions, respectively. (A,B) Show pipe 2A data; (C,D) show 2B. In all ERPs, display

settings are as for Figure 4. ERPs show that pipe 2B provides greater noise-reduction than pipe 2A, particularly in the pre-stimulus period.

short tones. It is outside the scope of this paper to assess the
neurocognitive results themselves; however these ERPs clearly
show the morphology we should expect from an oddball task,
with the “novelty-processing” P300 strongly responding to the
deviant tone.

The strong performance of pipe 2B supports an approach
based on bad IC detection via multiple features, as exemplified
by the FASTER toolbox (see Figure 6), but it is dependent on
the very high-spatial resolution dataset involved. Having many
channels implies many ICs and thus it is worth searching across
more feature spaces—FASTER by default searches five (Nolan
et al., 2010). The outcome is higher sensitivity to artifacts, at
the possible cost of specificity, but the cost can be borne due
to the large number of ICs. Pipe 2B also compares well with
HYDRA pipe 2 (Figure 8), which used FASTER, suggesting that
spectral detection of bad channels outperforms variance-based
detection, even when the variance threshold is not fixed but

selected recording-by-recording 5. The “rejspec” method is also
based on a fixed threshold, which could be selected per recording
in a data-driven manner; however this approach was not chosen
because “rejspec” is very slow.

Indeed, the methods selected were not chosen because they
would be optimal, but rather because they complete in a
reasonable time on regular computing hardware (not high-
performance). Also, we chose well-known and understood
methods, to permit the reader to focus on the novel elements we
introduce.

The first, basic pipeline shows how CTAP meets the first three
SWMS criteria: (1) replicable, (2) traceable, (3) self-monitoring.

5However, see Limitations below with respect to the method of selection, which is

work in progress at the time of writing. In this respect, HYDRA is not currently a

strong contribution in terms of computer science; but shows how CTAP provides

a frame.
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FIGURE 7 | First four artifact ICs detected by FASTER for subject 12, showing scalp map, spectra, and ERP-image plots. The ERP (blue line), shown below the plot

labeled “Continuous data,” indicates the temporally-isolated sharp impulse signals. These are likely to originate from non-biological artifact.

First, the pipeline code completely encapsulates the
processing: there are no vaguely-defined or manual steps,
and configuration and running of the pipe are quite separate,
which supports transparency and documentation. In addition,
if the base CTAP code against which the pipe is defined
should change, the EEG files preprocessed by CTAP will still
contain detailed descriptions of the history of operations and
complete parameter values. These factors make CTAP workflows
replicable, meeting the first criterion of Saxena and Dubey (2011).

Second, the data provenance is encapsulated in the
measurement configuration structure. In the demonstrated
approach, the measurement structure is built merely by
passing the input directory to confilt_meas_dir().
It is also possible to use a more robust (but more effortful)
method, by defining a spreadsheet of subjects, recordings, and
associated data. Using this approach, data can be stored in any
directory structure desired, e.g., users might wish to store EEG
recordings alongside clinical data in per-subject directories. The
measurement configuration options make CTAP workflows
traceable.

Third, the core CTAP looper is designed to allow pipes to
experience errors without crashing the batch, i.e., errors will
be logged and the currently-executing file will not complete,
but later files will be processed as normal. On the other hand,
while in development, the combination of debug mode and step
sets allows for fine-grained examination of process outputs. A
pipe can match steps into sets with any frequency, from one
set for all functions, to one set per step. Thus, data can be
saved for examination after all functions, after each function,
or any combination. Thus, CTAP workflows are to a degree
self-monitoring.

Branched CTAP workflows meet the fourth SWMS criterion:
they are configurable/scalable. The branched pipeline begins to
show the potential of CTAP. Only a single function is required
to contain the peekpipe. Yet when applied with every other
pipe as a source, the result is a tree of six nodes, which (for
minimal programming effort) offers comparison of both parallel
and sequential stages. Comparison between parallel nodes can be
interesting (i.e., 2A vs. 2B), but it is more interesting to examine
the evolution of data, e.g., applying some summary functions to
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FIGURE 8 | ERPs from HYDRA pipeline data. (A,B) Show short and long tone conditions, respectively. In all ERPs, display settings are as for Figure 4.

FIGURE 9 | Sweep outputs for all 10 subjects (one line graph per subject), in terms of number of bad channels classified per each value of MAD in the range 1.0–6.0,

in steps of 0.2. Discovered “inflection points,” marked by red arrows, were used to derive the MAD value chosen as the final parameter, indicated with vertical red lines.

sequential nodes to track data distribution statistics over time.
Though the example tree shown in this paper is rather simple,
it hints at the many possibilities available. For example, the
multi-source feature could allow, not just a single pipe as above,

but whole tree to branch off of every node in an existing tree.
This could be used, e.g., to generate competing ERP-derivation
approaches from multiple levels of preprocessing, testing the
effect of increased information removal on ERPs.
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Finally, the HYDRA pipeline shows how CTAP meets the
data-driven criterion. Obtaining a parameter value from repeated
testing of the data at a given point implies that the pipeline
becomes tuned to each specific recording from the point of
sweeping onwards. Given that it is a completely replicable
automated operation, it cannot be considered a case of cherry-
picking. Although this part of CTAP is a work in progress
(future work is described below), the ability to seamlessly blend
parameter sweeping into an EEG processing workflow is novel.

The core structure of the workflow is Cfg, creation of which
is one of the most important parts of CTAP, and is a combined
effort of the user and CTAP. In the branched approach, users have
great flexibility to define Cfg, since it can be generated by one
or many functions and/or scripts, which each may contain self-
modifying arguments such as source or runSet specification. On
the other hand, certain arguments such as pipe ID and source
ID (which are usually created inside each pipe for clarity), could
alternatively be passed in as arguments. This would require more
complex parameterization of various functions, but in return
would allow more robust re-configuration of the workflow tree
by changing sources.

The ERP function, designed specifically for this dataset, is very
simple because showing such visuals is secondary to the main
objective of showing workflow management features. In fact, a
more comprehensive ERP analysis solution is under development
for CTAP, as a package for the R statistics computing platform (R
Development Core Team, 2008).

Extraction of features is another capability of CTAP that is
of general interest for EEG work. This includes features such
as oscillatory band power in predefined segments, and also file-
wise meta-data that is normally accessible only when an EEG
file is loaded in Matlab, which can be too slow for automated
file-management purposes. Such features are not exported in the
demonstration pipes for this paper because they are not central
to SWMSs, and have been shown elsewhere (Cowley et al., 2017).

4.1. Limitations and Future Work
CTAP is still under development, and as such does not contain all
planned/required functionality, nor guarantee stability of code.
Indeed the HYDRA functionality is pending publication as a
peer-reviewed article, and may undergo considerable change by
that time.

For example, the method of selecting final values from a
parameter sweep is a matter of on-going work. In the method
used, inflection points represent the midway mark between two
testing steps for which the difference in number of bad channels
is close to 1SD of the whole set of tests. As such, the method is too
sensitive to the length of the “tail.” It besides takes no account of
important domain-specific considerations. For example for bad
channel detection, the spatial distribution is important: channels
should not be too clustered or they cannot be interpolated from
their neighbors. In development is a method of selecting a final
parameter for bad channel detection methods that trades off
the number of bad channels with the uniformity of their spatial
distribution.

Currently, HYDRA implements just a simple range sweep.
Thus the choice of final value is blind, i.e., cannot account

for the “ground-truth” of whether detected artifacts are true
positives or false positives. An upgrade is in development
utilizing synthetic data, extrapolated by auto-regression from
the recorded EEG data at the point of sweeping, and injected
with synthetic artifacts. This synthetic dataset resembles the
original, but contains fully-known ground-truth, such that
detection algorithm classifier performance can be assessed in
terms of specificity and sensitivity. This upgrade is expected to
be published within a year of this writing.

A major problem when aiming to standardize EEG processing
is choosing the point of reference. It is well-known that the
reference strongly affects both quality and interpretation of the
signal. However references are usually chosen according to the
custom of the field, as either a particular point on the head
or an average of all electrodes, and results thus potentially
quite arbitrary. Established techniques exist to standardize the
reference electrode: for example Yao’s (2001) method sets the
reference as a point at infinity, effectively creating zero-reference
data, with EEGLAB integration (Dong et al., 2017). The PREP
pipeline also provides an approach to reference standardization
(Bigdely-Shamlo et al., 2015). CTAP will integrate one or more of
these options in the long run.

4.2. Conclusion
We described CTAP, a toolbox to provide the features of a
SWMS, aiming to make EEG preprocessing more replicable and
scalable in an era when very large EEG datasets are becoming a
more routine reality. The article demonstrated processing for a
genuine dataset, recorded in an experimental context and freely
available online in perpetuity.

Three “modes” of CTAP use were demonstrated, each one
building on the one before to expose more functional features
that assist the user in managing their EEG workflow. Although
many of these features are by themselves quite minor, in
combination they provide the basis of a flexible SWMS for EEG
preprocessing.

CTAP is currently beta software, but is already used in
several research and clinical sites across the Nordic region,
processing from tens to tens of thousands of EEG recordings.
Development is ongoing, and further integration of CTAP with
other functionality from the EEGLAB ecosystem is expected to
improve the overall usefulness and usability of all components:
the whole becoming greater than the sum of its parts.
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