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Abstract Computational Thinking is considered a universal competence, which
should be added to every child’s analytical ability as a vital ingredient of their
school learning. In this article we further elaborate on what Computational
Thinking is and present examples of what needs to be taught and how. First
we position Computational Thinking in Papert’s work with LOGO. We then
discuss challenges in defining Computational Thinking and discuss the core and
peripheral aspects of a definition. After that we offer examples of how Com-
putational Thinking can be addressed in both formal and informal educational
settings. In the conclusion and discussion section an agenda for research and
practice is presented.
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1 Setting the stage

In March, 2006, Jeanette Wing published an influential article, BComputational
Thinking,^ in the Journal of the Association for Computing Machinery. Wing posited
that Bcomputational thinking involves solving problems, designing systems, and un-
derstanding human behavior, by drawing on the concepts fundamental to computer
science… It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use^ (p. 33). Overall, the article argued
that this new competency should be added to every child’s analytical ability as a vital
ingredient of their school learning. Several professional bodies and think tanks in for
instance the US, the UK, and the Netherlands have called for more attention to
computational thinking in the curriculum. At the EDUsummIT 2013, we aimed to
advance this discussion by focusing on the core components of computational thinking,
its relation with and distinction from other 21st century competences (Voogt et al.
2013), and its place in the curriculum.

This focus on computational thinking is not new. Its roots go back, most signifi-
cantly, to Papert’s work on the LOGO programming language and the idea of children
manipulating the computer, which would allow them to develop procedural thinking
through programming (Papert 1980, 1991). The recent advancement and availability of
better computing tools and mobile technologies has led to a resurgence in interest in
computational thinking. Recent work in the field builds upon Papert’s pioneering work
but has a distinct 21st century flavor with its focus on internet, gaming, big data and
creativity.

Despite this renewed interest in computational thinking there is a range of issues and
challenges facing us as we attempt to integrate computational thinking in the curricu-
lum. They range from foundational issues such as defining what we mean when we
speak of computational thinking, to what the core concepts/attributes are and their
relationship to programming knowledge; how computational thinking can be integrated
into the curriculum; and the kind of research that needs to be done to further the
computational thinking agenda in education.

2 Computational thinking: Research history and implications

The concepts of Computational Thinking (CT) and the practice of programming are
difficult to delineate in the literature because many CT studies or discussions of theory
use programming as their context (Fletcher and Lu 2009; Hambrusch et al.
2009; Lee et al. 2011). This can be confusing to the reader and often lead to
the impression that CT is the same as programming or at the very least that CT
requires the use of programming. To further add to this confusion, there is a
history in both research and popular press of the use programming as a way to
develop thinking skills. CT focuses on developing these thinking skills while
within subjects beyond computer science. CT does not necessarily require the
use of programming nor are CT scholars making the claim that programming
has to be the context in which these skills are developed. To understand why
CT has taken this alternate route to developing thinking skills, we must
examine the history of research regarding programming and thinking skills.
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As George Santayana warned us BThose who cannot remember the past are
condemned to repeat it^ (1905, p. 284).

In searching for a history of research to inform this new area, the research related to
Seymour Papert’s work with the LOGO programming language immediately comes to
mind. While Papert referred to computational thinking in his book BMindstorms:
Children, Computers, and Powerful Ideas^ (1980) and other writings (Papert 1991),
it is unclear whether he was referring to the same construct that Wing described in
2006. The portion of his work we are interested in is on the relationship between
programming and thinking skills. In BMindstorms^ he theorized that the learning and
application of LOGO programming would have an effect on students’ learning and
concepts of knowledge across multiple disciplines. The work with LOGO focused
more on the explicit learning of programming, while the current focus of computational
thinking involves using the general concepts born out of Computer Science (CS). To
some observers these separate avenues may be of only the slightest distinction. The
study of CS sooner or later requires knowledge of programming, and it is through CS
that the core concepts of CT were developed.

Papert (1980) posited that students, through the creation of microworlds using the
programming language LOGO, would develop into apprentice epistemologists.
Through thinking about programming, students would become adept at thinking about
thinking; hence, Papert thought that this use of technology would develop skills in
students that would transfer to non-programming contexts both within and outside of
the classroom. However, results from the studies surrounding LOGO were decidedly
inconclusive. Pea et al. (1985), created a task, planning classroom chores, that was
carefully designed to provide an opportunity for Bnear^ transfer from the tasks they had
done with LOGO. The treatment group had received instruction in LOGO for over a
year. Their team did not find evidence that students with LOGO experience had better
planning skills for a non-programming task than their peers with no LOGO experience.
Conversely, Klahr and Carver (1988) found that students instructed in debugging skills
while using LOGO did experience transfer of these skills to a non-programming
environment. In trying to rectify problems with setting a table or planning a travel
route, students with experience in LOGO would search for ‘bugs’ in their process in a
more effective way than non-LOGO students. These effects persisted beyond the
instance of LOGO instruction, with results still showing up 4 months after instruction
had ended. These two studies are only two examples among many with
conflicting results.

Salomon and Perkins (1989) offered a possible explanation for these differences in
findings through examining high-road and low-road transfer. Low-road transfer
encompassed skills that are practiced repeatedly, with the amount of transfer being
dependent on the amount of repetition and the number of contexts in which it is
practiced. High-road transfer encompasses mindful abstraction of the concept or
process being learned. High-road transfer is beyond the reflexive nature of low-road
transfer and requires reflection on the knowledge and opportunities for transfer. The
authors posited that the amount of experience and practice needed for low-road transfer
of programming for non-programming contexts was beyond the restrictions of a young
child’s school environment. High-road transfer, though, could be accomplished through
careful instruction on how to apply programming skills beyond their original context.
Thus, the high-road transfer is heavily dependent on the instructional practices of the
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educator, which leads to question whether it is the programming experience that makes
the difference or the methodology of the instructors. In short, programming alone will
not likely produce results in students’ learning, and it is possible that programming is
only one context for the application of skills taught in an effective manner.

These findings from Papert’s work with LOGO are what connect to our conceptu-
alization of CT as the teaching of thinking skills applied to multiple domains. We can
see echoes of Papert’s original theories in the push for programming instruction to teach
mental skills. We see initiatives such as the Hour of Code (see http://hourofcode.com/)
making claims that learning to program will lead to improved problem solving, critical
thinking skills, and academic outcomes. In a sense, CT is taking this existing
framework of Bprogram to learn mental skills^ and turning it on its head. If the goal
is to learn general mental skills that apply to multiple domains, CT is asking: Why not
learn those skills explicitly within multiple domains? This aligns with the critiques by
Salomon and Perkins (1989) in that the instructional methods and their focus on the
general skills is the more effective strategy for ensuring transfer, not a focus on
computer programming itself. Computer programming may indeed still be one of the
contexts we work within, yet it should not be the only one.

For the researcher and educator interested in CT this review of the past research
offers some guidance. Programming, Computer Science, and Computational Thinking
are not equivalent concepts, yet are intertwined. Programming is but one context for the
practice of Computer Science and Computational Thinking. Computer Science is the
field and practice from which Computational Thinking skills arose, however is not the
only discipline in which these skills can be found or applied. To focus on programming
as the primary instantiation of CT, and to expect programming alone to result in more
refined thinking, similar to the early research on students’ use of LOGO, would be a
mistake both conceptually and pedagogically. The focus should be on the higher-level
concepts being learned and the multiple domains in which they can be applied.

3 Challenges in defining computational thinking

3.1 The challenges of defining CT

A major challenge in trying to define Computational Thinking (or anything else for that
matter) is how we think of the idea of definition. There is an inherent tension in
attempting to define CT and that has to do with the thinking of the Bcore^ qualities of
CT versus certain more Bperipheral^ qualities. This approach seeks to identify or
otherwise specify a set of necessary and sufficient conditions that need to be met for
a set of practices or cognitive processes to be regarded as CT. This approach to defining
in terms of necessary and sufficient conditions has a long history in philosophy, going
back to the days of Aristotle. However, we believe that most constructs (CT included)
cannot be defined in such a manner–mainly because it is difficult to implement
in practice.

Consider, for instance the Computer Science Teacher Association (CSTA) who
argues for a number of dispositions or attitudes as being essential dimensions of CT
(ISTE & CSTA 2011). Some of these dimensions include attributes such as a confi-
dence in dealing with complexity, persistence in working with difficult problems,
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having a tolerance for ambiguity in dealing with open-ended problems, and the ability
to work in collaborative groups towards a common goal. Though we agree that these
are important dispositions to consider for CT, we also believe that including a broad list
of this nature runs the risk of diluting the idea of CT, blurring and making it indistinct
from other 21st century skills (e.g., media information literacy). Furthermore if we
deem these additional attributes essential, we may be emphasizing the logical definition
(in terms of necessary and sufficient conditions) rather than the more pragmatic
approach that focuses on the manner in which the concepts are actually used.

In contrast, we suggest a flexible and more pragmatic approach towards defining
concepts based on current cognitive psychology. According to this approach (also
known as prototype theory), understanding a concept does not require developing a
series of necessary and sufficient conditions that need to be met. In contrast we seek to
develop a more graded notion of categories with an emphasis on the possible rather
than the necessary. This is consistent with work by Rosch (1978) and Lakoff (1987) as
it is with Wittgenstein’s discussion of the category game in his 1953 work Philosoph-
ical Investigations (p. 66), where he wrote:

Consider for example the proceedings that we call ‘games’. I mean board games,
card games, ball games, Olympic games, and so on. What is common to them all?
Don’t say, BThere must be something common, or they would not be called
‘games’ ^–but look and see whether there is anything common to all. For if you
look at them you will not see something common to all, but similarities, rela-
tionships, and a whole series of them at that. To repeat: don't think, but look!
Look for example at board games, with their multifarious relationships. Now pass
to card games; here you find many correspondences with the first group, but
many common features drop out, and others appear. When we pass next to ball
games, much that is common is retained, but much is lost. Are they all ‘amusing’?
Compare chess with noughts and crosses. Or is there always winning and losing,
or competition between players? Think of patience. In ball games there is
winning and losing; but when a child throws his ball at the wall and catches it
again, this feature has disappeared. Look at the parts played by skill and luck; and
at the difference between skill in chess and skill in tennis. Think now of games
like ring-a-ring-a-roses; here is the element of amusement, but how many other
characteristic features have disappeared! And we can go through the many, many
other groups of games in the same way; can see how similarities crop up and
disappear. And the result of this examination is: we see a complicated network of
similarities overlapping and criss-crossing: sometimes overall similarities, some-
times similarities of detail (Wittgenstein 1953, p. 66).

So in our work to better understand CT we seek Bsimilarities and
relationships^ that are Boverlapping and criss-crossing: sometimes overall sim-
ilarities, sometimes similarities of detail^ along the line suggested by Wittgen-
stein above. What this means for our task is that we seek not to find
Bnecessary and sufficient conditions^ but rather take on a broader philosophical
perspective that connects with current thinking in the cognitive science—and in
doing so provides us with a way of including these Bperipheral skills^ in our
thinking about CT, but not seeing them as being essential to CT. We will make
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an attempt to do so in our next sections in which we give an overview of the
integration of CT in education.

3.2 Definitions of CT

Despite the challenges mentioned above, a number of scholars, primarily
computer science educators, have attempted to define CT. We therefore first
examine the discussion about the definition and core concepts of CT in the
Computer Science domain.

Wing (2008) argued that CT complements thinking in mathematics and engineering
with a focus on designing systems that help to solve complex problems humans face
(Wing 2008; Lu and Fletscher 2009). The core CT concepts include, abstractions (the
mental tools of computing, necessary to solve the problem), layers (problems need to
be solved on different levels) and relationships between layers and abstractions (Wing
2008). The idea of abstraction and students’ ability to deal with different levels of
abstractions, as well as to think algorithmically and to understand the conse-
quences of scale (big data), are fundamental to CT (Denning 2009; Lu and
Fletscher 2009). Aho (2012) further argued that CT involves Bthought processes
involved in formulating problems so their solutions can be represented as
computational steps and algorithms^ (p. 832). Denning (2009) argued CT has
a long history in computer science dating back to 1950s when it was known as
algorithmic thinking meaning Ba mental orientation to formulating problems as
conversions of some input to an output and looking for algorithms to perform
the conversions^ (p. 28). Some computer science educators have also argued
that programming is not essential in the teaching of computational thinking
(e.g. Yadav et al. 2011; Lu and Fletscher 2009). Lu and Fletscher (2009) even
suggested that an emphasis on programming might deter students from becom-
ing interested in computer science. In sum, computational thinking is a con-
ceptual way to Bsystematically, correctly, and efficiently process information
and tasks^ to solve complex problems (Lu & Fletcher, p. 261).

Many in the field of education, in particular educational technology, agree with
computer science education community that CT is an important 21st century skill.
Based on the definitions and core concepts of CT as provided by computer
scientists, several definitions have emerged for what CT is in the domain of
compulsory schooling (K-12). Key in all these definitions is the focus on the
skills, habits and dispositions needed to solve complex problems (e.g. Barr and
Stephenson 2011; Grover and Pea 2013; Lee et al. 2011; Sengupta et al. 2013;
Wolz et al. 2011) with the help of computing (Wolz et al. 2011) and computers
(Grover and Pea 2013; Lee et al. 2011). CT encompasses being able to
distinguish several levels of abstraction and apply mathematical reasoning and
design-based thinking (Sengupta et al. 2013). Mishra and Yadav (2013) have
argued that CT goes beyond typical human computer interactions; instead, they
argued that human creativity can be augmented by computational thinking, in
particular with the use of automation and algorithmic thinking. Specifically,
Mishra and Yadav suggested that computational thinking could move students
from being consumers of technology to create new forms of expression build
tools and foster creativity.
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4 CT in education

4.1 Rationales for CT in education

Wing’s (2008) call for computational thinking as a universal attitude and skill set that
should be part of the repertoire of every child comes from the field of computer science,
but it is an important competency and influences nearly all disciplines. Along the same
lines, Bundy (2007) posited that the ability to think computationally is essential to
conceptual understanding in every field, through the processes of problem solving and
algorithmic thinking. CT is seen as an important competency because today’s students
will not only get to work in fields influenced by computing, but also need to deal with
computing in their everyday life and in today’s global economy (Barr and Stephenson
2011; Grover and Pea 2013). At the same time, however, computer scientists discuss
the need to increase students’ interest in computer science through paying attention to
CT (and not programming) in the compulsory curriculum to offer students’ the option
to continue their further studies or their career in fields related to Computer Science
(Wing 2006; Lu and Fletscher 2009; Wolz et al. 2011)

4.2 What should be taught?

While we agree that CT should add to every child’s repertoire of thinking abilities, the
question remains how and when children should learn this ability and how it should be
taught. Wing (2008) indicated that CT should not only be part of undergraduate
curricula at universities, but it should also be integrated at the elementary through high
school levels of education. She argued that ‘if we want to ensure a common and solid
basis of understanding and applying CT for all, then this learning should best be done
in the early years of childhood’ (p. 3720). The question therefore remains what CT
concepts should be learned in the different stages of schooling across the spectrum of
subjects. Wing (2008) suggests that CT could be used to reinforce concepts that are
already taught using visualizations and animations that explain abstract concepts, even
at early grades. Barr and Stephenson (2011) described core computational thinking
concepts and capabilities that could be embedded in K-12 classrooms. They suggested
nine core concepts for CT in K-12 education: data collection, data analysis, data
representation, problem decomposition, abstraction, algorithm and procedures, auto-
mation, parallelization and simulation. For example, the CT skill to be able to process
and analyze data to create artifacts, could be implemented in language arts as well as
STEM classrooms (see Barr & Stephenson for specific examples). Similarly, Grover
and Pea (2013) see CT as a problem solving process with the following characteristics:
1. formulating problems in a way that enables us to use a computer and other tools to
help solve them. 2. logically organizing and analyzing data; 3. representing data
through abstractions such as models and simulations; 4. automating solutions through
algorithmic thinking (a series of ordered steps); 5. identifying, analyzing, and
implementing possible solutions with the goal of achieving the most efficient and
effective combination of steps and resources; and 6.generalizing and transferring this
problem solving process to a wide variety of problems. These operationalizations of CT
clearly separate the cognitive activity of CT from the action of merely working on a
computer or other digital device, such as word processing and/or creating webpages.
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Finally, any discussion of CT must factor in the issue of human knowledge, expertise,
and intuition. As a leader in big data analysis recently suggested, success in using CT
requires knowledge not just of computer science and mathematics, but also imaginative
capacities like innovative thinking and Ba deep, wide ranging curiosity^ (quoted
in Lohr 2012).

Currently there are some examples of curricular frameworks that incorporate CT.
One of these is a computational thinking framework for a Computer Science Principles
course for high schools in the USA, designed by the College Board, presented in
Table 1. This framework was developed upon deliberations in two US National
Research Council workshops (2010, 2011) and considerable discussion by various
professional societies, the US College Board and the US National Science Foundation.

The CS Principles framework above highlights the tension about what defines
computational thinking. For example, the skill of collaboration is hardly unique to
CT, and examples such as Bcollaborating with another student to produce an artifact^
could equally well apply to engineering. As another illustration, competencies such as
Bselect appropriate techniques to develop a computational artifact^ and Buse appropri-
ate algorithmic and information-management principles^ beg the issue on specifying
what thinking skills are involved (Dede et al. 2013). Furthermore, given that this
curriculum includes creativity as one of the seven big ideas, it is important to consider
how CT can help students develop their creativity. It has been argued that CT can foster
creativity, as one important 21st century competency, by enabling students not only to
be consumers of technology, but also to build tools that can have significant impact on
society (Mishra and Yadav 2013). The core argument for including creativity in this
mix is that computing not only extends traditional forms of human expression, but also
allows the creation of new forms of expression (The College Board 2012). Hence, it
becomes important to consider where CT belongs in the K-12 curriculum; should it be
as a computing subject on its own or should we embed CT across other subject areas.

4.3 Positioning CT in the curriculum

4.3.1 Computing as a separate subject

An important issue in integrating computational thinking in the curriculum is delineat-
ing its boundaries with other disciplines and the other 21st century competences (Voogt
et al. 2013). Some (e.g. Royal Society 2012) position CT in the Computing curriculum
stating, BEvery child should have the opportunity to learn concepts and principles from
Computing (including Computer Science and Information Technology) from the be-
ginning of primary education onwards, and by age 14 should be able to choose to study
towards a recognized qualification in these areas^ (p. 44). Based on the report of the
Royal Society, the UK has commenced the implementation of a new curriculum, an
important part of which concerns computational thinking. An elaboration of the UK
curriculum on computing for 4–7 and 14–16 year olds is provided in Table 2.

4.3.2 CT in cross-curricular practices

Wing (2006) called to isolate the major skills and mental frameworks learned within
Computer Science (CS) and to teach them explicitly within other contexts. The need to
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Table 1 Example of a draft curriculum framework for CT

In the Advanced Placement Computer Science Principles Draft Curriculum Framework, six computational
thinking practices are identified (The College Board, 2013, pp. 7–8):

Computational Thinking Practices

P1: Connecting computing

Developments in computing have far-reaching effects on society and have led to significant innovations.
These developments have implications for individuals, society, commercial markets, and innovation.
Students in this course study these effects and connections, and they learn to draw connections between
different computing concepts. Students are expected to:

• Identify impacts of computing;

• Describe connections between people and computing; and

• Explain connections between computing concepts.

P2: Developing computational artifacts

Computing is a creative discipline in which the creation takes many forms, ranging from remixing digital
music and generating animations to developing websites, writing programs, and more. Students in this
course engage in the creative aspects of computing by designing and developing interesting
computational artifacts, as well as by applying computing techniques to creatively solve problems.
Students are expected to:

• Create an artifact with a practical, personal, or societal intent;

• Select appropriate techniques to develop a computational artifact; and

• Use appropriate algorithmic and information-management principles.

P3: Abstracting

Computational thinking requires understanding and applying abstraction at multiple levels ranging from
privacy in social networking applications, to logic gates and bits, to the human genome project, and more.
Students in this course use abstraction to develop models and simulations of natural and artificial
phenomena, use them to make predictions about the world, and analyze their efficacy and validity.
Students are expected to:

• Explain how data, information, or knowledge are represented for computational use;

• Explain how abstractions are used in computation or modeling;

• Identify abstractions; and

• Describe modeling in a computational context.

P4: Analyzing problems and artifacts

The results and artifacts of computation, and the computational techniques and strategies that generate them,
can be understood both intrinsically for what they are as well as for what they produce. They can also be
analyzed and evaluated by applying aesthetic, mathematical, pragmatic, and other criteria. Students in this
course design and produce solutions, models, and artifacts, and they evaluate and analyze their own
computational work as well as the computational work that others have produced. Students are expected
to:

• Evaluate a proposed solution to a problem;

• Locate and correct errors;

• Explain how an artifact functions; and

• Justify appropriateness and correctness.

P5: Communicating

Students in this course describe computation and the impact of technology and computation, explain and
justify the design and appropriateness of their computational choices, and analyze and describe both
computational artifacts and the results or behaviors of such artifacts. Communication includes written and
oral descriptions supported by graphs, visualizations, and computational analysis. Students are expected
to:

• Explain the meaning of a result in context;

Educ Inf Technol (2015) 20:715–728 723



link CT to other subjects than computer science alone has also been argued by others
(e.g., Hemmendinger 2010). He argued that the goal of teaching CT is not for everyone
to think like a computer scientist, but instead, Bit is to teach them how to think like an
economist, a physicist, an artist, and to understand how to use computation to solve

Table 1 (continued)

• Describe computation with accurate and precise language, notation, or visualizations; and

• Summarize the purpose of a computational artifact.

P6: Collaborating

Innovation can occur when people work together or independently. People working collaboratively can
often achieve more than individuals working alone. Students in this course collaborate in a number of
activities, including investigation of questions using data sets and in the production of computational artifacts.
Students are expected to:

• Collaborate with another student in solving a computational problem;

• Collaborate with another student in producing an artifact; and

• Collaborate at a large scale.

Table 2 Aims of the National curriculum for computing in the UK; attainment targets for key stage 1 and 4
(Department for Education 2013)

The National Curriculum for computing at the UK targets students in the age of 5–16.

Its overall aims are:

1. Students can understand and apply the fundamental principles and concepts of computer science, including
abstraction, logic, algorithms and data representation;

2. Students can analyse problems in computational terms, and have repeated practical experience of writing
computer programs in order to solve such problems;

3. Students can evaluate and apply information technology, including new or unfamiliar technologies,
analytically to solve problems;

4. Students are responsible, competent, confident and creative users of information and communication
technology.

At key stage 1 (5–7 year olds) students should be taught to:

• Understand what algorithms are; how they are implemented as programs on digital devices; and that
programs execute by following precise and unambiguous instructions

• Create and debug simple programs

• Use logical reasoning to predict the behaviour of simple programs

• Use technology purposefully to create, organise, store, manipulate and retrieve digital content

• Recognise common uses of information technology beyond school

• Use technology safely and respectfully, keeping personal information private; identify where to go for help
and support when they have concerns about content or contact on the internet or other online technologies.

At the end of the age range, in key stage 4 (14–16 year olds) all pupils must have the opportunity to study
aspects of information technology and computer science at sufficient depth to allow them to progress to
higher levels of study or to a professional career.

All pupils should be taught to:

• Develop their capability, creativity and knowledge in computer science, digital media and information
technology;

• Develop and apply their analytic, problem-solving, design, and computational thinking skills

• Understand how changes in technology affect safety, including new ways to protect their online privacy and
identity, and how to identify and report a range of concerns.
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their problems, to create, and to discover new questions that can fruitfully be explored^
(p. 6). It involves developing ways of thinking that allow learners to use computational
tools in creative ways within the disciplines. Thus, delineation of CT’s boundaries with
other fields is clearly an area that needs greater attention.

A number of researchers and educators have provided frameworks and examples for
incorporating computational thinking across different subject areas. Barr and
Stephenson (2011) described how concepts and skills in computers science, math,
science, social studies and language arts can be referred to the core concepts of CT
as described earlier in this paper. According to Barr and Stephenson (2011), the
integration of CT across disciplines would lead to increased use of computational
vocabulary and the acceptance of failed solution attempts. In addition, they advocated
the use of teamwork to practice important aspects of CT: decomposition, abstraction,
negotiation and consensus building. Lu and Fletcher (2009) illustrated how CT lan-
guage and notation can be used in math (e.g. learning multiplication, charting infor-
mation, finding square roots), social studies (understanding the assembly line), lan-
guage arts (learning grammar), group projects in science and interdisciplinary subjects.
Sengupta et al. (2013) developed two educational units for middle school students in
which scientific inquiry, algorithm design and engineering are applied in an agent-
based programming environment for students to design, evaluate and refine scientific
models on kinematics and ecology. In another middle school example, Wolz et al.
(2011) demonstrated the integration of CT in a journalism course for students. Com-
putational thinking has been implemented with students in elementary schools too. An
example on how CTcan be fostered in young children is provided by Bers et al. (2014),
who developed a robotics curriculum for kindergarten. In this curriculum CT concepts
were linked to mathematics and literacy concepts.

4.4 CT in informal learning

Fishman and Dede (in preparation) even question the need to situate CT within school
subjects. They relate CT to the larger context of learners informally engage in as
makers and creators (including Scratch programming, Do It Yourself digital textiles,
and robotics competitions). Wing (2008) indicated that most children today are not
afraid to explore and play with new concepts and tools and that we should explore not
only formal learning, but also informal learning settings, as learning takes also place
outside the classroom: ‘children teach each other; learn from parents and family; learn
at home, in museums and in libraries; and learn through hobbies, surfing the Web and
life experiences’ (p. 3721). A couple of examples of such settings for learning CTcome
from Lee et al. (2011), who developed CT by providing CT rich environments in the
context of modeling and simulation, robotics and game design using a use–modify-
create pattern of student engagement.

5 Conclusion and discussion

The idea of Computational Thinking as an ability, a skillset, that every child should
possess has emerged since 2006 and has been gaining attention and importance ever
since. Computational Thinking draws on concepts of Computer Science, but the two
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are not identical. While Computer Science is an academic discipline in his own right
that studies computers and computational systems, Computational Thinking refers to
thought processes that are involved when solving complex problems and generalizing
and transferring this problem solving process to a wide variety of problems. The
relationship between computational thinking and computers science is well expressed
in the report of the Royal Society (2012, p.29), Computational Thinking is Bthe process
of recognising aspects of computation in the world that surrounds us, and applying
tools and techniques from Computer Science to understand and reason about both
natural and artificial systems and processes^. Our review of the literature showed that
there is consensus that Computational Thinking is much more than program-
ming. However, programming is an important tool to help develop Computa-
tional Thinking skills, as expressed by Mitch Resnick, Bcomputational thinking
is more than programming, but only in the same way that language literacy is
more than writing. They are both very important. Yes, it’s more, but don’t
minimize programming just because it’s more… programming, like writing, is a
means of expression and an entry point for developing new ways of thinking^
(NRC 2010, p. 13).

There is no clear-cut definition for CT and the main tension in the attempt to define
CT has to do with defining the Bcore^ competencies of CT versus the more
Bperipheral^ competencies . We argue that for the purpose of conceptualizing CT and
integrating it in education, we should not try to give an ultimate definition of CT, but
rather try to find similarities and relationships in the discussions about CT. Finding
these similarities and relationships will lead to a more concise description of Bwhat
matters^ in CT and how to integrate it within K-12.

Some work on the integration of Computational Thinking in the curriculum has been
done, resulting in curriculum frameworks, mainly the CS Principles in the United States
and the National Curriculum in England. However, much more needs to be done. A
major issue for the implementation of CT in educational practice is careful preparation
of teachers to implement CT in their teaching practices. For Computer Science teachers
this implies learning how to link computer science concepts core to computational
thinking, as discussed above, to other curriculum domains. Teachers from other
domains need to become acquainted with the core concepts of computational
thinking. Yadav, et al. (2011, 2014) incorporated computational thinking for teacher
education students with no prior experience in computer science highlighting
how computational thinking ideas can be used in daily life. Computational
Thinking concepts (such as problem identification and decomposition, abstrac-
tion, logical thinking, algorithms, and debugging) were illustrated with concrete
examples from day-to-day life to relate the terminologies to the pre-service
teachers’ personal experiences. These daily life scenarios helped students find
the concepts to be personally meaningful and helped them discover the ubiq-
uitous nature of CT in everyday life.

Research on the integration of Computational Thinking in education is still scarce.
In particular there is a need to study how CT can be developed in students in disciplines
other than Computer Science. Further, the claim that developing CT also increases
students’ ability to be able to deal with complexity and open-ended problems needs to
be studied in-depth. And finally, more in-depth knowledge is needed to study the role
of programming as a tool in developing further CT.
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