
EDITORIAL

Computational Thinking Is More about Thinking
than Computing

Yeping Li1 & Alan H. Schoenfeld2
& Andrea A. diSessa2 & Arthur C. Graesser3 &

Lisa C. Benson4
& Lyn D. English5

& Richard A. Duschl6

Springer Nature Switzerland AG 2020

Abstract
Computational thinking is widely recognized as important, not only to those interested
in computer science and mathematics but also to every student in the twenty-first
century. However, the concept of computational thinking is arguably complex; the term
itself can easily lead to direct connection with “computing” or “computer” in a
restricted sense. In this editorial, we build on existing research about computational
thinking to discuss it as a multi-faceted theoretical nature. We further present compu-
tational thinking, as a model of thinking, that is important not only in computer science
and mathematics, but also in other disciplines of STEM and integrated STEM educa-
tion broadly.

Keywords Cognition . Computational literacy . Computational thinking . Computing .

Models of thinking . STEM integration

Introduction

In our second joint editorial (Li et al. 2019a), we focused on design and design thinking
in science, technology, engineering and mathematics (STEM) education, and discussed
design thinking as an example of models of thinking that are important to each and
every student. Contrary to a common perception that design and design thinking belong
to certain subjects but not others, we highlighted the need and significance of changing
the subject fixation perception to elevate the conception of design thinking as transdis-
ciplinary and not belonging to the field of engineering only. Based on our proposed
notion of “everyone designs and can design” (Li et al. 2019a), we further discussed

https://doi.org/10.1007/s41979-020-00030-2

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s41979-020-
00030-2) contains supplementary material, which is available at the end of the article and also available as an
electronic file.

* Yeping Li
yepingli@tamu.edu

Extended author information available on the last page of the article

Journal for STEM Education Research (2020) 3:1–18

Published online: 18 May 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s41979-020-00030-2&domain=pdf
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
mailto:yepingli@tamu.edu

how existing research supports this notion with evidence of mutual benefits between
design and STEM education.

In this editorial wemake another extension of our previous discussion about the conception
of thinking as plural proposed in our first joint editorial (Li et al. 2019b), with a focus on
computational thinking (CT). Specifically, we take the position of viewing CT, as another
example of models of thinking, which is important for every student to develop and apply in
the twenty-first century. As there have been quitemany studies and discussions about CTover
the past decade (e.g., Denning 2009, 2017; diSessa 2018; Grover and Pea 2013; Wing 2006,
2014), we aim to build on existing research to provide a theoretical account of CT in this
editorial and leave the discussion about educational programs and practices to develop
students’ CT as the topic for our next editorial.

In the following sections, we start by discussing motivation for conceptualizing CT
and then propose a definition of CT that is applicable to STEM education and beyond.
To clarify our definition, we further provide an overview of three primary approaches
to describing CT in the literature, arguing that this body of literature has conceptualized
CT as a stance toward programming competence and skill acquisitions, a cognitive
process, and a particular type of literacy. We discuss how our definition connects with
each of these three approaches. We conclude by describing how CT is distinct from
other models of thinking like design thinking. We also highlight the implications of this
definition for STEM education and future CT research.

Motivation for Conceptualizing CT Applicable to STEM Education
and beyond

Wing’s succinct article (2006) about CT has raised significant interest in professional and
education communities (e.g., CSTA& ISTE 2011; Grover and Pea 2013). Wing argued that
CT “represents a universally applicable attitude and skill set everyone, not just computer
scientists, would be eager to learn and use” (Wing 2006, p. 33). This proposition reflects a
rapidly growing interest in knowing, learning, and using computation in a broad array of
professional activities in diverse fields such as physics, biology, and finance. Indeed, a recent
report Charting a Course for Success: America’s Strategy for STEM Education, released by
the White House (December 2018), highlights that building computational literacy is one of
the four pathways to succeed in STEM education, with one of three objectives under this
pathway being “make computational thinking an integral element of all education”
(Committee on STEM Education 2018, p. 23).

While the importance of CT has been commonly recognized, the meaning of the
concept is contested. For example, Wing came to the concept from deeply inside the
culture and technicalities of professional computer science. Someone outside that
community might be prone to narrowly construe the idea of CT to direct connections
with “number computation” or “computer.” The following are example interpretations.

Viewing CT as Related to Computation Skill Development in School Mathematics

Computation is a familiar idea to most, especially to parents and students in elementary
school. Students are required to learn to compute with numbers (e.g., CCSSI 2010;

Journal for STEM Education Research (2020) 3:1–182

NRC 2002). Such skill is commonly acknowledged as important not only in people’s
daily life, but also in preparation for, and in the conduct of, many professions, including
science, engineering, insurance, and finance - wherever numbers are relevant. Compu-
tation is typically taken to be a basic skill, and parents and the public would be upset if
children don’t gain such basic skills through school education (e.g., Kakaes 2012;
Kline 1973).

Computation was loosely connected to thinking until mathematics educators started
to emphasize the importance of students making sense of what they do when they
engage in computation (e.g., Brownell 1945; Li and Schoenfeld 2019). For example,
students might simply memorize the subtraction algorithm and know how to compute,
say, 45–21, as “subtracting a small digit from a larger digit,” getting the correct answer,
24. But, without the needed understanding of place value and base-10 number com-
position and decomposition, then, a student might well carry out the computation 41–
25 but get the same answer of 24. Here, we highlight the words of “making sense” and
“understanding,” as they require thinking beyond rote computation. Helping students to
develop such deeper understanding has long been advocated and emphasized (e.g.,
CCSSI 2010; NCTM 1989), and also practiced in school mathematics such as the use
of “number talks” (e.g., Parrish 2011).

Thus, in combining “computation” and “thinking” in this restricted sense, CT won’t
be strange to mathematicians, mathematics educators, and teachers at all. CT would be
then emphasizing the importance of thinking and understanding in and for doing
computation. The notion of CT might well be readily accepted for its importance to
every student in learning mathematics. And yet, mathematics educators already have
other terms that convey similar meaning, such as “number sense” (e.g., Sowder 1992)
and “symbol sense” (Arcavi 1994). But, then, why should this new term have any
particular importance beyond other, older ones? Why should the importance of CT be
advocated by computer scientists as important to everyone, when computation in
mathematics is commonly taken as a basic skill?1

Viewing CT as Specifically for Computer Scientists or Merely Learning how to Use
a Computer

Widespread association with computers or programming can easily lead people to
perceive CT as specifically for computer science professionals. It would therefore be
difficult for many to understand why CT is important to everyone. Certainly program-
ming—at least in the way it is perceived from the work of professional programmers—
is considered difficult and esoteric. Developing software for a computer’s internal
operations would then be important to professionals in computer science, but out of
reach to many others. In the same way, abstraction and modeling with the use of CT in
many professional fields beyond computer science would be seen as unimportant and
of marginal concern for most people. For more details, see the discussion of “voca-
tionalism” in the CT movement in diSessa (2018).

1 While numerical computation may be a basic skill, it is not necessarily mechanical and routine, as it is often
perceived. For example, Dowker’s (1992) work on estimation showed that mathematicians are flexible – they
don’t follow algorithms and may not use the same techniques when estimating the same quantities at different
times. But they always have a good sense of how solid the estimates are.

Journal for STEM Education Research (2020) 3:1–18 3

In terms of making the concept of CT more accessible and relevant to those who are
outside of computer science, it should also be noted that CT is not simply about
learning how to use computers or software (i.e., “computer literacy”). By analogy, just
learning to drive a car does not mean that one develops “mechanical thinking.”

A Proposed Definition of CT

An adequate understanding of the notion of CT is clearly needed if CT is to be seen as
important to everyone and worthy of being taught and learned in widespread
educational contexts. Wing (2006) asserted that CT “involves solving problems,
designing systems, and understanding human behavior, by drawing on the concepts
fundamental to computer science.” (p. 33). The description provides a broad scope for
CT’s relevance. Wing (2006) further highlighted its importance with different mani-
festations of CT and its uses in many other fields, such as statistics, biology, physics,
and economics.

At the same time, what makes CT special in Wing’s description is the implication of
“… drawing on the concepts fundamental to computer science.” Wing (2008) further
specified two essences of CT: abstraction and automation. The specifications strength-
ened the linkages of CT with core and general competences involved in computing and
computer science.

Emphasizing “computing” or “programming” in CT, we then can conclude that CT
has not been highlighted in traditional school education, as course requirements in
computer science or programming are minimal or completely lacking. Wing (2006)
should be credited with a notion of CT that is future-oriented and important to
everyone. Through highlighting direct associations between CT and “concepts funda-
mental to computer science,”Wing contributed substantially to the on-going movement
of computer science education for all in the United States (e.g., PITAC, 2005; White
House 2017).

However, challenges remain for many teachers and education researchers who
struggle to understand the meaning of CT, its assessment, and usefulness for
everyone (Denning 2017). The accessibility and usefulness of the notion might
well be undermined for many by the expectation of training in computer science
as a pre-condition. In fact, though, computer science itself is no longer viewed as
the study of phenomena surrounding computers, but, instead, it is the study of
computational information processing, both natural and artificial (Denning 2005,
2007). At the same time, human thinking can also be characterized as specific
models of information processing when performing various tasks (e.g., Anderson
et al. 2004; Simon 1979). The connections between computing and human
thinking in information processing suggest the possibility of taking the notion
of CT to a more generalizable level.

Specifically, we want to view CT as a model of thinking that is more about thinking
than computing. As computing is the study of natural and artificial information
processing (Denning 2007), CT is about searching for ways of processing information
that are always incrementally improvable in their efficiency, correctness, and elegance.
The entailed improvement can call for the use of various strategies (including abstrac-
tion and modeling), practice, skill acquisition and improvement. Here, information can

Journal for STEM Education Research (2020) 3:1–184

take different formats, at different levels of abstraction, and thus appears as various
representations that can be customized and used in different disciplines for problem
solving, modeling, and system building. Just as everyone designs and can design, we
believe that everyone processes information, and helping them to do that well is our job
as teachers.

Although programming and coding can be part of CT, CT should not be restricted in
computer science but is prevalent in diverse professional fields and in daily-life events.
For example, computational modeling has been used to summarize and analyze data (as
code in CT) in different ways to help predict on-going trends in the coronavirus crisis,
in multiple countries. A vignette of such an analysis by Andrea diSessa is included as
supplementary material (see Computational Literacy in the Time of COVID-19). The
lack of accurate data or CT would prevent people from effectively monitoring and
managing the crisis development to save lives. Without specific attention to the
improvement of information processing efficiency and elegance, we may lose oppor-
tunities to nurture students’ CT and develop skills that prepare them to grapple with
global crises. It is imperative that school curricula and instruction integrate CT in
students’ subject content learning, not just in computer science and mathematics but
also in other STEM disciplines and beyond.

To further clarify our position, we take a brief review of different approaches in
describing CT and discuss how our perspective is associated with these approaches.

Approaches to CT in the Literature

In the following sub-sections, we examine three different approaches that have had
tremendous influence on the development of CT in research and educational practice.

Discipline-Based Approaches

The discipline-based approaches in describing CT have a long history associated with
the development of computer science and computation itself in general. Denning
(2017) indicated that George Pólya’s work on mathematical problem solving (e.g.,
Pólya 1945) that provided general heuristics for solving a wide range of problems, as
discussed in our first joint editorial (Li et al. 2019b), can be viewed as a precursor to
CT. diSessa (2018) also identified many similarities between Pólya’s work and Wing’s
writings about CT (Wing 2006, 2014). Although computation was in existence long
before the creation of computers, the development of computation has experienced
tremendous changes over the years associated with the invention and use of computers.
Denning (2007) summarized the revolution in three main stages: (1) computation as a
tool for performing simple and well-structured tasks, such as solving equations and
running simulations, together with the creation and use of the first electronic digital
computers in the 1940s; (2) computation used not only as a tool but also a method for
discovering new knowledge beginning in the 1980s; and (3) computation and infor-
mation processing found in the deep structures of many different fields beginning in the
2000s, such as biology, physics, and business management. Abstraction and modeling
are essential to computation and computing as they develop and use in many different
fields.

Journal for STEM Education Research (2020) 3:1–18 5

Related to the development of computation, computational science, and computer
science, the notion of CT has also evolved from “algorithmic thinking” in the 1950s
and 1960s (a mental orientation toward looking for algorithms that can help convert
some input to an output in problem solving), a way of doing science that develops and
uses computational models (associated with the development of “computational sci-
ence”, distinct from computer science, beginning in the 1980s), and as one of several
key practices for every computer scientist whereas computation itself as existing in
nature is viewed as more fundamental than CT (Denning 2009).

The discipline-based approaches in describing CT as discussed above suggest that
CT can be characterized as a way of thinking and doing —a method— or as a key
practice, which needs to be developed through programming practices. What is con-
sistent among discipline-based approaches is the emphasis on one’s capability of
designing a correct solution with efficiency and elegance, in computational steps, that
might reply on years’ experiences and programming capability. As a computer scientist
well known for his work on programming language and algorithms, Aho (2011)
indicated that “Mathematical abstractions called models of computation are at the heart
of computation and computational thinking. Computation is a process that is defined in
terms of an underlying model of computation and computational thinking is the thought
processes involved in formulating problems so their solutions can be represented as
computational steps and algorithms.” (p. 7) Aho’s characterization of CT is consistent
with what Wing (2008, 2014) emphasized as a key of CT: abstraction.

The historical development of the notions of computation and CT led Denning
(2017) to argue that CT, as proposed by Wing (2006), represents a new version that is
not the same as the traditional version developed through the history. The basic
difference is that the traditional CT would be developed through programming prac-
tices in the profession, and the new version of CT would rely on concept learning to
produce programming ability. Thus, the usefulness of the new CT to everybody is
unclear and remains to be empirically studied (Denning 2017).

At the same time, the historic development of computation and CT also suggest that
CT should not be taken simply as equivalent to computer science. The notion of CT has
been used so widely in many different fields including mathematics and science both in
the past and present. The position we propose to view CT is consistent with discipline-
based approaches, in the sense that we emphasize the need and importance of perfor-
mance improvement in efficiency, correctness, and elegance. In the computing field,
performance can then be manifested as formulating and solving problems as compu-
tational steps and algorithms, and improvement can be made through developing and
testing different computational steps and algorithms.

Psychology-Based Approaches

Although some scholars also characterized CT as a thought process in discipline-based
approaches albeit from a computing perspective (e.g., Aho 2011), the emphasis placed
on thinking rather than computing represents a shift of focus in the conception.

The study of thinking has had its own long history, as we discussed in our first joint
editorial (Li et al. 2019b), which has evolved from philosophical discussion to psy-
chological studies in and across disciplinary domains.

Journal for STEM Education Research (2020) 3:1–186

One particular approach that revolutionized the study of problem solving in the
1950s and 1960s was to conceptualize information processing in the human mind and
use the computer to simulate human problem solving performance (e.g., Newell and
Simon 1972). The approach was powerful as it built empirically from psychological
studies about various components of human cognition and then tested them through
software development and simulations. Examples include the Elementary Perceiver and
Memorizer (EPAM, Feigenbaum and Simon 1984), and adaptive control of thought-
rational (ACT-R, Anderson et al. 2004; Anderson and Lebiere 1998). At the same time,
the approach was restricted in the sense that it did not really conceptualize CT at all, but
used computation as a tool to help with research about human cognition. As discussed
in the previous editorial (Li et al. 2019b), Simon expanded the information processing
model of “problem solving man” from Human Problem Solving (Newell and Simon
1972) to the notion of “thinking man” in the book Models of Thought (Simon 1979).
Simon used “thinking man” as a prototype to conceptualize human thinking as
information processing in and through various component elements that can and should
be merged into a coherent whole (Simon 1979).

At that time, there was very little emphasis on the idea that information processes
and computation actually exist in nature. His book The Sciences of the Artificial (Simon
1969) contributed to building a foundation for the development of artificial intelli-
gence,2 including models of how the mind works. Now we can learn also from biology
research; information processes and computation exist in nature as information
encoding and generation in and through DNA, with its distinct computational methods
(see Denning 2007). Thus, it is better to surpass Simon’s notion of conceptualizing
human thinking as information processes and computation. What makes CT, as
proposed in our position, distinct from general human thinking then resides in the
dedication to performance improvement in efficiency, correctness, and elegance, as
discussed above.

Education-Oriented Approaches

Many scholars have discussed the ambiguity associated with CT and tried to clarify its
meaning (e.g., diSessa 2018; Grover and Pea 2013; Hu 2011). For example, Hu (2011)
reviewed and discussed many different perceptions that people held about CT, includ-
ing CT as related to the tension between empirical and theoretical investigations; as an
ability to see, comprehend and devise systems and processes; as an aid to do mathe-
matics computationally; or as a set of problem-solving skills and techniques for
software engineers in programming. Taking it positively, people view CT as relevant
to many different professional activities, especially in different fields of STEM. At the
same time, these diverse perceptions suggest the importance of clarifying the meaning
of CT as is appropriate and needed for education.

There are three main approaches in describing CT that aim to facilitate educational
practice.

2 With a focus on problem solving, George Pólya was well recognized in the field of artificial intelligence (AI)
for his work in heuristic but AI had not made good use of Pólya’s work. Newell (1981) examined and
discussed possible reasons.

Journal for STEM Education Research (2020) 3:1–18 7

(1) One approach in education is to follow a description developed from discipline-based
approaches as discussed above. For example, Grover and Pea (2013) reviewed
relevant development in K-12 education associated with CT, from procedural thinking
development through LOGO programming in the 1980s (Papert 1980) to recent
movement of several professional societies and organizations aimed to develop
students’ CT such as, the Association for Computing Machinery (ACM), Computer
Science Teachers Association (CSTA), and Google. Instead of discussing possible
clarifications that may be needed, Grover and Pea focused on how others might have
interpreted Wing’s description of CT. The review provided a nice summary of on-
going efforts from professional organizations and studies that aim to develop CT
through programming and computer science in K-12 education. Grover and Pea also
highlighted and discussed that tremendous efforts are needed in developing programs
and research further in a broad range of topic areas including curriculum, instruction,
assessment, and teacher education.

(2) Another approach is to propose and discuss possible expansion of CT beyond
computer science. For example, a recent report Charting a Course for Success:
America’s Strategy for STEM Education, released by the White House in Decem-
ber 2018, included CT, digital literacy, and computational literacy when laying
out the vision for the United States to success in STEM education (Committee on
STEM Education 2018). With the increasing use and importance of digital
devices and the internet, the committee envisioned the importance of “digital
literacy” as a basic level of understanding and “computational literacy” as a higher
level of skill for all students to benefit from what technology development can
bring for tomorrow’s job opportunities. Building computational literacy was taken
as one of the four pathways to success in STEM education, with “make compu-
tational thinking an integral element of all education” listed as one of three
objectives under this pathway. Although possible relationships among computa-
tional literacy, CT, and digital literacy were not explained in the report, compu-
tational literacy was seemingly taken as having a broader scope than CT. The
meaning of CT was explained first in the report with the definition from Wing
(2014), and then expanded as including some broadly valuable thinking skills
beyond computer science: evaluating information, breaking down a problem, and
developing a solution through the use of data and logic. In fact, this expanded
description shares many similarities with George Pólya’s work on problem
solving. With this expansion, the report further indicated the importance of
developing students’ CT as an integral part of all education with or without the
use of a computer.

(3) There is one other approach that aims to highlight the importance of computation
for students’ learning beyond programming. diSessa (2000) advocated the notion
of computational literacy before Wing’s promotion of computational thinking,
and also took a principled approach in emphasizing both “cognitive” and “social”
aspects rather just focusing on programming and the computer environment.

Different from the popular use of literacy that many may perceive as “a casual
acquaintance with …,” diSessa (2018) defined literacy as a massive intellectual
accomplishment of a culture together with a grand “re-mediation,” shifting and
expanding the fundamental forms of representation in society to include compu-
tation as universally known and used. Similar to the way algebra and calculus

Journal for STEM Education Research (2020) 3:1–188

transformed the study of physics from a philosophical inquiry to a rigorous,
precise empirical pursuit (diSessa 2000), computation not only supports many
different fields (not just computer science) but can also change the very intellec-
tual landscape of fields in what they do and how they develop. diSessa (2018)
thus viewed computational literacy as important to every student, but not in the
same way as Wing (2006). In his view, computation is not the special province of
computer scientists, and everyone does not need to think like a computer scientist.
Instead, computation is a fundamental resource for all of society, and it will
develop earmarks that distinguish it in the way it is useful in each discipline
and also in the larger, public society.

What diSessa (2000, 2018) advocated as computational literacy for everyone shares
much with our position about CT in terms of the universal importance of computation
and the emphasis on cognition.3 At the same time, they differ not only in their
approaches to formulating definitions for these two connected and complementary
concepts, but in the patterns of appropriation of CT or computational literacy in the
broader society. As such these different-but-related concepts also suggest different
strategies for anyone anxious to get the most from computation in education and in
the intellectual performance of society broadly.4

Differentiating CT from Other Models of Thinking

At the beginning, we indicated that we take the position of viewing CT, as another
example of models of thinking, as being important for every student to develop and
have in the twenty-first century. After discussing what we mean by CT, we need to
explain further how CT may differ from other models of thinking. So far, we only
discussed design thinking as another model of thinking in our second joint editorial (Li
et al. 2019a). Thus, we would like to share some of our thinking behind identifying and
defining specific models of thinking.

There are several principles that have guided our thinking: trans-disciplinary, pur-
pose, and function. Taking CT as an example, if perceiving what makes CT special is
the indication of “… by drawing on the concepts fundamental to computer science”
(Wing 2006), people can wonder whether CT is pertinent only to computer science
professionals or whether replacing the phrase of “computer science” with “physics”,
“life science”, or “earth science”, we can have “physical thinking”, “life (science)
thinking”, or “earth (science) thinking” when solving problems. If CT is important to
everyone, should physical thinking, life (science) thinking, and earth (science) thinking
be all important to everyone especially when we all live and stay on this planet? The
discipline-based thinking can be important but often carry limitations. Thus, CT, as a
model of thinking in STEM education and beyond, needs to be conceptualized as truly
trans-disciplinary and important to everyone.

3 The vignette in the supplement provided by Andrea diSessa can serve as a good prompt for thinking about
computational literacy and its relation with CT.
4 For example, CT in our definition emphasizes thinking, per se. Computational literacy also emphasizes
developing computational environments that are widespread, very easy to learn, and which have affordances
for many, many uses, not just for discipline-specific ones.

Journal for STEM Education Research (2020) 3:1–18 9

Across different models of thinking in our perspective (see Li et al. 2019b), their
differentiations can be made in terms of the purpose and function. For example, while
design thinking focuses on designing and making things like everyone does and not just
in engineering design, CT focuses on the performance improvement in efficiency and
elegance. At the same time, these models of thinking can and should work together in
various problem solving activities either individually or collaboratively in groups.
Different forms of representations and abstractions can also be taken and used in
different fields of study when these models of thinking may function for specific
aspects of cognition in activities.

Coda

It becomes clear and important to us, in school education, to take an alternate
perspective on CT and not restrict it to an association with programming or
computer science professionals. While the practice of, and capability for,
programming are certainly important for developing CT for computer science
professionals, it is more important to realize that computation is an integral part
of many other fields beyond computer science. The notion of CT should not be
restricted definitively to computer science or programming, thus avoiding a
subject fixation about CT. CT needs to be re-conceptualized, as we did in this
editorial, to ensure it is relevant, important, and accessible to everyone. The
development of CT can then be truly integrated into all education for everyone
to succeed in STEM education (Committee on STEM Education 2018).

It is also important to point out that the reconceptualization of CT, as a
model of thinking, makes its integration in all education a possibility. Great
challenges remain to develop educational programs and practices to make the
integration happen and to conduct research for further scholarship development
(e.g. Honey et al. 2014). There is a rapidly growing number of programs and
studies that focused on how CT can be developed through programming and
computer science in K-12 education (e.g., Barth-Cohen et al. 2018; Bienkowski
et al. 2015; Grover and Pea 2013), in and through STEM education with
mutual benefits for students’ subject content learning (e.g., Dauer et al. 2019;
Sengupta et al. 2013; Yadav et al. 2018). In our next editorial, we will further
discuss educational programs and studies to develop students’ CT, conceptual-
ized in different approaches. At the same time, we would like to take this
opportunity to let everyone know that this journal encourages submission of
related research on CT, its development in and through STEM education,
through different theoretical lens and/or with the use of different research
methodologies. It is a frontier topic in STEM education that calls for the
development of new and robust scholarship (Li 2018).

Acknowledgments We would like to thank Christian Dieter Schunn, Eric B. Snow, and Pratim Sengupta
for their valuable feedback on an earlier version of this editorial.

Journal for STEM Education Research (2020) 3:1–1810

Appendix

Computational Literacy in the Time of COVID-19
Andrea A. diSessa
Graduate School of Education
University of California at Berkeley

Introduction: My Life as a Computationally Literate Person

I am among the privileged few for whom exercising computational literacy is an
everyday affair. For example, I keep all my financial records in a self-constructed database,
and I do financial planning with tools I’ve developed for myself. One of the advantages is
that I get exactly the information I want, in the visible form I want, and I understand the
details of how the tools work—for example, what assumptions they make, which is seldom
or never true with on-line “calculators” such as those that estimate your income tax or plot a
graph of future savings for retirement. I rarely use algebra to solve everyday mathematical
problems because it’s so much easier just to write a program. I prefer to write a program to
compute, say, compound interest than to use a formula because (1) it’s much faster than
looking up or re-deriving the formula, (2) I can decide whether I want just a single result, a
chart of gain over time, or a graph, and (3) I don’t need to make any simplifying
assumptions, such as a constant rate of return. To exemplify the last, in planning financially
for our sons’ college I wrote a little program that included both of our sons’ expected tuition
and board (and relevant dates), our estimated savings rate, raises in my wife’s and my
salaries, and also expected large purchases, such as a new car.

Professionally, I keep and analyze video data with my own tools. I outline papers in the
same environment in which I program because that system has an excellent hierarchical
organization facility (see images later), which is well-suited for good planning and editing,
organized in multiple levels. I keep notes at meetings in the same way, since it produces a
much better organized summary than linear text. And so on.

Some of this may sound sophisticated, but I am not a programmer. Andmany of these
things are trivial, given a little knowledge of programming and a good environment in
which to work.5 In one of our classroom experiments, sixth grade students wrote
programs that were far larger and more complex than what I normally make and use.6

But I’m sure my life is not like yours. What follows might be more vivid in your
own experience.

A Vignette: Tracking COVID Infections

Here is an exercise that I did for myself, just out of curiosity. Well, curiosity and perhaps
some fear of what COVID-19 meant for us and our communities. I wanted to track some
critical inflection points on the progression of the pandemic. In particular, I wanted to track
whether andwhen social distancing had any noticeable effect. Technically, I wanted to see if
and when there might be a deviation from the ordinary, purely exponential increase one gets

5 I use the Boxer programming environment. We designed Boxer precisely to be a medium supporting
computational literacy See diSessa (2000).
6 They wrote video games. You can imagine how complex that might be, with multiple levels, scoring, a lot of
narrative, different internal subgames, etc. Some of this is reported in diSessa (2000).

Journal for STEM Education Research (2020) 3:1–18 11

from a situation where each infected person infects a fixed number of other people. With
social distancing, that number should decrease.7

It took me maybe 20 minutes to assemble what I needed, including finding an old
graphing utility I had laying around, and alsowriting some newbut simple utility functions. I
keepmentioning speed because: (1) People who don’t program don’t know how easily such
things can be done. (2) I would not do these things with programming if I knew a faster way
to do them. I have no ideological commitment to programming just because it can be done. I
do it if and when it’s the fastest, easiest way I know to solve the problems I have.

I’ll cut to the chase, and then backfill details. My very first graph, aimed to compare
infection rates in California, compared to the US as a whole, appears below. The graph
starts on March 18—two days after social distancing was instituted—and continues
until March 29 of 2020.

This is a plot of log values of the data, since exponentials (which is the form of unfettered,
constant infection rate growth) then appear as straight lines. The key lesson here is that, at the
beginning of this time period, the slope of CA infections is significantly less than theUS as a
whole. That’s what I expected to see. Selfishly, it’s what I hoped for. To avoid confusion,
note that I scaled theCAdata so that it preciselymatched theUS at the beginning, just so that
I could easily compare slope, there. (Rescaling and then applying the log function just
provides a constant vertical shift; log ay = log a + log y.)

But there are interesting complications. While the blue (CA) graph is fairly straight, with the
possible exception of a small downturn in the final two days, a colleague pointed out that it is a
little jagged. It turns out that the jagginess is toomuch to be random error (1 / root N). But, a day
later I read in the paper that California had been having trouble collecting data. Apparently, some
countieswere not reporting, or not reporting in a form that could be imported into the state’s data

7 Down the road, I expect to look for another inflection point, where the number of cases ceases increasing.

Journal for STEM Education Research (2020) 3:1–1812

bases. That factmay resolve the puzzle of jagginess. But, it’s also true that the graph is as good as
the data. I used: https://ncov2019.live. Finally, I could not get to the site at exactly the same time
of day each day, and the data was continuously updating.

Another observation is the arching curve in the US data. I still don’t know why that
is so. But, then, that was not an interesting point for me.

You can probably see that toward later times, the two graphs appear to be more
parallel, signaling a similar infection rate. In order to make this clearer, I just re-scaled
the CA data so that it matched the US data later in the graph.

In this form, it is clear that for a while the US and CA had the same slope (infection rate).
But now, although both CA and US appear to have tilted slightly lower (smaller infection
rates) in just the last couple of days, it appears that CA is beginning to show a lower, better
rate. This is what I was hoping to see, even if I expected more than this little change. On the
other hand, a change in infection rate should show up after about two weeks, so we are just
edging into that regime. Yesterday, the day after I noticed the slight downturn in infection
rates, I saw an article in the San Francisco Chronicle, entitled “Coronavirus slowing in Bay
Area? Experts track data to see whether shelter in place is working.” The article said:

By day’s end Monday [tomorrow], most of the Bay Area will have been holed up
in their homes for two weeks — long enough, experts say, to see whether the
unprecedented efforts to keep people apart are beginning to halt, or at least slow
down, the coronavirus.

Yes, but you don’t have to be an expert, if you’re computationally literate! And I am learning
so much more about COVID-19 and its tracking by doing it myself. Furthermore, I could
not find any online tools to do what I wanted, much less the particular graphs I wanted. I
could not even find any historical data listing, so that I have had to enter each day’s data by

Journal for STEM Education Research (2020) 3:1–18 13

hand and keepmy own historical dataset. These failures of the on-lineworld to givemewhat
I wanted are cultural failures of our society with respect to supporting widespread compu-
tational literacy. Very few expect the public, now, to have any use for bare data, nor certainly
the capability to do their own analysis of it.

What might my vignette have to do with education, other than suggesting that we should
work to develop a more computationally literate public? I told someone that I could easily
imagine working with a group of high school students developing hypotheses, tools, and
analytical techniques like this—and in real time as the pandemic develops. I’m missing a
wonderful opportunity (for not having a high school class toworkwith, just now). I said Iwas
sure high schoolers could develop original hypotheses and appropriate analytical methods.

But, then, it occurred tome that we had already done something very like this, in amore
difficult (if less compelling) case!We asked students to take data on the heating/cooling of
two objects, at different temperatures, in thermal contact.We looked at the graphs, thought
about how and why that happened (it’s exponential decay; instead of change being
proportional to amount (infections), change in temperature is proportional to the difference
of temperatures). We then collaboratively developed a program embodying their model.
In diSessa (2017) you can read about how one group of high school students developed,
on their own and with no instruction, a normative model of temperature equilibration. In
diSessa (2008) you can read several cases of students building conceptual and computa-
tional models of fundamental scientific principles, including early versions of our tem-
perature equilibration curriculum unit. Indeed, in a later edition of the same project, we did
teach eight grade students (from amarginalized, immigrant population) how to think about
exponential growth (in the form of spreading rumors; “each one tells two”).

The Nitty Gritty of Programming

Finally, I want to further demystify the work I did building my little COVID explora-
tion microworld. Just below is the database for California, as it exists today. The columns
are, in the sequence specified by theKey: date, cases of infection, deaths, and the number
of people who recovered. The “database” is just text typed or pasted into a “box.” “X”
represents missing data, all in the category of recovered cases, which I found for the US
but never managed to find for CA.

Journal for STEM Education Research (2020) 3:1–1814

Next, I’ll show the complete code for drawing one graph, revealed in stages. The
first panel, below, shows the top level. Just plot a certain set of data points, which
appears here as a black box.

The next panel shows the black box opened (just click on it) to reveal that what’s
plotted are the log values of each element of another black box of data.

The third panel shows that black box opened up, revealing a data set consisting of
yet another (black box) dataset, but scaled by a factor of 11.5. That happens to be
exactly the factor that I needed to scale CA data in order to match with US data right at
the beginning of my graphs.

Finally, with everything revealed, you can see that the input to the whole process is
the second column of the CA COVID database, which is the number of reported
infections.

That’s the whole thing. The program to draw my COVID graphs is four commands
in a nested sequence. Plot-data is a command the graphing utility understands. Log-all
and scale-all are tiny programs I wrote to apply the named function to all the elements
of a list of numbers. Column is an in-built primitive function of the system.

Coda

So, what’s the world like when every citizen can program to the (very modest) level
involved in this example? How will citizens then relate to the data-filled world in which
they find themselves? What will schools be like? How will mathematics and science be
taught differently? What different topics will be covered, how will basic conceptions of
math and science change, and what different kinds of activities will students be
engaged in—such as real-world data inquiries and modeling important scientific
phenomena? That’s computational literacy. You can read some of my own expectations
and hopes in diSessa (2000) and diSessa (2018).

Acknowledgments

I thank Yeping Li, Geoff Saxe, and Melinda diSessa for helpful comments on earlier
drafts.

Journal for STEM Education Research (2020) 3:1–18 15

References

diSessa, A. A. (2000). Changing Minds: Computers, Learning, and Literacy.
Cambridge, MA: MIT Press.

diSessa, A. A. (2008). Can students re-invent fundamental scientific principles?:
Evaluating the promise of new-media literacies. In T. Willoughby, & E. Wood (Eds.),
Children’s learning in a digital world (pp. 218-248). Oxford, UK: Blackwell
Publishing.

diSessa, A. A. (2017). Conceptual change in a microcosm: Comparative analysis of
a learning event. Human Development, 60(1), 1-37. doi: 10.1159/000469693

diSessa, A. A. (2018). Computational literacy and “The Big Picture” concerning
computers in mathematics education. Mathematical Thinking and Learning, 20(1), 3-
31. (Special issue on “Computational Thinking and Mathematics Learning.”) doi:
10.1080/10986065.2018.1403544

References

Aho, A. V. (2011). Ubiquity symposium: Computation and computational thinking. Ubiquity, 2001(January).
Available at http://ubiquity.acm.org/article.cfm?id=1922682. Accessed on 20 Feb 2020.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah: Erlbaum.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory

of the mind. Psychological Review, 111(4), 1036–1060.
Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of

Mathematics, 14(3), 24–35.
Barth-Cohen, L. A., Jiang, S., Shen, J., Chen, G., & Eltoukhy, M. (2018). Interpreting and navigating multiple

representations for computational thinking in a robotics programing environment. Journal for STEM
Education Research, 1(1), 119–147.

Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S. (2015). Assessment design patterns for computa-
tional thinking practices in secondary computer science: A first look (SRI technical report). Menlo Park,
CA: SRI International. Available at http://pact.sri.com/resources.html. Accessed 28 March 2020.

Brownell, W. A. (1945). When is arithmetic meaningful? The Journal of Educational Research, 38(7), 481–
498.

Committee on STEM Education, National Science & Technology Council, the White House (2018). Charting
a course for success: America’s strategy for STEM education. Washington, DC. Available at
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
Accessed on 18 Feb 2020.

Common Core State Standards Initiative (CCSSI). (2010). Common core state standards for mathematics.
Available at http://www.corestandards.org/Math/Practice Accessed on 18 Feb 2020.

Computer Science Teachers Association, & International Society for Technology in Education (CSTA &
ISTE) (2011). Computational Thinking: Leadership Toolkit (1st ed.) Retrieved from https://id.iste.
org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4 Accessed on 8 Feb 2020.

Dauer, J. T., Bergan-Roller, H. E., King, G. P., Kjose, M., Galt, N. J., & Helikar, T. (2019). Changes in
students’ mental models from computational modeling of gene regulatory networks. International
Journal of STEM Education, 6, 38. https://doi.org/10.1186/s40594-019-0193-0.

Denning, P. J. (2005). Is computer science science? Communications of the ACM, 48, 4 (Apr. 2005), 27–31.
Denning, P. J. (2007). Computing is a natural science. Communications of the ACM, 50, 7 (July 2007), 13–18.
Denning, P. J. (2009). The profession of IT beyond computational thinking. Communications of the ACM, 52,

28–30.
Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM,

60(6), 33–39.
diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge: MIT Press.

Journal for STEM Education Research (2020) 3:1–1816

https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1186/s40594-019-0193-0

diSessa, A. A. (2018). Computational literacy and “the big picture” concerning computers in mathematics
education. Mathematical Thinking and Learning, 20(1), 3–31. https://doi.org/10.1080
/10986065.2018.1403544.

Dowker, A. (1992). Computational estimation strategies of professional mathematicians. Journal for Research
in Mathematics Education, 23(1), 45–55.

Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like models of recognition and learning. Cognitive
Science, 8, 305–366.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational
Researcher, 42(1), 38–43.

Honey, M., Pearson, G., & Schweingruber, H. (Eds.). (2014). STEM integration in K-12 education: Status,
prospects, and an agenda for research. Washington, DC: National Academies Press.

Hu, C. (2011). Computational thinking – What it might mean and what we might do about it. ITiCSE '11:
Proceedings of the 16th annual joint conference on Innovation and technology in computer science
education, pages 223-227, https://people.cs.vt.edu/~kafura/CS6604/Papers/CT-What-It-Might-Mean.pdf

Kakaes, K. (2012).Why Johnny can’t add without a calculator. Available at https://slate.com/technology/2012
/06/math-learning-software-and-other-technology-are-hurting-education.html. Accessed on 20
March 2020.

Kline, M. (1973). Why Johnny can’t add: The failure of new math. New York: St. Martin’s.
Li, Y. (2018). Journal for STEM education research – Promoting the development of interdisciplinary research

in STEM education. Journal for STEM Education Research, 1(1–2), 1–6. https://doi.org/10.1007/s41979-
018-0009-z.

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as “given” in STEM
education. International Journal of STEM Education, 6, 44. https://doi.org/10.1186/s40594-019-0197-9.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Grasser, A. C., Benson, L. C., English, L. D., & Duschl, R. A.
(2019a). Design and design thinking in STEM education. Journal for STEM Education Research, 2(2).
https://doi.org/10.1007/s41979-019-00020-z.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Grasser, A. C., Benson, L. C., English, L. D., & Duschl, R. A.
(2019b). On thinking and STEM education. Journal for STEM Education Research, 2(1), 1–13.
https://doi.org/10.1007/s41979-019-00014-x.

National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation standards for
school mathematics. Reston: NCTM.

National Research Council (NRC). (2002). Helping children learn mathematics. Washington, DC: The
National Academies Press. https://doi.org/10.17226/1043.

Newell, A. (1981). The heuristic of George Pólya and its relation to artificial intelligence. Pittsburgh:
Carnegie-Mellon University, Dept. of Computer Science.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Parrish, S. D. (2011). Number talks build numerical reasoning. Teaching Children Mathematics, 18(3), 198–

206.
Pólya, G. (1945). How to solve it: A system of thinking which can help you solve any problem. Princeton, NJ:

Princeton University Press.
President’s Information Technology Advisory Committee (PITAC) (2005). Computational science: Ensuring

America’s competitiveness (Report to the President, June 2005). Washington, DC: National Coordination
Office for Information Technology Research and Development (NCO/IT R&D). Available at
https://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf Accessed on 2
Feb 2020.

Sengupta, P., Kinnebrew, J., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking
with K-12 science education using agent-based modeling: A theoretical framework. Education and
Information Technologies, 18, 351–380.

Simon, H. A. (1969). The sciences of the artificial. Cambridge: MIT Press.
Simon, H. A. (1979). Models of thought. Volume I. New Haven: Yale University Press.
Sowder, J. (1992). Estimation and number sense. In D. Grouws (Ed.), Handbook for research on mathematics

teaching and learning (pp. 371–389). New York: MacMillan.
White House (2017). President Trump signs memorandum for STEM education funding. https://www.

whitehouse.gov/articles/president-trump-signs-memorandum-stem-education-funding/ Accessed on 20
Feb 2020.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the

Royal Society A, 366, 3717–3725. https://doi.org/10.1098/rsta.2008.0118.

Journal for STEM Education Research (2020) 3:1–18 17

https://doi.org/10.1080/10986065.2018.1403544
https://doi.org/10.1080/10986065.2018.1403544
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-018-0009-z
https://doi.org/10.1007/s41979-018-0009-z
https://doi.org/10.1186/s40594-019-0197-9
https://doi.org/10.1007/s41979-019-00020-z
https://doi.org/10.1007/s41979-019-00014-x
https://doi.org/10.17226/1043
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2014). Computational thinking benefits society. 40th anniversary blog of social issues in
computing. Available at http://socialissues.cs.toronto.edu/index.html%3Fp=279.html accessed on 2
Feb 2020.

Yadav, A., Krist, C., Good, J., & Caeli, E. N. (2018). Computational thinking in elementary classrooms:
Measuring teacher understanding of computational ideas for teaching science. Computer Science
Education, 28(4), 371–400.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Yeping Li1 & Alan H. Schoenfeld2
& Andrea A. diSessa2 & Arthur C. Graesser3 & Lisa

C. Benson4
& Lyn D. English5

& Richard A. Duschl6

Alan H. Schoenfeld
alans@berkeley.edu

Andrea A. diSessa
disessa@berkeley.edu

Arthur C. Graesser
graesser@memphis.edu

Lisa C. Benson
lbenson@clemson.edu

Lyn D. English
l.english@qut.edu.au

Richard A. Duschl
rduschl@smu.edu

1 Texas A&M University, College Station, TX, USA

2 University of California-Berkeley, Berkeley, CA, USA

3 University of Memphis, Memphis, TN, USA

4 Clemson University, Clemson, SC, USA

5 Queensland University of Technology, Brisbane, Australia

6 Southern Methodist University, Dallas, TX, USA

Journal for STEM Education Research (2020) 3:1–1818

https://doi.org/10.1007/s41979-020-00030-2

	Computational Thinking Is More about Thinking than Computing
	Abstract
	Introduction
	Motivation for Conceptualizing CT Applicable to STEM Education and beyond
	Viewing CT as Related to Computation Skill Development in School Mathematics
	Viewing CT as Specifically for Computer Scientists or Merely Learning how to Use a Computer

	A Proposed Definition of CT
	Approaches to CT in the Literature
	Discipline-Based Approaches
	Psychology-Based Approaches
	Education-Oriented Approaches

	Differentiating CT from Other Models of Thinking
	Coda
	Appendix
	References

