
Computational Time-Lapse Video

Eric P. Bennett∗ Leonard McMillan†

The University of North Carolina at Chapel Hill

Abstract

We present methods for generating novel time-lapse videos that ad-
dress the inherent sampling issues that arise with traditional pho-
tographic techniques. Starting with video-rate footage as input,
our post-process downsamples the source material into a time-lapse
video and provides user controls for retaining, removing, and re-
sampling events. We employ two techniques for selecting and com-
bining source frames to form the output. First, we present a non-
uniform sampling method, based on dynamic programming, which
optimizes the sampling of the input video to match the user’s de-
sired duration and visual objectives. We present multiple error met-
rics for this optimization, each resulting in different sampling char-
acteristics. To complement the non-uniform sampling, we present
the virtual shutter, a non-linear filtering technique that synthetically
extends the exposure time of time-lapse frames.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Sampling; I.4.3 [Image Process-
ing and Computer Vision]: Enhancement—Filtering

Keywords: Time-lapse, computational photography, video, non-
uniform sampling, aliasing, summarization, camera simulation

1 Introduction

Time-lapse is an effective tool for visualizing motions and pro-
cesses that evolve too slowly to be perceived in real-time. Time-
lapse videos are regularly used to capture natural phenomena and to
provide artistic cinematic effects. Time-lapse related techniques are
also frequently applied to other applications including summariza-
tion of films and time-compression of surveillance videos. In this
paper, we present a system for generating time-lapse videos with
improved sampling, reconstruction, and enhanced artistic control.

Traditional time-lapse methods use uniform temporal sampling
rates and short, fixed-length exposures to capture each frame. As
is the case with any periodic sampling method, the sampling rate
must be sufficiently high to capture the highest-frequency changes,
otherwise aliasing will occur. This places an upper bound on the
capture interval of the time-lapse output if it is to be free of aliasing
artifacts. When shorter versions of the output are desired, the film-
maker is forced to make a tradeoff between aliasing, which exhibits
itself as popping artifacts in time-lapse videos, missing motions, or
pre-filtering, which introduces blurring.

Our approach simplifies time-lapse capture by removing the
need to specify a sampling rate and exposure time a priori. This is

∗bennett@cs.unc.edu (Eric P. Bennett is now at Microsoft Corporation)
†mcmillan@cs.unc.edu

Uniform Sampling

Uniform Sampling With Motion Tails

Non-Uniform Sampling

Non-Uniform Sampling With Motion Tails

Frame n−1 Frame n Frame n+1

Figure 1: Sequences of three consecutive time-lapse frames that illustrate the sampling

issues of traditional time-lapse methods along with our techniques to reduce aliasing

artifacts. In a standard uniform sampling, the truck appears in only a single frame,

resulting in popping. Adding motion tails makes the truck more noticeable across

multiple frames. Our non-uniform sampler chooses additional frames for its output

containing the truck. Finally, we show a result combining both techniques.

accomplished through non-uniform sampling of a video-rate input
to select salient output frames and non-linear integration of multiple
frames to simulate normalized long exposures.

Our first underlying technique chooses the constituent frames in
the output time-lapse by calculating an optimal non-uniform down-
sampling of the video-rate footage. By downsampling after cap-
ture, the most important frames can be selected with knowledge of
all motions and changes that occur during the video. Our sampling
is based on dynamic programming and supports the general set of
all error metrics defined between pairs of frames. We discuss er-
ror metrics to achieve a variety of effects, including maximizing
change, minimizing change, and controlling sampling uniformity.

Our second technique simulates a virtual camera shutter by com-
bining sequential frames together to simulate extended exposure
times. This virtual shutter acts as a non-linear downsampling pre-
filter that reduces aliasing artifacts. One virtual shutter setting pro-
vides motion tails that depict dense motion paths over time simi-
lar to the multiple-exposure motion studies of Muybridge [1955].
However, our computational framework enables non-linear combi-
nations not achievable via traditional photography, including “over”
compositing, maximum, and median operations.

The key contributions of this work are:

• A method for generating improved time-lapse videos from
video-rate footage

• A user-controllable, non-uniform temporal sampler

• A virtual shutter for non-linear exposure time extension

2 Prior Work

Our computational time-lapse video methods draw from a wide
range of techniques developed for computational photography,
video summarization, and video processing. Our work also extends
traditional film-based time-lapse techniques, such as those devel-
oped for biological microscopy [Riddle 1979] and cinematic appli-
cations [Kinsman 2006].

The playback of videos at faster than their original speeds has
been investigated by the multimedia summarization community.
Video Skimming [Smith and Kanade 1997] looks for short, rep-
resentative video segments that best tell the story of the video. Seg-
ments are chosen based on characteristics including scene changes,
camera motion, and audio. The documentary films they target have
distinct scenes changes, unlike time-lapse sources. Also, Hua et al.
[2003] search for video segments that contain motion between shot
boundaries and combine them to match an audio source. Wilde-
muth et al. [2003] explore how fast videos can be fast-forwarded
using uniform sampling while remaining coherent (roughly 64x).

Our use of non-uniform sampling is similar to “Video Summa-
rization By Curve Simplification” [DeMenthon et al. 1998]. They
choose a non-uniform temporal sampling based upon simplifica-
tion of tracked motion-path curves. Our sampling work solves a
superset of these formulations and presents a general framework
that supports any error metric definable between frame pairs, ac-
commodating a wider variety of time-lapse characteristics. Also,
we achieve an optimal minimal-error solution through the use of a
dynamic programming-based solution [Perez and Vidal 1994] as
opposed to the greedy Douglas-Peucker algorithm [Douglas and
Peucker 1973]. Others have also considered the use of pairwise
error metrics for jumping between video frames. “Video Textures”
[Schödl et al. 2000] looks for transitions within a video that are
least noticeable to indefinitely extend playing time. As in our work,
dynamic programming is used to find potential jumps. Our solution
formulation differs because time monotonically increases in time-
lapse and all jumps result in a single output frame.

In “Video Summarization Using MPEG-7 Motion Activity and
Audio Descriptors” [Divakaran et al. 2003], short video clips are
identified as containing significant motion and are played at real-
time speeds and assembled into the final video. Doing so sets a
lower bound on the video’s duration. Our approach places no con-
straints on the final duration or playback rates, and the sampling we
derive is optimal for the user-specified duration and error metric.

Rav-Acha et al. [2006] specifically address time-lapse videos,
allowing events to occur simultaneously and/or out of chronolog-
ical order, resulting in disjoint image regions combined using 3D
Markov fields and arranged using simulated annealing. Their re-
sults and techniques differ significantly from ours and can be seen
as complementary tools.

Our virtual shutter combines multiple frames into synthetic ex-
tended exposures. Computational photography deals with the re-
lated problem of combining multiple still images or video frames
into a single output frame. “Interactive Digital Photomontage”
[Agarwala et al. 2004] allows the user to choose individual parts
of a few images to find the best composite image. This fusion is ac-
complished using both graph-cut [Kwatra et al. 2003] and gradient
domain [Perez et al. 2003] algorithms. Similar to our virtual shutter,
“Image Stacks” [Cohen et al. 2003] defines methods for automati-
cally selecting and combining image regions using compositing and
min, max, median, and low-pass filtering. We extend these ideas
with alpha-blending “over” compositing [Porter and Duff 1984]
to illustrate the passage of time and by generating a video output
with an adaptive sliding temporal window. Our non-linear exposure
combination also has similarites to [Bennett and McMillan 2005].
However, that work avoids combining frames with motion, while
we now combine frames to illustrate motion and reduce aliasing.
Finally, our results are similar to the stroboscopic multiple exposure

Sampler
(Uniform & Non-Uniform)

Video-Rate Input

Virtual Shutter

Time-Lapse Output

Exposure
Type

Time-Lapse
Characteristics

User
Settings

Sampling v

Frames s

F
ra

m
e

s
s

Output Exposures

Figure 2: Diagram of the data flow in our computational time-lapse video system.

Video-rate footage, s, is input into the sampler, which chooses the sampling, v, that

best matches the user’s desired duration and characteristics. This sampling determines

the times and durations of the virtual shutter’s non-linear synthetic exposures.

photographs of Harold Edgerton [Edgerton and Killian 1979] and
the motion studies of Muybridge [1955] and Marey [Braun 1995].

3 Traditional Time-Lapse Techniques

There are two popular ways to configure a film-based time-lapse
setup. The most common employs a device called an intervalome-
ter that takes a fixed-length exposure every few seconds, with sam-
pling interval Ts (Eq. 1), also called the time step. Doing so risks
missing motions that occur between exposures or undersampling
fast motions. A less common approach, for low-light conditions,
takes longer exposures throughout the entire time step, increasing
motion blur. Motion blur guarantees high-frequency motion will
be imaged, but that motion will be blurred and often fades into the
background.

Ts =
EventDuration

totalOut putFrames−1
(1)

As digital still photographers have long known, it is preferred
to capture at high resolutions then downsample and crop as a
post-process, allowing multiple alternatives to be explored non-
destructively. We argue that a similar philosophy should be applied
to constructing time-lapse videos by capturing at a higher frame-
rate than the Ts step dictates, then temporally downsampling as a
post-process. Until recently, capturing long videos at high reso-
lutions was impractical due to storage requirements, but it is now
possible to store days of video on most commodity PCs.

In computational time-lapse video, time is discrete and is there-
fore sampled at video-rates into frames. Taking a single short ex-
posure at each time step (i.e., one sample from many samples) is a
non-optimal downsampling, potentially generating temporal alias-
ing. The discrete sampling interval Td is an re-expression of Ts:

Td =
totalInputFrames

totalOut putFrames−1
(2)

Considering this uniform downsampling as modulation with an
impulse train, the train’s phase (the offset of the first sample frame)
can dramatically alter the results. Leaving the shutter open for a
longer fraction of each time step is analogous to convolving the
source signal with a low-pass filter prior to downsampling. While
this decreases aliasing, it is not ideal for conveying motion. Our
methods provide flexibility both in which frames are chosen and
how samples are integrated to simulate an exposure.

Another class of time-lapse systems uses feedback instead of
an intervalometer. Using a CCD attached to a computer, the last
recorded exposure is compared with the most recent exposure. If
they are dissimilar enough, the new exposure is recorded and the
process repeated. Similarly, some surveillance cameras use motion
detectors to trigger video-rate recording. Our method generates a
video of user-specified duration whereas these approaches cannot.

Street Corner Uniform Sampling

Min-Error (Cars)

Min-Change (Clouds)

Burning Candle Uniform Sampling

Min-Error (Wax)

Reefer Madness Uniform Sampling

Min-Change

Cookie Baking Uniform Sampling

Min-Change

Crowded Sidewalk Uniform Sampling

Min-Error

Figure 3: Visualization of the sampling results, where each vertical line represents a sampled frame in v. Samplings using the min-error metric choose the majority of their frames

from within periods of change and motion to best approximate the video. Alternatively, the samplings using the min-change metric avoid frames dissimilar to other frames.

4 Non-Uniform Temporal Sampling

In this section, we develop a non-uniform temporal sampler to se-
lect the frames of a time-lapse video from a video-rate input to
achieve user-specified duration and visual characteristics. This is
accomplished using a dynamic programming solution for which a
suite of error metrics are presented to generate a variety of outputs.

4.1 Min-Error Time-Lapse Video Sampling

We consider the general problem of finding v, the optimal M frame
time-lapse sampling of an N frame video-rate input source, s. Fur-
thermore, we now define the optimal v as the time-lapse sampling
that retains as much of the original motion and change as possible
from s. Note, we use subscripts to index frames and superscripts to
index spatial pixels within s, while v is a list of frame indices into s.

To find v, we seek to find the M frames whose piecewise-
linearly-interpolated reconstruction best approximates s in the least-
squares error sense. This interpolation can be thought of as a cross-
fade movie where adjacent frames in v are blended together to create
the interim frames. The reconstruction error is thus the squared dif-
ference between the interpolated video and s. After sampling, the
frames in v are played sequentially (without interpolation), result-
ing in an M frame time-lapse video maximizing motion.

The optimal solution has the lowest total error summed across
each of its cross-fade segments. Thus, we define an error metric,
∆(i, j), that measures the error between the pixels in the the original
video-rate input and a cross-fade starting at frame i and ending at
frame j (modeled with slope b

xy
i j and y-intercept a

xy
i j for each pixel).

Because, in the resulting time-lapse output, we omit the interim
frames between i and j, ∆(i, j) can also be thought of as the cost of
jumping between frames. We refer to this as our min-error metric:

∆(i, j) = ∑
x

∑
y

[

j

∑
k=i

(

(a
xy
i j +b

xy
i j k)− s

xy
k

)2
]

(3)

a
xy
i j = s

xy
i −b

xy
i j i b

xy
i j = (s

xy
j − s

xy
i)/(j− i) (4)

We now seek D̂(s,M), which is the optimal sampling set v, that
results in the minimum error reconstruction of s when M = |v|. The
reconstruction error is the total of the individual ∆(i, j) errors:

D̂(s,M) = minv

M−1

∑
n=1

∆(vn,vn+1) (5)

D̂(s,M) is expressed via the following recursion relationship:

D(n,m) =







minm−1≤i≤n−1(D(i,m−1)+∆(i,n)),n ≥ m > 1
0, n = m = 1
+∞, otherwise

(6)

D̂(s,M) = D(N,M) (7)

This recursion is efficiently solved with dynamic programming
[Perez and Vidal 1994]. For details of the min-error time complex-
ity and derivation in both 1D and 2D, please refer to [Bennett 2007].

Although this solution produces useful results as-is, we include
shape controls to modify the ∆(i, j). This way, the user can affect
the impact of particularly low or high errors on the final sampling.
Specifically, we define a modified form:

∆′(i, j) = (β∆(i, j))α (8)

In many cases, α and β are near 1, and adjusting them affects
sample clustering. For videos with significant scene or sensor noise
an advanced form, with a per-frame threshold term γ , can be used:

∆′(i, j) = (β ×MAX (0,∆(i, j)−MAX(0,(j− i−1)γ))α (9)

4.2 Min-Change Error Metric

The algorithm in the previous section generates optimal time-lapse
videos that preserve as much motion and change as possible. Now,
we consider optimal time-lapse videos as those that avoid includ-
ing frames that are significantly different from the other sampled
frames. This implies choosing similar frames that minimize tempo-
ral aliasing by avoiding objects that pop in and out.

We control the resulting v by introducing the min-change error
metric δ (i, j) that may be used in place of ∆(i, j). Because we
do not want dissimilar frames being included sequentially in v, we
penalize δ (i, j) based on the dissimilarity between frames i and j:

δ (i, j) = ∑
x

∑
y

[

(

s
xy
j − s

xy
i

)2
]

(10)

Thus, δ (i, j) is the sum-of-squared difference between frames i
and j. This calculation is reminiscent of the metric used for jump
evaluation in Video Textures [Schödl et al. 2000].

As in Section 4.1, Equation 8 (substituted with δ (i, j)) may be
used to shape δ (i, j). Again, α and β are often near 1. If a noise
offset is required, a per-jump γ error offset form is suggested:

δ ′(i, j) = (β ×MAX (0,δ (i, j)− γ))α (11)

4.3 Enforcing Uniformity

Up to this point, we have assumed that uniform sampling was un-
desireable. However, if samplings become very non-uniform, the
selected frames tend to cluster together in close temporal proxim-
ity, resulting in playback of a segment rather than a summation.
Thus, we introduce a modified error metric that can be used to bias
the previous metrics towards uniform sampling.

As in Section 3, we determine the uniform discrete sampling
interval Td . We then attempt to include segments in v that are Td

apart and penalize others by how far they stray from Td . This is

done with another error metric, ϒ(i, j), this time with a normalized
penalty based on dissimilarity from Td :

ϒ(i, j) =
j− i−Td

Td

(12)

This metric alone is useless, since it results in a uniform sam-
pling. When used in conjunction with either the min-error ∆(i, j)
or min-change δ (i, j) metrics (from Sections 4.1 and 4.2 respec-
tively) it acts like a spring force pulling the solution towards unifor-
mity. Thus, we present linearly-weighted combinations to accom-
plish this that we call the combined uniform error metrics:

∆(i, j)combined = λ∆′(i, j)+(1−λ)ϒ(i, j) (13)

δ (i, j)combined = λδ ′(i, j)+(1−λ)ϒ(i, j) (14)

Note, the shape variables α , β , and γ must act to normalize
∆′(i, j) and δ ′(i, j) between 0 and 1 to be of relative scale to ϒ(i, j).

4.4 Efficient Calculation

The slowest part of our technique is calculating ∆(i, j) (or δ (i, j))
for every i, j pair. To accelerate the process, we can enforce the
constraint that no two sequentially sampled frames contained in v
may be more than q frames apart in s. In the array containing all
∆(i, j) values, this is equivalent to solving a band q values wide.
This no longer guarantees an optimal solution, because time-lapse
results cannot have a sampling interval larger than q. Care must be
taken when choosing q because it impacts both the minimum and
maximum jump lengths. For example, if two adjacent frames are
chosen for v, then a future jump must become longer to cover the
resulting gap. We typically choose a q 3 to 4 times larger than Td .

This optimization, combined with other optimizations in
[Bennett 2007], results in an overall time complexity of Θ(M ·N ·q).

5 Virtual Shutter

The virtual shutter computationally combines a sliding window of
video-rate exposures from the input signal s to decrease aliasing,
remove changing scene elements, or highlight motion paths.

The primary reason to use a post-process to create exposures is
because it allows arbitrarily selection of any start and end time for
each exposure. Thus, we are not constrained by the sampling inter-
val being the maximum exposure time, as in a physical camera. In
the virtual shutter, each video-rate input frame (which we assume is
not saturated, not temporally aliased, and contains no motion blur)
acts as a short, discrete time-step that we integrate into longer time-
lapse exposures. Experimentally, these exposures were 1-10 ms,
although 33 ms exposures were used at night. This approach frees
us from the linear integration of CCDs or film, allowing per-frame
integration by any weighting or non-linear function.

Furthermore, we have the capability to make exposures whose
lengths adapt to the non-uniform sampling from Section 4. Since
the time-lapse sampling results from a post-process, we cannot
know the corresponding exposure lengths at capture time.

Each exposure interval is a function of the input sampling v of s.
The user specifies how many sampling intervals the output should
integrate over: Ψ. Values of Ψ > 1 imply overlaps between expo-
sures. Specifically, an output frame z integrates the frames in s in
the interval v(z−Ψ) to vz (i.e., a causal, non-symmetric process).

The virtual shutter can be considered a general purpose compu-
tational photography tool adapted for video. Computational pho-
tography has focused on processing a series of images as input and
outputting a single frame. Alternatively, our virtual shutter slides
a window of input frames through the video, creating an exposure
for each v frame (Figure 4). Each output exposure is related to the
image combinations in Image Stacks [Cohen et al. 2003]. How-
ever, we extend that work with our adaptive temporal window and
by creating exposures that illustrate events as part of a video output.

Input F
ramesInput

Video

Non-U
nifo

rm
 Samplin

g

v

s

Virtual
Shutter

Exposure

Tim
e

vz

v(z−Ψ)

Figure 4: Illustration of the virtual shutter sliding a window of frames through the

video that are combined into synthetic exposures. Each exposure ends at a sample v

and extends Ψ indices in v back in time, allowing for adaptively-sized exposures.

Currently Supported Virtual Shutter Effects:
• Maximum Virtual Shutter: The maximum virtual shutter sim-
ulates film’s non-linearity due to saturation. Nighttime time-lapse
videos of car headlights are effective because the headlights satu-
rate the film, creating bright, uniform streaks. We recreate a similar
effect by choosing the maximum value at each pixel.

V Sxy
z = MAX

vz

f =v(z−Ψ)
s

xy
f (15)

• Minimum Virtual Shutter: The minimum virtual shutter alter-
natively chooses the darkest pixels within the exposure window.
Although no photographic analog exists, this frequently removes
bright foreground phenomena, such as fog or smoke.

V Sxy
z = MIN

vz

f =v(z−Ψ)
s

xy
f (16)

• Median Virtual Shutter: The median virtual shutter creates
an exposure of the most representative pixels, even if those pixels
never appeared simultaneously. This is another effect unachievable
with a real camera. It is best used as a complement to the min-
change non-uniform sampling (Section 4.2) to remove any residual
popping artifacts that could not be sampled around.

V Sxy
z = MEDIAN

vz

f =v(z−Ψ)
s

xy
f (17)

• Extended Exposure Virtual Shutter: The extended exposure
virtual shutter simulates holding the shutter open between expo-
sures. This is accomplished with low-pass filtering to mimic the
response of a camera along with normalization to avoid saturation.

V Sxy
z =

1

vz − v(z−Ψ) +1

vz

∑
f =v(z−Ψ)

s
xy
f (18)

The progression of time can be depicted by placing more weight on
the most recent samples, indicating chronology.

V Sxy
z =

1

∑ω(z)

vz

∑
f =v(z−Ψ)

ω(f)s
xy
f (19)

We chose the ω(f) weighting to be an adaptive exponential falloff
curve whose tail length matches the exposure window. We set µ to
30 and allow the user to configure the curve’s falloff with ζ .

ω(f) = ζ κ , κ = µ ·
vz − f

vz − v(z−Ψ)
, 0 < ζ ≤ 1, 1 < µ (20)

• Motion Tails Virtual Shutter: The motion tails virtual shutter
composites multiple frames together to simulate dense stroboscopic
motion studies to illustrate paths of motion. The previous extended

Burning Candle Cookie Baking Reefer Madness Building Front Car Headlights Car Defrosting Street Corner Crowded Sidewalk

Figure 5: Unprocessed input frames from each of the example videos discussed in Section 6. From left to right, a 13 second time-lapse of a candle burning with wax dripping, an 8

second sequence of a cookie baking, a 20 second summarization of the film “Reefer Madness”, a 5 second time-lapse of people walking, a 6 second time-lapse of car headlights, a 10

second sequence of a car defrosting, a 7 second time-lapse of a street corner, and a 15 second time-lapse of a busy sidewalk during a class change.

exposure virtual shutter causes fast moving objects to fade into the
background, as the background is seen more often than the mo-
tion. Now, we apply techniques from the “Image Stacks” [Cohen
et al. 2003] matte filter that used the median as a background plate
and image subtraction to extract foreground elements. These im-
ages were then composited using the “over” operation [Porter and
Duff 1984] into the final image in temporal order, thus more re-
cent frames’ motions occlude older motions. We extend this idea
by combining exposures in our sliding window of frames. If Ψ > 1,
the resulting motion tails overlap. To better illustrate the direction
of motion in our video output, we adjust the “over” α blending term
using ω(f) (Eq. 20) to fade the older frames into the background.

6 Results

Our computational time-lapse system (Figure 2) is implemented as
a series of applications that each perform a specific aspect of the
overall process. The first application generates the ∆(i, j) min-error
(Section 4.1) and δ (i, j) min-change (Section 4.2) metrics from the
source video s (the ϒ(i, j) uniformity metric from Section 4.3 is
calculated on-the-fly). Here, we can opt to analyze specific spatial
sub-regions of the video and choose to calculate at lower resolu-
tions (often without noticeable degradation). These errors are then
used by our non-uniform sampler application and associated GUI
to perform dynamic programming optimization. Here, the user may
specify the shape variables (α , β , γ , and λ) guided by an interac-
tive visualization of their impact. The resulting sampling v is fed
into our virtual shutter application, where the exposure effects of
Section 5 are exported as a video.

For the remainder of this section, we describe how each
sequence in our supplemental video (Fig. 5) was generated. The
system settings and runtimes are detailed in Table 1 while the
non-uniform samplings are shown in Figure 3. All videos are
720x480, except for “Reefer Madness” (320x240).

Non-Uniform Sampling Results:
• Burning Candle (58 Minutes → 13 Seconds)
This uniform 262x time-lapse of a candle burning misses the events
of wax dripping and the candle breaking. To make a video with
more of the dripping wax we primarily used the min-error metric
on the candle’s wax (masking the flame, which was not of interest),
thus making the sampler approximate the wax activity.
• Cookie Baking (9 Minutes → 8 Seconds)
This uniform 65x time-lapse of a cookie baking is not temporally
aliased, but the camera was slightly unsteady. Our stabilized output
sampling used the min-change metric along with ϒ(i, j) to identify
similar frame pairs with a mostly-uniform (small λ) sampling.
• “Reefer Madness” (68 Minutes → 20 Seconds)
Playing the film uniformly at >200x results in incomprehensible
scene flashes. Our non-uniform sampler, with the min-change
metric, chose a few frames from longer scenes that appear similar,
keeping the time-lapse within each scene longer for identification.

Virtual Shutter Results:
• Building Front (34 Seconds → 5 Seconds)
This short video of walking students shows the benefits of motion

tails to convey motion, even with 7x uniform sampling. Low-pass
filtering makes the students nearly disappear but motion tails of
either Ψ = 4 or 8 make the motion contiguous and fluid (Fig. 7).
• Nighttime Car Headlights (60 Seconds → 6 Seconds)
A popular time-lapse effect images car headlights at night. We
used the maximum virtual shutter to create exposures 3 and 6 times
times longer than the maximum sampling interval allows (Fig. 6).
• Car Defrosting (29 Minutes → 10 Seconds)
This time-lapse of a car’s windshield defrosting allows for several
interpretations: minimizing the aliased motion (using the median
virtual shutter) and also depicting all the motion with motion tails.

Combined Results:
• Street Corner (12 Minutes → 7 Seconds)
This 120x uniform time-lapse (Fig. 1) depicts a street corner with
sporadic traffic, resulting in popping. With our min-error metric,
we generated a non-uniform sampling that slows down when cars
drive by. We further reduced aliasing with motion tails. Alterna-
tively, we used the min-change metric (with a small λ), to sample
the cloud motion without cars. Because some blowing leaves re-
mained, we removed them with a short median virtual shutter.
• Crowded Sidewalk (17 Minutes → 15 Seconds)
A uniform 70x time-lapse shows a sidewalk during a class change
that also exhibits popping. We used a min-error non-uniform sam-
pling (and a tiny λ uniformity mix) to devote more samples to
frames with increased activity (resulting in a busier sidewalk). We
then added motion tails to show the students’ paths (Fig. 7).

7 Future Work

There are many areas for further development of computational
time-lapse video including several potential non-uniform sampling
enhancements. The min-change metric δ (i, j) could be altered to
compare neighborhoods of frames as opposed to single frames. As
in “Video Textures” [Schödl et al. 2000], velocity would be pre-
served in addition to visual similarity. Also, repetitive motions
could be cleverly resampled to give the illusion they were occur-

Input 1/30th Second Exposure Virtual Shutter 1/3rd Second

Virtual Shutter 1 Second Virtual Shutter 2 Seconds

Figure 6: An input frame from the nighttime car headlights sequence and three ex-

tended exposures using the maximum virtual shutter to mimic film saturation. Al-

though the longest sampling interval for a 10x speedup is 1/3rd of a second, we simu-

late longer exposures from video-rate footage.

Duration (Frames) Non-Uniform Error Metric Uniformity Virtual Shutter Run Time

Title Input Output q Sampling α log β log γ λ Type Ψ ζ hours:minutes

Burning Candle 104849 400 600 Min-Error 1.09 -6.11 4.87 .05 - - - 7:20

Cookie Baking 15757 240 200 Min-Change 1.00 -5.24 0 .04 - - - :05

“Reefer Madness” 40975 600 500 Min-Change 1.00 -7.08 5.89 - - - - :15

Building Front 1025 150 - Uniform - - - - Tails 4, 8 .96 :15

Car Headlights 3096 300 - Uniform - - - - Max. 6 - :10

Car Defrosting 52544 300 - Uniform - - - - Median 10 - :30

Car Defrosting 52544 300 - Uniform - - - - Tails 4 .93 :45

Street Corner - Cars 25483 210 500 Min-Error 1.00 0 0 - Tails 3 .95 5:15

Street Corner - Clouds 25483 210 500 Min-Change .65 -7.37 5.38 .15 Median 2 - :45

Crowded Sidewalk 31128 450 500 Min-Error 1.00 -9.49 0 .01 Tails 4 .92 3:15

Table 1: Parameters used to generate the video results. These were selected manually by the user with our GUI. Cells marked as ‘-’ indicate variables not used in the result. A value

in the λ category indicates the combined uniformity metric ϒ(i, j) was used along with the listed error metric. Runtimes reflect all processing (error calculation, sampling, and virtual

shutter) on a 2 GHz Intel Core Duo. Most of the running time is spent on error metric calculations, which are a function of the metric, duration, q, and resolution. Also, note that the

running-time of the min-error metric is much higher than the min-change metric, as it requires calculation at the all intermediate frames between i and j.

ring at video-rate speeds in the time-lapse result (thus, a desirable
form of aliasing exploiting beat frequencies). Although we did not
consider camera motion because time-lapse cameras are typically
fixed, an error metric could be constructed to optimize for a con-
stant camera velocity. A shortcoming of dynamic programming is
that errors must be pairwise between i and j. Because objectives
such as maximizing the smoothness of the derivative of intervals in
v are not possible, other solution techniques should be considered.

The virtual shutter could be extended to support more varied
combinations of frames, such as non-photorealistic rendering ef-
fects. Also, motion tails could be created with higher quality com-
positing and extended to support frame-to-frame registration for
non-fixed cameras.

Finally, our methods could be extended into on-line versions that
construct time-lapse videos on-the-fly. Although this would involve
making sampling decisions without knowledge of the whole video,
it would lower the disk storage requirements.

8 Conclusions

We have presented methods for creating computational time-lapse
videos which provide superior sampling characteristics over tradi-
tional time-lapse methods. Based on user-specified characteristics,
we generate time-lapse videos with non-linear filtering and non-
uniform sampling, both not possible in traditional cameras. Our
non-uniform sampling optimally chooses the frames of the time-
lapse video using a general solution method that also supports alter-
nate applications, such as summarization and stabilization. Our vir-
tual shutter combines multiple video-rate exposures into longer ex-
posures with reduced aliasing artifacts. Finally, we used these tech-
niques to process a variety of typical and novel time-lapse videos.

References
AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER, S., COLBURN,

A., CURLESS, B., SALESIN, D. H., AND COHEN, M. 2004. Interactive digital

photomontage. ACM Transactions on Graphics, 294–302.

BENNETT, E. P., AND MCMILLAN, L. 2005. Video enhancement using per-pixel

virtual exposures. ACM Transactions on Graphics 24, 3, 845–852.

BENNETT, E. P. 2007. Computational Video Enhancement. PhD thesis, The University

of North Carolina at Chapel Hill.

BRAUN, M. 1995. Picturing Time: The Work of Etienne-Jules Marey. U. C. Press.

COHEN, M. F., COLBURN, R. A., AND DRUCKER, S. 2003. Image stacks. Tech.

Rep. MSR-TR-2003-40, Microsoft Research.

DEMENTHON, D., KOBLA, V., AND DOERMANN, D. 1998. Video summarization

by curve simplification. In Proceedings of ACM Multimedia, 211–218.

DIVAKARAN, A., PEKER, K. A., RADHAKRISHNAN, R., XIONG, Z., AND CABAS-

SON, R. 2003. Video summarization using MPEG-7 motion activity and audio

descriptors. Tech. Rep. TR-2003-34, Mitsubishi Electric Research Laboratory.

DOUGLAS, D., AND PEUCKER, T. 1973. Algorithm for the reduction of the number

of points required to represent a line or its caricature. The Canadian Cartographer

10, 2, 112–122.

EDGERTON, H. E., AND KILLIAN, J. R. 1979. Moments of Vision. MIT Press.

HUA, X.-S., LU, L., AND ZHANG, H.-J. 2003. AVE: Automated home video editing.

In Proceedings of ACM Multimedia, 490–497.

KINSMAN, E. 2006. The time-lapse photography FAQ. www.sciencephotography.com.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003. Graph-

cut textures: Image and video synthesis using graph cuts. ACM Transactions on

Graphics 22, 3, 277–286.

MUYBRIDGE, E. 1955. The Human Figure In Motion. Dover Publications.

PEREZ, J.-C., AND VIDAL, E. 1994. Optimum polygonal approximation of digitized

curves. Pattern Recognition Letters 15, 743–750.

PEREZ, R., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. ACM

Transactions on Graphics 22, 3, 313–318.

PORTER, T., AND DUFF, T. 1984. Compositing digital images. Computer Graphics

19, 3, 253–259.

RAV-ACHA, A., PRITCH, Y., AND PELEG, S. 2006. Making a long video short:

Dynamic video synopsis. In Proceedings of CVPR, 435–441.

RIDDLE, P. N. 1979. Time-Lapse Cinemicroscopy. Academic Press, New York, NY.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video textures.

In Proceedings of ACM SIGGRAPH, 489–498.

SMITH, M. A., AND KANADE, T. 1997. Video skimming and characterization

through the combination of image and language understanding techniques. Tech.

Rep. CMU-CS-97-111, Carnegie Mellon University.

WILDEMUTH, B. M., MARCHIONINI, G., YANG, M., GEISLER, G., WILKENS, T.,

HUGHES, A., AND GRUSS, R. 2003. How fast is too fast? Evaluating fast forward

surrogates for digital video. In Proceedings of the ACM/IEEE Joint Conference on

Digital Libraries, 221–230.

Original Exposure Motion Tails Virtual Shutter

Figure 7: Two examples of using motion tails to depict dense motion paths between

sampled time-lapse frames. The building front result (above) uses uniform sampling,

while the crowded sidewalk (below) is non-uniformly sampled.

