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Abstract

Interactions between DNA and proteins are central to living systems, and characterizing
how and when they occur would greatly enhance our understanding of working genomes.
We review the different computational problems associated with protein-DNA interactions
and the various methods used to solve them. A wide range of topics is covered including
physics-based models for direct and indirect recognition, identification of transcription factor
binding sites, and methods to predict DNA-binding proteins. Our goal is to introduce this
important problem domain to data mining researchers by identifying the key issues and
challenges inherent to the area as well as provide directions for fruitful future research.

Interactions between deoxyribonucleic acid (DNA) and proteins are widely recognized as
central to living systems. These interactions come in a variety of forms including repair of
damaged DNA and transcription of genes into RNA. More recently it has been found that, by
binding to certain DNA segments, proteins can promote or repress the transcription of genes
in the vicinity of the binding site. Proteins of this kind are referred to as transcription factors
(TFs). The number of TFs in an organism appears to be related to the complexity of the
underlying genome: as the number of of genes increases, the number of TFs increases according
to a power law [I]. This many-fold increase of TFs appears to be required in order to manage
transcription in higher organisms.

Characterizing how and when protein-DNA interactions occur would greatly enhance our
understanding of the genome at work. A full picture of the interactions will eventually allow
characterization of which genes are transcribed at any given time in order for the organism
to react dynamically to a changing environment. Protein-DNA interactions are studied both
in the wet lab and computationally. Here a synergy exists: lab experiments provide data and
problems for computational methods to solve while computation provides hypotheses which
guide additional lab experiments.

The goal of this article is to review three major areas of interest for computational studies
of protein DNA interactions: (1) physics-based studies of protein-DNA interaction, (2) identi-
fication of transcription factor binding sites, and (3) identification of DNA-binding proteins.

How Many Binding Proteins Exist?

Accounts of how many DNA-binding proteins exist vary through the literature. Attention is
particularly focused on transcription factors. Older sources estimated that 2-3% of a prokary-
otic genome and 6-7% of a eukaryotic genome encodes DNA-binding proteins [2]. This number
was taken from the automatic gene annotation tool PEDANT [3]. Though contemporary esti-
mates of the number of transcription factors range as high as 10% of all mammalian genes [4],
averaging across genomes in the DBD database [5] classifies 4.65% of Metazoan (animal) genes
as transcription factors (806 genes per animal genome). [I].

According to gene ontology annotations in PEDANT, there are currently 1714 genes in the
human genome identified as coding for DNA-binding proteins with 885 of them identified as



Table 1: Counts of genes with DN A-binding annotations for human in the AMIGO gene ontology
browser. Count is the raw number of genes, %all is the percentage of all genes that have the
given GO term, %func is the percentage of genes with a molecular function which have the
given GO annotation.

GO Term Count  %all  %func
All gene products 18269 100.0 115.6
Molecular Function Given 15801 86.5  100.0
DNA-binding 2375 13.0 15.0
Transcription factor activity 969 5.3 6.1

transcription factorsﬂ This is slightly smaller than the numbers currently in the AMIGO gene
ontology browseIE] which are given in Table

For researchers interested in DNA-binding protein structures, the protein data bank (PDB)
[6] currently holds structures for 2372 proteins with DNA-binding gene ontology terms while
1400 of these actually have DNA structural information present in them. However, many of
these structure entries are redundant in that their sequences are nearly identical: the largest
data set of nonredundant structures reported in the literature contains 179 proteins [7]. See the
discussion on available data sets later in this article.

Most proteins are composed of several independent units called domains. A domain which
interacts with DNA is referred to as a DNA-binding domain and contains a structural motif
that enables binding (see section 7.4 of [§]). A DNA-binding protein has a binding domain and
possibly several other domains that determine its function. Multiple copies of DNA-binding
domains may be present in a DNA-binding protein. This leads to some ambiguity in the liter-
ature as “DNA-binding protein” may sometimes refer only to the binding domain or the whole
protein including both binding and nonbinding domains. Here we deal solely with interactions
between binding domains and DNA. An overview of DNA-binding domains can be found in [2].

Physical Models and Energetics

Insight can be gained about DNA-protein interactions by studying them using physics models.
Approaches in the literature examine bound protein-DNA complexes and either apply existing
software to obtain interaction energy or develop new energy functions. Both approaches make
use of complexed structures from the PDB. The goals of such studies are usually to establish
why binding happens, to quantify energy changes between the bound and unbound states,
and to understand how mutation in either protein or DNA may affect binding affinity. Basic
understanding of binding physics guides both the development of transcription factor binding
site models and the generation of protein and DNA features used in machine learning.

Early Work

An early review of the structure motifs used by transcription factors provided a number of
principles used by the proteins to recognize DNA [9]. Subsequent studies on protein-DNA in-
teractions characterized binding based on the frequency of protein residue contacts with nucleic
acids in crystallized complexes [10, [I1]. The propensity for each type of contact to form was
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calculated by comparing the expected and observed number of contacts between each type of
amino acid and nucleic acid to the number expected if contacts formed solely based on the fre-
quency of each residue/nucleic acid type. The resulting propensities seemed to agree fairly well
with the limited available experimental data: data from [12] is fit in [I3] and in many cases the
correct residue/base-pair combinations of zinc finger variants were predicted correctly. Stormo
reviews some early developments of representations of binding preferences [14]. Simple models
of recognition such as the theory of a linear code were popular early on: structural motifs in
proteins allow matching of specific amino acids to specific DNA base pairs. This idea is still
relevant to certain families of transcription factors such as the zinc finger domains [15].

Once a sufficient number of different DNA-binding protein families became available, it
became apparent that various protein structures use diverse means of binding and achieving
binding specificity to targeted sequences of DNA calling for more complex modeling techniques
[16]. The current understanding is that binding is a stochastic process making probabilistic
models more appropriate for model-ling protein-DNA interactions [I3], [I7]. Additionally, con-
tacts between the protein and DNA backbone, between the protein backbone and DNA, and
the presence of different types of interactions (electrostatic, van der Waals, hydrogen bonds,
water-mediated bonds) has led to more detailed consideration of the energy change involved in
binding.

Physics of Recognition Mechanisms

Protein-DNA-binding is thought to occur because the bound pair has lower free energy than the
unbound molecules. A variety of factors governing free energy change are considered by Jayaram
and coworkers in [18] such as desolvation of DNA and protein and electrostatic and van der Waals
interactions. Some of these factors affect all molecular interactions, but order-studies of protein-
DNA binding have identified two categories of binding mechanisms which allow specificity to be
achieved. The first category involves energetically favorable interactions between atoms in the
protein and DNA, sometimes called direct recognition or base recognition. The second category
concerns the energy required to deform DNA to accommodate binding to the protein, referred
to as indirect recognition or shape recognition. Both categories are described in detail in a
review of recognition mechanisms [16] as well as a more recent review of the subject [19]. A
few studies estimate both direct and indirect energies (e.g. [18]) while other work has studied
direct [20] or indirect [2I] recognition mechanisms separately. The review by Rohs et al. [19]
advocates the concludes that these two recognition mechanisms are used together by almost all
DNA-binding proteins, that binding site specificity is achieved by combining direct and indirect
effects.

Specificity Tests: Mutating DNA and Protein Sequences

A common use of binding energetics models is to study DNA mutations and their effects on
binding energy. Determining which DNA sequences result in low-energy binding to the protein
indicates the protein’s likely binding sites on the genome [22] 20]. The models of binding energet-
ics can be verified using experimental techniques which measure binding specificity of proteins.
These are reviewed by Stormo and Zhao in [23]. Aside from pure physics-based approaches,
machine learning has been employed in some cases to aid in this task. An interesting example
is in [24] where DNA-binding sequences for proteins were predicted by training a perceptron on
deformation energy. This is in contrast to transcription factor binding site location, described in
the next sections, which employ statistics and motif identification rather than physical models.



Transcription Factor Binding Site Identification

Transcription factors (TFs) are DNA-binding proteins whose primary purpose is to regulate the
transcription of genes. Though there are some exceptions, many TFs accomplish regulation by
binding to DNA at specific sites. The presence of the bound TF will attract or obstruct RNA
polymerase thus promoting or repressing gene expression, respectively. TFs appear in greater
abundance in eukaryotes and higher animals allowing more complex regulatory control of how
and when genes are transcribed [I].

In order to form a picture of the working genome, it has become important to identify the
genes that TFs affect by finding the genomic locations to which they bind. Computational tools
comprise an important part of this discovery process.

Reviews of TF Binding Site Discovery

Transcription factor binding site identification is a well-studied area but continues to develop
rapidly. Here we mention a few good reviews of the area which are useful to understanding the
data and tools available for analysis.

Narlikar and Ovcharenko [25] provide a good overview of the lab science behind TF binding
site identification and 184 citations to past literature. They include a brief section on com-
putational tools to derive transcription factor properties/models like position weight matrices.
Computational methods for discovering other genomic regulatory elements are also discussed.

Hannenhalli gives a review of current computational techniques for various representations
of TF binding sites and how they are derived [26]. The review also briefly covers techniques for
identification of other regulatory modules. Vingron and coworkers describe recent developments
of computational techniques that expand on the capabilities of TF binding site identification
[27]. An older but focused review from Bulyk is in [28] while Elnitski and coworkers cover
methods specific to TF binding sites in mammals [29].

Charoensawan and coworkers give a current review of the resources available for study of
TFs including databases of TFs with known binding sites and the types of annotations available
for the TF's [1].

Finally, Das and Dai surveyed motif discovery algorithms which may be of use to determine
appropriate algorithms for a particular task [30]. Supplementing this is a slightly older bench-
mark of motif discovery algorithms performed by Tompa and coworkers [31]. A blind evaluation
of the algorithms was done on both synthetic and experimental data which may still be used as
a guide for algorithm selection.

Motif Identification

Typically biologists are interested in which genes a TF regulates. This can be determined by
identifying the genomic locations to which the TF binds. In motif identification, one starts with
a collection of DNA sequences thought to contain TF binding sites. The computational task is
to identify the TF binding site amongst these DNA sequences. Early approaches used simple
models such as exact DNA motif sequences. These have largely been supplanted by position
weight matrices (PWMs, alternatively referred to as position specific scoring matrices, PSSMs)
as they more accurately model the probabilistic nature of binding. Though the assumption
of independent contributions from each position of PWM is not entirely realistic [32], PWM
methods are sufficient for the purpose of motif identification [33], 34} 35] especially when used in
the context of locating entire regulatory modules [36]. More sophisticated models explore inter-
dependence of DNA positions [37, [38] and use prior probability models based on TF class [39].



The newest models incorporate additional information specific to the experimental technique
used to derive the DNA sequence collection [40].

An alternative to direct motif detection is phylogenetic footprinting. Homologous genomes
are aligned to identify conserved noncoding regions which are likely to assume regulatory roles
such as working as a TF binding sites. A number of such approaches are reviewed in [41], 42].

The function of a new gene can be inferred from the TF's associated with it. Using a library
of transcription factor binding sites, one can detect TF binding sites in the noncoding region
near a gene. Enrichment of a particular TF indicates the gene may share a function with other
genes that the TF affects [43] [44].

Obtaining DNA Sequences for Motif Identification: Experimental Methods

Computational motif identification requires a collection of DNA sequences which contain a
DNA-binding motif. Several wet lab techniques can provide such a collection by determining
the approximate genomic location TF binding sites. Chromatin immunoprecipitation (ChIP) is
a fundamental tool used in most wet lab TF binding site identification techniques. ChIP allows
an in vivo snapshot of the proteins bound to DNA to be obtained. Traditionally ChIP was
followed by microarray analysis, together called ChIP-chip [45]. More recently, the ChIP-seq
approach follows chromatin immunoprecipitation with sequencing of the DNA [46]. Another
wet lab technology directly measures in vitro binding affinities between DNA and proteins using
protein binding microarrays [47].

Alternatively, co-regulated genes may be used as a source for approximate TF binding sites.
Genes that are up- and down-regulated together are typically affected by the same TFs. Thus,
the noncoding regions near these genes constitute a collection of DNA sequences which are likely
to contain binding sites for a TF [48].

Identification of Binding Proteins and Binding Residues

While studies of transcription factors tend to focus on DNA motifs and binding locations in
the genome, attributes specific to DNA-binding proteins are also of interest. After isolating
a new protein, biologists frequently want to discern its function. Data mining may be used
to distinguish DNA-binding proteins from other types. Once it is established that a given
protein interacts with DNA, a biologist may be interested in which of the protein’s residues are
involved with binding. Computational methods are of service here again to perform binding
residue identification.

Both binding protein and binding residue identification may be addressed using techniques
from supervised machine learning. The goal is to train a model which differentiates between
the binding (positive) class and nonbinding (negative) class. The classes may represent either
whole proteins or individual residues. The usual process for supervised learning is the following:
establish a set of proteins as training examples, determine which features of the proteins will be
given to the computational model as input, and then train the model to discriminate between
binding and nonbinding classes. Predictive performance is evaluated on proteins which are
excluded from the training process in order to judge the method’s capabilities on future data.

Whole Protein versus Residue-level Predictions

Most methods focus on predicting at either the whole protein level or residue level. Some
methods accomplish both tasks simultaneously, but for the most part, addressing these two
problems calls for different techniques.



Figure 1: Identification Tasks Suitable for Machine Learning
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In the first case, the task is to identify DNA-binding proteins amongst proteins with other
functions. This has increasing relevance as both sequencing and structural genomics projects
have dramatically increased the number of proteins with unknown function. A variety of meth-
ods have been developed to accomplish this task [49] 50, 511 52, 53], 54, [7, [55].

Prediction of DNA-binding residues assumes that that the protein under scrutiny binds DNA
and predicts which residues are involved at the interface. Again, a wide array of approaches
utilizing both sequence and structure features have been developed for residue-level prediction
156, 57, 50, 158, 59, 160, 611 162, 163, 64, 156, 557, (65, 66, 67, 65,

While DNA-binding protein predictions are used primarily to elucidate the function of a new
protein, there are several uses for DNA-binding residue predictions. They may be used to guide
wet lab mutation experiments that affect binding affinity between protein and DNA. Rather
than trying every residue in the protein, attention may be focused on mutating only residues
which are predicted to play a role in binding. When structure is available but unbound, it may
be possible to use predicted binding residues used to help identify the geometric binding site on
protein as has been done for small ligands [69], though no work has yet explored this approach
for DNA-protein interactions.



Prediction of DN A-binding Function

In the current literature, most methods approach binding protein and binding residue identifica-
tion assuming either (1) the protein of interest has known structure, or (2) only the the protein’s
sequence is available. A third class of methods, known as homology modeling or threading, make
predictions by assessing the compatibility of a target protein with DNA-binding structures.

Prediction from Structure

Knowledge of the protein’s structure can be very helpful in determining its DNA-binding sta-
tus. The structure may come from several sources. Traditionally, a protein’s structure has
been determined experimentally due to specific interest in how it fulfills its role in a biological
system. Thus X-ray diffraction is used to determine the structure of protein-DNA complexes
and this information is deposited in structural databases, primarily the PDB. These database
entries provide examples for learning predictive models as the protein’s function is typically well
characterized. In some cases, two structures of the protein are available: the bound complex
which has DNA present (holo protein conformation) and the unbound protein with no DNA
present (apo conformation).

Though studies of single proteins have traditionally been the source for structure infor-
mation, structural genomics projects are producing the structures of many new proteins for
which no function information is available [70]. DNA-binding proteins produced by structural
genomics efforts are usually determined in their apo (unbound) conformation. Annotating the
protein as DNA-binding would greatly illuminate its biological role.

A very simple method of determining whether a protein is DNA-binding is to identify similar
structures of known function using any of a number of structure alignment methods. However,
the presence of a good structural match does not definitively establish the function of protein
as similar structure/different function proteins exist. DNA-binding residues can be inferred as
those structurally aligned to known binding residues.

Rather than rely directly on structural similarity to known DNA binding proteins to classify
the function of new proteins, there are several lines of research which exploit structure features
for identification of DNA-binding proteins. Examples of these include direct use of structural
motifs and electrostatics to predict function, or the encoding of structural information into
features amenable to machine learning methods [51} 53] [71], [61], [72] [54]. Such structural features
and techniques are also heavily employed in methods for binding residue prediction [50} 58|, 61,
57, 68].

Prediction from Sequence

Difficulty determining a protein’s structure has motivated the development of binding predictors
which utilize only sequence information. Such methods predict whether a protein binds DNA
and which residues are involved in the process without relying on the geometry of the protein.

Aside from using standard sequence database searches such as BLAST and PSI-BLAST, few
purely sequence-based methods are available for binding protein prediction [49]. This is likely
due to the difficulty of encoding an information about an entire protein in the type of fixed-
length feature vector required by most machine learners. Due to the simplicity of representing
single-residue sequence information to a machine learner, more work has focused on methods
for binding residue prediction from sequence [59, 611, (62, [73], (74}, [75] [67, 56, 67, 66].

There have been some claims that these “template-free” models, which do not consider
structural aspects of the protein, give inferior performance to their structure-based counter-
parts [55]. This may simply be due to sequence-based methods relinquishing potentially useful



structure information in order to make predictions when it is not available. When a good struc-
ture model is available, binding predictions will likely be improved by employing it. However, no
true head-to-head benchmark between structure and sequence methods has yet been executed
to illustrate the superiority of one over the other.

Homology Model-ling and Threading

A technique that has proved effective for DNA-binding prediction but does not constitute tra-
ditional machine learning is homology modeling and its relative threading. In both techniques,
a target protein with unknown structure is modeled by identifying a template protein of known
structure. The target sequence is then mapped onto the known template structure and refined
(e.g. [76]). The key to this process is identifying a good template with known structure, which is
usually done via a combination of sequence similarity and energy calculations on the sequence-
structure mapping. In that sense, homology modeling may be likened to a nearest neighbor
computation with sequence-structure compatibility acting as a specialized similarity measure.
However, mapping a target sequence onto the template to produce a model structure is above
and beyond the typical nearest neighbor method.

Threading methods can handle both whole protein and residue-wise binding prediction [7].
Merely finding a good template match which is a DNA-binding protein is an indication that
the target may also bind DNA, but it is not sufficient evidence to declare the target is DNA-
binding. Other nonbinding templates will likely score well, necessitating additional information
such as interaction energy analysis between the target’s model structure and DNA [55]. After
structurally mapping a target onto its template, binding residues may be identified based on
the corresponding binding residues in the template.

When no structure is available for a target protein, in some cases it may be possible to
generate a full three-dimensional model using homology modeling or threading. In most cases,
homology models are not entirely accurate, but for the purpose of determining whether the
protein binds DNA, recent work has demonstrated that the use of homology models has promise
[22, [77]. The second study also showed good prediction performance when training on both
bound and unbound structures, making it viable for characterization of structural genomics
targets.

Producing a homology model of the protein’s structure may fail for several reasons, most
commonly because no suitable template is available. Dependence on a good structural template
is the primary disadvantage of template-based methods [55]. According to the literature, this
happens with some frequency: over 40% of DNA-binding proteins have no suitable template for
homology modeling ([56], section 1.2).

Machine Learning Features

Numerous features have been employed in prediction schemes for binding proteins and binding
residues. These are divided into structure and sequence features. There is mild overlap in some
cases: for instance, secondary structure is available from the protein’s structure or it may be
predicted from sequence.

Structural Features

e Electrostatic Potentials Molecular dynamics software is used to compute the charges
for each atom which is usually averaged to assign an electrostatic score to each residue
[50, 511 52l 53]. Software is also available for this specific task [78].



Dipole and quadrupole moments Charge moments measure how widely distributed
electric charge is across the protein. Fairly simple methods can calculate the electric dipole
and quadrupole from structure and according to the cited study, dipoles in combination
with overall charge make a fairly discriminatory feature between binding and nonbinding
proteins [79].

Structural Motifs Certain structural motifs (patterns) are known for interaction with
DNA. Identifying such a motif in a novel protein can lend support to its classification as
a DNA-binding protein [51].

Structural Neighborhood A simple representation of residue environment is to count
the other amino acids inside a ball centered on the residue of interest [61].

Surface Curvature In order to accommodate bound DNA, proteins may exhibit certain
curvature, at least locally at the binding site [52].

Secondary Structure Proteins assume local, repeated geometric patterns called sec-
ondary structure which may be calculated from its coordinates [80] or may be predicted
from sequence [81] 82]. Several studies have shown that secondary structure is not a
particularly informative feature for DNA-binding identification [58], [83].

Solvent Accessible Surface Area (SASA) Binding residues are almost always well
exposed to solvent to enable them to form contacts with DNA making SASA a useful
predictive feature. Like secondary structure, SASA can be calculated from the protein
structure or predicted from sequence. Some studies limit their focus to only surface
residues from the outset [57].

Sequence Features

Amino Acid Sequence The most common feature to any sequence-based predictor,
the protein’s amino acid sequence provides baseline information to the predictor. Raw
sequence is usually encoded as a 20-dimensional binary vector. Positively charged residues
such as arginine are more likely to interact with the negatively charged backbone of DNA
according to both physical and statistical studies [83].

Residue Class/Type The twenty amino acids may be grouped according to physical
properties such as charge and hydrophobicity which is then used as an additional sequence
feature such as the six classes in [66].

Sequence Profiles The majority of machine learning approaches to bioinformatics prob-
lems now employ sequence profiles rather than raw sequence as profiles are generally
acknowledged to provide better information. Profiles are usually generated using PSI-
BLAST [84] and represent the probability of substituting a different amino acid for the
one observed at a specific position. This is encoded as a twenty-dimensional vector at
each sequence position, positive numbers indicating favorable substitutions and negative
numbers unfavorable substitutions.

Global Composition of AAs When attempting to identify DNA-binding proteins
counts or frequencies of each type of amino acid are often used, typically as a 20-dimensional
vector. Pairs of adjacent residues have also been used as a compositional feature [85].

Hydrophobicity Measures of residue hydrophobicity, the degree to which the residue is
repelled by water, are a commonly used feature. A typical example is the hydrophobicity
scale in [86] which assigns a fixed numerical value to each of the twenty amino acid types.



e Evolutionarily Conserved Residues Residues that mitigate interactions between
proteins and DNA are usually conserved through evolution. Thus identifying conserved
residues can yield a powerful feature. This may be done using only sequence or combined
with structural information to yield collections of conserved residues which are proximal
in space [87, 54]. However, both approaches assume a sufficient number of close homologs
to the target are available.

Additionally, sequence features are commonly augmented via sliding windows to capture the
local sequence environment of a residue. Features of residues immediately to the left and right
are concatenated onto those of a central residue before being presented to the machine learner.
Window sizes between one (only the central residue) and eleven (five residues on either side)
are commonly used. Many of the features described above are used in sliding windows in the
approaches that describe them.

Machine Learning Tools

Most standard machine learning tools have been applied to DNA-binding protein and DNA-
binding residue prediction. The short list includes support vector machines (SVMs) [56, [71],
neural networks [53], [57], decision trees [67], Bayesian inference [63], logistic regression [77], and
random forests [54], [66].

Comparisons between methods to determine an optimal approach are hindered by the dif-
ferent data used for evaluation and the variation of basic assumptions amongst studies. For
example both [56] and [57] do binding residue prediction, but the former uses only sequence-
based features while the latter uses structural information and evaluates performance only on
surface residues. Direct comparison of their reported performance is not particularly informa-
tive.

Data Sets

If possible, new studies of DNA-protein interactions should employ a data set that has already
been used in the literature. This facilitates direct comparison to previous efforts. Some common
data sets in use are listed in Table [2] with relevant properties. In these cases we have checked the
sequence independence of the data sets to verify whether they correspond to the levels reported
in the literature. Of particular interest are the the data sets used for DBD-Hunter. These
are the largest and most sequence-independent data sets in the literature making them a good
place to start for new work. The data sets in Table [2| are available as supplemental information
to this paper. Additionally, there are several new databases devoted solely to protein-DNA
interactions which aggregate and augment information available from the PDB [88] 89].

For new data sets, authors should report the maximum level of sequence similarity amongst
proteins in the set. The similarity level should be kept at or below 30-35% to be comparable
to current methods. This can be accomplished using a sequence clustering program such as
blastclust (available from NCBI) to group similar sequences and then select a single repre-
sentative from each cluster. It is also important to eliminate proteins that are subsequence of
other proteins in a dataset which can also be done with blastclust. For example, the following
use of blastclust will cluster sequences at 35% identity and detect subsequences that are as
little as 10% of the length of other sequences.

blastclust -i seq.fa -o seq.bc -S 35 -L 0.1

This is the mechanism that was used to analyze sequence redundancy of the datsets in Table
Another popular method of clustering is the PISCES web server for sequence culling [91].
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Table 2: Commonly used data sets for DNA-binding protein and DNA-binding residue identi-
fication.

1D Study Notes
DB179 [7] 179 DNA-binding proteins, almost entirely nonredundant at
40% sequence identity
NB3797 [7] 3797 nonbinding proteins, significant redundancy at 35% se-

quence identity level (only 3482 independent clusters)

APO/HOLO104 [7] 104 unbound/bound pairs of DNA-binding proteins, maximum
30% identity, 10 apo/holo pairs have less than 90% sequence
identity.

PD138 [77] 138 DNA-binding proteins, almost entirely nonredundant at

35% sequence identity, divided into seven structural classes

APO/HOLO54  [r7] 54 unbound/bound pairs of DNA-binding proteins, maxi-
mum BLAST e-value for pairs of 0.1, 100% identity between
APO/HOLO pairs. A few homologous sequences are present.

DISIS [56] 78 DNA-binding proteins, close to nonredundant at 20% se-
quence identity

PDNAG62 58] 62 DNA-binding proteins, 78 chains, 57 nonredundant sequences
at 30% identity.

NB110 58] 110 nonbinding proteins, nonredundant at 30% sequence identity

level, derived from the RS126 secondary structure data set [90]
by removing entries related to DNA.

BINDb54 [53]  Reported as 54 binding proteins, actually 58 chains, nonredun-
dant at 30% sequence identity, original list of proteins was re-
ported in [2].

NB250 53] 250 nonbinding proteins, mostly nonredundant at 35% sequence
identity

DBP374 [66] 374 DNA-binding proteins, significant redundancy at 25% se-
quence identity level

TST75 [66] 75 DNA-binding proteins, designed to be independent from

DBP374 and PDNA62 but has some redundant entries in both
at 35% sequence identity level
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When dividing the data set for cross-validation, ensure divisions are done at the protein
level even for binding residue prediction: residues from the same protein should not appear in
both training and testing sets. When reporting performance, a variety of measures should be
included, particularly an ROC analysis [92] and the Matthews correlation coefficient.

Current State of the Art

The current crop of DNA-binding protein predictors provide good results when sequences homol-
ogous to the target protein are available. Table [3| and Table 4] compile results for DNA-binding
protein and DNA-binding residue prediction respectively. These tables should be interpreted
carefully keeping the following points in mind. The methods are grouped by row based on the
dataset which is used in evaluation, many of which appear in Table Refer to it for details
on the level of sequence redundancy of the dataset: moderate levels of sequence redundancy
artificially make it easy to achieve good predictions rates. Within each dataset, evaluation
strategies vary between studies as some use leave-one-out cross validation (also referred to as
“jackknife” evaluation), while others employ 5-fold or 10-fold cross-validation. Where possible,
we have included footnotes on the strategy as these variation in splits of training/testing sets
make also affect the inferred performance. Finally, background information is used in various
ways by the different methods. For example, many methods use a sequence database to generate
PSI-BLAST profiles [56], 57, [75] while the threading methods [77, [7, [55] rely on large numbers
of known structures for their template libraries. Changing background information can affect
performance as is noted for DBD-HUNTER between [7] and [55].

DISIS provides a model of how machine learning methods can be applied to DNA-binding
residue prediction [56]. For researchers implementing new sequence-based methods, it serves
as a good example of how to describe the features derived for proteins, machine learning tools
employed, and the evaluation framework used to gauge performance. The general methodology
is equally applicable to set up DNA-binding protein prediction experiments. The only exception
is that future studies should report a variety of performance measures, particularly a Matthews
correlation coefficient (MCC) and receiver operator characteristic (ROC). The work of Langlois
and Lu [49] is an excellent example of how to compare new work to older studies.

DBD-Threader provides a state-of-the-art threading approach which is likely amongst the
best predictors when good templates are available for a target [55]. New structure-based meth-
ods should compare against its performance again with the addition of reporting performance
in terms of ROC.

Most current DNA-binding classification methods rely upon the availability of similar pro-
teins, either explicitly in the case of threading methods, or implicitly through the similarity
measures used in machine learning methods and sequence comparison. When a homologs to
the target protein are not available, the task of identifying DN A-binding proteins and residues
is significantly more difficult. The work in [22] and [77] finds that homology modeling will
usually fail when no good template is found. For sequence-based methods, this situation can
be simulated by leaving out an entire structural classes while training. Testing on the left out
structural fold led to only a modest drop in prediction performance for a sequence-based ma-
chine learner according to a small scale study in [95]. Thus, sequence-based methods may be
the best approach when predictions for truly new proteins are required.

The number of experimentally verified DNA-binding structures is likely to continue increas-
ing which will extend the capabilities of similarity-based methods. However, until homologs are
available for all protein families, predicting DNA-binding attributes of new proteins is likely to
remain a challenge.
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Table 3: Summary of DNA-binding protein prediction results
Method Type Dataset ACC SEN SPE MCC ROC

BLAST in [49] 79.3 278 904 21.5 66.0
Langlois and Lu [49]@ 89.1 481 98.0 66.2 90.3
Langlois and Lu, LOO [9[] BIND54 and - - - - 91.1
Nimrod et al. [54] NB250 [53] - 87.0 94.0 -

Stawiski et al. [53] 92.0 81.0 944 74.0 -
Szilagyi and Skolnick [77] - 89.0 85.0 73.0 93.0

BLAST in [49] 81.4 80.8  81.8 70.4 90.5
Langlois and Lu [49] PDNA6 89.9 84.6 93.6 84.9 97.1
Ahmad and Sarai [79] NB110 [58] 839 80.8 87.0 68.0 -

Szilagyi and Skolnick [77] - 92.0 850 79.0 95.0

BLAST in [49] Bhardwaj [71] 824  75.2  86.1 70.2 90.3
Langlois and Lu [49 94.7 88.4 979 88.8 96.7
Bhardwaj et al. CV_5‘71]|ﬂ 89.1 82.1  93.9 - -

Bhardwaj et al. [71 Bhardwaj [71]  90.3 674  94.9 - -
Nimrod et al. [54]

Filtered| - 736 949 - -
BLAST in [49] Langlois. [(2] 727 42.7 832 704 905
Langlois and Lu [49E

89.6 69.3  96.7 74.3 91.3

AdaC4.5 in Langlois et al. [72E 88.5  66.7 96.3 - 88.7
BLAST in [49] PD138, 71.8 79.7 618 45.1 80.1
Langlois and Lu [49] NB110 [77] 859 899 809 748 93.4
Szilagyi and Skolnick [77] - - - 74.0 93.0
Nimrod et al. [54] - 90.0 90.0 80.0 96.0
BLAST in [49] LEACS35 [60] 72.9 59.4 804 46.3 74.9
Langlois and Lu [49] 84.0 688 924  69.5 92.3
BLAST in [49] LEAC25 [60] 694 42.6 824 286  67.8

Langlois and Lu [49] 84.7  64.8 944 66.2 91.5

Szilagyi and Skolnick [77] APO54 [77] — 850 850 720 930
DBD-Hunter [7] 840  66.0  93.0 - -
Szilagyi and Skolnick [77] HOLO54 [77] — 800 850 680 910
DBD-Hunter [7] 89.0 68.0 93.0 - -
PSI-BLAST in [7] — 440 993 56.0 -
PSI-BLAST (Uniprot DB) in [55] - 430 993 553 -
DBD-Hunter [7]] DB179 and - 580 995  69.0 -
DBD-Hunter [55 NB3797 [7] - 56.0 99.6  68.1 -

- 61.0 992  68.0 -
PROSPECTOR [93] - 530 99.1  60.9 -

DBD-Threader [55]

OO0 HOLOHHHHOLOLOLLOHHOLOHOLOHHHLOLOHHOLOHAHAHOLOLO

Ahmad et al. [58] NRTF-915 (8] 64.5 68.6 634

Method Type Dataset ACC SEN SPE MCC ROC

Columns are: Method with citation; Type of ‘T’ for structure-based and ‘Q’ for sequenced-based;
Dataset which was used in evaluation; ACC for accuracy; SEN for sensitivity; SPE for specificity;
MCC for Matthews Correlation Coefficient, scaled to -100 to 100; ROC for area under receiver operating
curve, scaled to 0 to 100.

“10-fold cross-validation

®Leave-one-out cross-validation

‘PDNAG62 is referred to as PD78 in [77].

5-fold cross-validation

“Reported in Supplementary Text S1 of [54].

fFiltered the dataset in [7I] to be nonredundant at 20% sequence identity.

9The differing performance of DBD-Hunter between [7} [55] is due to an updated template library.
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Table 4: Summary of DNA-binding residue prediction results

Method Type Dataset ACC SEN SPE MCC ROC
DBD-Hunter [7] T DB17q‘_’] [7] 90.0 72.0  93.0 - -
DBD-Threader [55]@ Q 87.5 60.0  92.0 52.0 -

DISPLAR [B7J°
Ahmad et al. [58]
DP-BIND Structure [61]
Ahmad and Sarai [59)]
DP-BIND Sequence [61]

DISPLAR [57 76.4 60.1 - - -

PDNAG2 [58] 40.3 81.8  79.1 - -
78.1 79.2  77.2 49.0 84.0
66.4 68.2  66.0 - -
76.0 76.9  74.7 45.0 83.6

BindN [62] 70.3 69.4  70.5 75.2
Ho et al. [73] PDNAG2 [58]  80.2  80.1 80.2 - -
BindN-RF [74] 78.2 78.1 78.2 - 86.1
BindN+ [75] 790 773 793 440 859
Carson et al. [67] 78.5 79.7 772 57.0 85.7
DISIS [56] DISIS [56]  89.0 - - - -
Carson et al. [67] 86.4 84.6 87.0 725 93.1
DNABINDPROT [68)] 78.6 9.3 90.5 - -
DP-BIND [61, 94]é Ozbek [68] 740 637 750 - .

80.1 451  86.2 - -
952 436 445 - -
DBP374 [66] 914 766 732 700 913

DISPLAR [57f4
DBD-HUNTER [7[4
Random Forests, Wu et al. [66]

OO0 L00HHHHHOLOOOLOLLLOLO|H HIH

BindN [62] TS75 [60] - - - - 78.2
SVM, Wu et al. [66] 3.5A cutoffq] - - - - 84.3
Random Forests, Wu et al. [66] - - - - 85.5
Random Forests, Wu et al. [66] TS75 [66] 80.5 672 81.8 34.1 -
DP-BIND [61] 45A cutofff 780 678  79.0 316 .
Random Forests, Wu et al. [66] TS75 [66] 782 514 846  34.1 -
DISIS [56] 6.0A cutofff 816 7.7 992  19.0 -
Method Type Dataset ACC SEN SPE MCC ROC

Columns are: Method with citation; Type of ‘I’ for structure-based and ‘Q’ for sequenced-based;
Dataset which was used in evaluation; ACC for accuracy; SEN for sensitivity; SPE for specificity;
MCC for Matthews Correlation Coefficient, scaled to -100 to 100; ROC for area under receiver operating
curve, scaled to 0 to 100.

“Only did binding residue prediction on 103 proteins predicted as DNA-binding proteins by DBD-Hunter and
DBD-Threader respectively. Average per-protein statistics reported.

YEstimated from Figure 3 of [55].

“Evaluation was done only on surface residues only.

“Results reported in Supplementary Table S2 of [68].

“Refers to the distance cutoff determining DNA-binding residues.
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Future Directions

Machine learning has already impacted the study of protein-DNA interactions, particularly the
identification of DNA-binding proteins. These innovations are set to continue down a number
of avenues. The capability of machine learning to identify binding residues in a protein may
be used to guide physical simulations of protein-DNA interactions. This capability has been
utilized in some studies of protein interactions with small molecules to guide ligand docking [69]
and improve models of the binding site [96]. The same methodology may also be employed for
DNA-binding proteins.

Another avenue of pursuit is applying machine learning to identify the genomic binding
sites for transcription factors. There has already been some work done to develop models
for various structural classes of TFs [39]. Features of both the genome binding site (DNA
sequence) and the protein are used to train classifier for each TF family. An analogous problem
in cheminformatics is to classify small molecules according to whether they activate a particular
protein. Recent work which employs multitask learning [97] to characterize active compounds
for different proteins [98] may carry over directly to the case of TF binding site identification
on multiple TFs.

Finally, a true head-to-head comparison of the various methods for DNA-binding protein
identification and DNA-binding residue prediction would guide further development in this area.
Dividing a benchmark into sequence-based and structure-based predictions would elucidate how
much inference capability is gained when a protein’s structure is available.
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