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Abstract: Protein modeling is playing a more and more important role in protein
and peptide sciences due to improvements in modeling methods, advances in
computer technology, and the huge amount of biological data becoming available.
Modeling tools can often predict the structure and shed some light on the function
and its underlying mechanism. They can also provide insight to design experiments
and  suggest  possible  leads  for  drug design.  This  review  attempts  to  provide  a
comprehensive introduction to major computer programs, especially on-line servers, for protein modeling.
The review covers the following aspects: (1) protein sequence comparison, including sequence
alignment/search, sequence-based protein family classification, domain parsing, and phylogenetic
classification; (2) sequence annotation, including annotation/prediction of hydrophobic profiles,
transmembrane regions, active sites, signaling sites, and secondary structures; (3) protein structure
analysis, including visualization, geometry analysis, structure comparison/classification, dynamics, and
electrostatics; (4) three-dimensional structure prediction, including homology modeling, fold recognition
using threading, ab initio prediction, and docking. We will address what a user can expect from the
computer tools in terms of their strengths and limitations. We will also discuss the major challenges and
the future trends in the field. A collection of the links of tools can be found at
http://compbio.ornl.gov/structure/resource/.

1 INTRODUCTION

Computational tools for protein modeling are
playing a more and more important role in protein
and peptide sciences, from the genome scale to the
atomic level. As molecular biology is moving toward
genome scale, a huge amount of biological data is
being generated. Particularly, the Human Genome
Project and other genome sequencing efforts are
providing DNA sequences at a prodigious rate, and
these sequences are yielding tens of thousands of
new genes and proteins. Sequence comparison and
other analysis using computational tools can
identify the function or the structure of a protein by
recognizing its relationship to other proteins in the
databases. Various prediction programs/servers can
annotate function/structure information for many
hypothetical proteins. Protein modeling tools can
also be used to study biochemical processes, such
as enzyme reactions and electron transfer. Although
spectroscopy methods can measure these
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processes, usually the details of the underlying
mechanisms cannot be shown directly based on
experimental methods alone. Using computer
simulations to bridge the gap between experimental
data and theoretical models often provides the whole
picture. It is widely recognized that protein
modeling is an indispensable part of modern
molecular biology.

Protein modeling is a very active field.
Recognition of its importance has led increased
funding for the research and development of protein
modeling methods and tools. Many researchers
from diverse backgrounds, such as mathematics,
physics, chemistry, biology, computer science, and
engineering, have entered this inter-disciplinary area.
As a result, new developments in recent years have
made protein modeling more reliable, efficient, and
user-friendly. Meanwhile, computers are becoming
substantially faster, and the price of hardware, such
CPU, memory, and storage, is plummeting. While
cutting-edge computing efforts may tackle large-
scale biomolecular modeling using parallel
machines or network clusters, small research groups
can easily apply modeling tools using affordable
computers. In addition, the  Internet provides an
efficient way to do protein modeling. Protein
modeling packages are distributed throughout the
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Internet. The Web servers for proteins allow users
worldwide to access up-to-date software and
databases, with easily mastered interfaces. To use
such servers, researchers do not have to understand
the Unix operating system or own a powerful
workstation. Many protein servers are becoming
popular in protein research. For example, the
SignalP server [1], which predicts signal peptides
and their cleavage sites from protein sequences,
represents one of the most quoted papers in the past
few years. As of June, 1999, it had been cited by
more than 250 papers [2] since it was published in
January, 1997.

This paper reviews the computational tools for
different aspects of protein modeling, including the
major methods and computer programs in sequence
comparison and annotation, as well as structure
analysis and prediction. Among hundreds of protein
modeling tools, we only select a few widely used
ones in each category as illustrative examples. A
number of excellent reviews, which are cited in the
following sections, have summarized different
aspects of protein modeling tools. However, to our
knowledge, this review is the first effort to
comprehensively overview all types of protein
modeling tools. The following sections provide an
introduction to (1) what protein modeling tools are
available, (2) how they work (methods and
algorithms), and (3) what results a user can expect
(sensitivity and reliability). We also describe current
developments for each type of tool and approaches
to combining different types of tools to solve
biological problems. The strength, pitfall, and future
directions of the major types of protein tools will be
addressed. The Web addresses of representative
tools are listed in Tables 1-4.

The rest of the review is organized as follows:
section 2 introduces tools based on sequence-
sequence comparison; section 3 addresses tools that
annotate and predict properties for a sequence;
section 4 discusses analysis tools for a given
structure; section 5 reviews three-dimensional (3D)
structure prediction tools. Finally, we summarize the
general issues of using protein tools in Section 6.

2 SEQUENCE COMPARISON

Sequence comparison is typically the starting
point for analysis of a new protein [3]. Because of
the exponential growth in sequence data, sequence
comparison becomes a more and more powerful
tool. Relating a protein sequence to other sequences
often reveals its function, structure, and evolution.
However, it should be noted that sequence

comparison is based on sequence similarity which
may not always correspond to biological
relationship (homology), especially when the
confidence level of a comparison result is low. Also,
homology does not always mean function
conservation. In this section, we will discuss
pairwise/multiple sequence alignment, sequence
family, domain parsing, phylogenetic classification,
and sequence search methods.

2.1 Pairwise Sequence Alignment

Pairwise sequence comparison is the major
approach to finding possible homologs for a protein
in sequence databases such as SWISS-PROT [4],
TrEMBL [4], and PIR [5]. It is also the foundation
for more complex sequence comparison methods. A
pairwise sequence alignment compares two protein
sequences according to a match criterion, which is
expressed in a 20-by-20 mutation matrix with
elements (i; j), describing the preference (score) to
replace the amino acid type i with j. Several matrices
have been developed based on mutation rates found
in sequence databases, and the most popular ones
are the PAM [6] and BLOSUM [7] matrices. To
use which matrix depends on the purpose of the
sequence alignment. The BLOSUM-62 is a widely
used matrix for searching close homologs.
However, for identifying remote homologs, it is
probably better to choose PAM250 [8], which
represents the transition probabilities between amino
acids with 250 accepted mutations per 100 amino
acids.

Several types of algorithms are used to obtain the
optimal or near-optimal alignment given a mutation
matrix with penalties for the insertion/deletion of
gaps in the alignment. The first well-known
algorithm was developed by Needleman and
Wunsch [9], who applied the dynamic programming
technique to determine the optimal solution for a
global alignment. The method was improved by
Smith and Waterman [10] so that similarity between
short segments of the two sequences (local
alignment) can be identified more efficiently in a
way that guarantees to find the optimal solution. It
has been implemented in SSEARCH, in SKESTREL
with the specialized hardware design [11], and in the
BESTFIT module of the GCG package [12].
Heuristic search algorithms, e.g., the ones used in
the popular programs FASTA [13] and BLAST [14],
are less sensitive but much faster than the Smith-
Waterman algorithm. FASTA allows insertion of
gaps during the alignment phase (a way that
simulates insertions
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Table 1. Selected Sequence Comparison Tools

Pairwise Sequence Alignment

ALIGN www2.igh.cnrs.fr/bin/align-guess.cgi server

BLAST www.ncbi.nlm.nih.gov/BLAST/ server/executable

FASTA www.embl-heidelberg.de/cgi/fasta-wrapper-free/ server

GCG/BESTFIT www.gcg.com executable

KESTREL www.cse.ucsc.edu/research/kestrel/ server

SSEARCH vega.igh.cnrs.fr/bin/ssearch-guess.cgi server

Multiple  Sequence Alignment

BCM Search Launcher dot.imgen.bcm.tmc.edu:9331/multi-align/ server

BlockMaker blocks.fhcrc.org/blocks/blockmkr/ server

CLUSTAL ubik.microbiol.washington.edu/ClustalW/ executable

CypData ftp.genome.ad.jp/pub/genome/saitama-cc/ executable

GCG/PILEUP www.gcg.com executable

MEME www.sdsc.edu/MEME/meme/website/ server

Multalin www.toulouse.inra.fr/multalin.html server

PAUP* www.lms.si.edu/PAUP/ executable

Sequence Family

BLOCKS www.blocks.fhcrc.org server

COG www.ncbi.nlm.nih.gov/COG/ server

DOMO www.infobiogen.fr/services/domo/ server

MEGACLASS www.ibc.wustl.edu/megaclass/ server

Pfam www.sanger.ac.uk/Pfam/ server

PRINTS www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/ server

ProClass pir.georgetown.edu/gfserver/proclass.html server

ProDom protein.toulouse.inra.fr/prodom.html server

PROSITE www.expasy.ch/prosite/ server

SBASE www2.icgeb.trieste.it/~sbasesrv/ server

P h y l o g e n e t i c  C l a s s i f i c a t i o n

MOLPHY dogwood.botany.uga.edu/malmberg/software.html executable

PAML abacus.gene.ucl.ac.uk/ziheng/paml.html executable

PASSML ng-dec1.gen.cam.ac.uk/hmm/Passml.html executable

PHYLIP evolution.genetics.washington.edu/phylip.html executable

PUZZLE members.tripod.de/korbi/puzzle/ executable

TAAR www.dcss.mcmaster.ca/~fliu/taar download.html executable

TOPAL www.bioss.sari.ac.uk/~grainne/topal.html executable

Search Based on Multiple  Sequence Alignment

HMMER hmmer.wustl.edu executable

PSI-BLAST www.ncbi.nlm.nih.gov/BLAST/server/ executable

SAM-T98 www.cse.ucsc.edu/research/compbio/HMM-apps/ server
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and deletions during evolutionary divergence) to
maximize the number of aligned residues. It works
well for global alignment. BLAST is the most widely
used local alignment tool. It is also the fastest tool
generally available (a pairwise alignment typically
can be finished in seconds). Another reason for
being widely used is that BLAST gives an
expectation value for an alignment, which estimates
how many times one expects to see such an
alignment occur by chance. This allows a user to
quantitatively assess the significance of the
alignment. Although it may not be as sensitive as
many other tools, BLAST captures most of the
possible matches that have good confidence levels,
and makes large-scale sequence comparisons more
feasible.

2.2 Multiple Sequence Alignment

A multiple sequence alignment aligns several
sequences to obtain the best commonality among
them. It is the foundation for identification of
functionally important regions, building sequence
profile for further sequence search, protein family
classification, phylogenetic reconstruction, etc. The
conserved regions (motifs) in multiple sequence
alignment often have biological significance in terms
of structure and function. A correlated mutation
between two residue positions can be used to predict
a probable physical contact in structure [15] using
programs such as WHATIF [16]. A profile derived
from multiple sequence alignment is often more
sensitive with less noise than the information
provided by a single sequence when searching for
related proteins. However, it is not realistic to use a
rigorous algorithm for an alignment of more than
three sequences of typical protein sizes (around 300
residues) due to its computing time. Hence,
approximations have to be used in practical multiple
sequence alignment tools. Active research is
ongoing for this problem [17]. Like pairwise
sequence alignment, multiple sequence alignment
can also be categorized into global alignment and
local alignment.

A widely used algorithm for global alignment is
the progressive method [18]. It first aligns all
possible pairs of sequences, and uses the pairwise
similarity scores to construct a tree. Then it traverses
the nodes of the tree, and repeatedly aligns the child
nodes, i.e., sequences at the tips of the tree or
clusters of aligned sequences. Once two sequences
or clusters have been aligned, their relative alignment
is no longer changed. Clusters of previously aligned
sequences are treated as a linearly weighted profile
when they are subsequently aligned with another
sequence or cluster. This algorithm has been

implemented in CLUSTAL  [19], the most popular
program for global multiple sequence alignment.
The GCG program PILEUP [12] also uses a similar
algorithm. The major difference between the two
programs is in the pairwise alignment methods:
PILEUP uses the dynamic programming algorithm
[9], while CLUSTAL  allows a user to choose
between the dynamic programming algorithm and
an algorithm [20] that is less sensitive but much
faster. Several variants of the progressive algorithm
have also been developed. MALI [21] is based on
heuristics that search for a subset of sequence
segments which are common between the
sequences. PIMA [22] takes advantage of
secondary structure prediction to weigh gap
penalties while making the progressive alignment.
New methods other than the progressive algorithm
have been explored. For example, the CypData
package [23] uses an iterative algorithm to generate
a multiple sequence alignment by making the
alignment, protein/gene tree, and pair weights
mutually consistent.

Local multiple sequence alignment focuses on
short similar regions across the different sequences.
Most algorithms for this purpose only look for
ungapped alignments, referred to as blocks.
MACAW [24] is a semi-manual program, which
allows a user to choose the sequences and regions
in which to search for blocks during the alignment.
MEME [25] requires a user to specify the number
of blocks that are expected to occur. The occurrence
of blocks defined by MEME is not necessarily in
the same order in different sequences. Both
MACAW and MEME provide statistical significance
estimates for each block. The BlockMaker program
[26] is fully automatic, and provides a convenient
way to detect useful motifs in a family of sequences
without using human inspection. It assumes all
sequences contain all blocks. If a block is not found
in some sequences, either the block or the sequences
will automatically removed from the alignment.
However, BlockMaker requires the blocks to be in
the same order in all sequences.

2.3 Sequence Family and Domain Parsing

Protein sequences can be classified into families
based on multiple sequence alignment. A family
relationship often indicates a structural, functional,
and evolutionary relationship. Different methods for
multiple sequence alignment produce alternative
ways to classify protein sequences into families and
to align the members of a family. Depending on the
need of a user, protein family classification can be
based on either the alignment of long sequence
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domains (typically 100 residues or more) or small
conserved motifs. The former tends to be more
reliable but less sensitive than the latter when using
default setting of most programs.

Several methods based on sequence similarity
focus more on the alignment of long sequence
domains, including Pfam [27], ProDom [28],
SBASE [29], and COG [30]. These methods differ
in their techniques to construct families. Pfam
builds multiple sequence alignments of many
common protein domains using hidden Markov
models. The ProDom protein domain database
consists of similar domains based on recursive PSI-
BLAST searches (PSI-BLAST will be discussed in
the following). SBASE is organized through BLAST
neighbors and grouped by standard protein names
that designate various functional and structural
domains of protein sequences. COG aims towards
finding ancient conserved domains through
delineating families of orthologs across a wide
phylogenetic range.

Some protein sequence classifications are based
on "fingerprints" of small conserved motifs in
sequences, such as PROSITE [31], PRINTS [32],
and BLOCKS [33]. In protein sequence families,
some regions have been better conserved than others
during evolution. These regions are generally
important for protein functions or for the
maintenance of 3D structures, and hence, are
suitable as fingerprints. PROSITE and PRINTS
derive fingerprints from gapped alignment, while
BLOCKS contain multiply aligned ungapped
segments corresponding to the most highly
conserved regions of proteins. A fingerprint in
PRINTS may contain several motifs of PROSITE,
and thus, may be more flexible and powerful than a
single PROSITE motif. Therefore, PRINTS can
provide a useful adjunct to PROSITE.

Other protein family classifications based on
sequence similarity are derived from multiple
sources. The ProClass database [34] is a non-
redundant protein database organized according to
family relationship as defined collectively by
PROSITE patterns and PIR superfamilies. The
MEGACLASS server [35] provides classifications
by different methods, including Pfam, BLOCKS,
PRINTS, ProDom, SBASE, etc.

A by-product of the family classification is
domain parsing, i.e., the prediction of the range of a
sequence segment that forms a functional or
structural domain. Such information is particularly
useful in the NMR-based structure determination,
which often cuts a large protein into several
structurally compact domains and solves the

structure of each domain separately. A family of
domains from different proteins often indicates
these domains have a unique function or compact
structure, although the domain boundaries usually
cannot be determined exactly. Among various
protein family classifications, the ProDom and
DOMO [36] servers are particularly effective for
domain parsing.

2.4 Phylogenetic Classification

Phylogenetic relationships among proteins in
different organisms may be inferred from the
protein sequences. The basic idea is that the more
mutations required to change one protein sequence
into the other, the more unrelated the sequences and
the lower the probability that they share a recent
common ancestor sequence. A tree structure of
proteins can be used to describe the evolutionary
relationship among a family of proteins. There are
different ways of measuring the "genetic distance"
of proteins, and hence different types of protein
trees can be constructed. Among the popular ones
are minimum distance, maximum parsimony, and
maximum likelihood trees. A minimum distance
method predicts the phylogenetic relationship by
constructing a protein tree to minimize the total
pairwise sequence distance (i.e., the editing distance
measured by the similarity between the two
sequences) of adjacent tree nodes. Both maximum
parsimony and maximum likelihood methods are
based on multiple sequence alignments of the given
protein sequences. A maximum parsimony method
builds a tree to minimize the total number of
evolutionary changes between proteins adjacent in
the tree, while a maximum likelihood method tries to
maximize the total likelihood of making such
changes. A number of computer tools available for
protein tree constructions. Among them are TOPAL
[37] (minimum distance method based), Hennig86
[38] (maximum parsimony method based), and
PAML [39] (maximum likelihood method based).
Some programs provide options to use any of the
three methods, e.g., the two widely used packages
PHYLIP [40] and PAUP [41].

2.5 Search Based on Multiple Sequence
Alignment

One can detect remotely related proteins using
the result of a known multiple sequence alignment
as query. Pairwise sequence alignments require
relatively high level of sequence identity (typically
25% or more) for reliable results. The
characteristics in a multiple sequence alignment can
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significantly increase the underlying signal while
reducing noise, and hence often times, a much lower
level of sequence identity (as low as 15%) is needed
to detect remote homologs in sequence databases.

Some search methods use sequence profiles
based on a position-specific score matrix derived
from a multiple sequence alignment on the similar
sequences. For example, the PSI-BLAST program
[14] searches a protein database using the profile of

similar sequences found by BLAST. The search is
carried out iteratively until a satisfactory match
(e.g., a match that can derive the function or the
structure of the query protein) is found or the
search is converged (typically 3-4 iterations in
total). At each iteration, the position-specific score
matrix is updated using the new sequences in
addition to the sequences found in previous
iterations. Another sequence profile search engine
is the ISREC Profilescan server [42], which aligns  

Table 2. Selected Sequence Annotation Tools

Hydrophobic  Prof i le

Johns Hopkins's Server grserv.med.jhmi.edu/~raj/MISC/hphobh.html server

Weizmann'sServer bioinformatics.weizmann.ac.il/hydroph/ server

Transmembrane Segment Prediction

MEMSAT ftp.biochem.ucl.ac.uk/pub/MEMSAT/ executable

SOSUI www.tuat.ac.jp/~mitaku/adv_sosui/ server

TMAP www.embl-heidelberg.de/tmap/tmap_info.html server

TMpred ulrec3.unil.ch/software/TMPRED_form.html server

TMHMM 130.225.67.199/services/TMHMM-1.0/ server

M o t i f s

I-sites ganesh.bchem.washington.edu/~bystroff/Isites/ server

MOTIF www.motif.genome.ad.jp server

S i g n a l i n g  S i t e

DictyOGlyc genome.cbs.dtu.dk/services/DictyOGlyc/ server

NetOGlyc genome.cbs.dtu.dk/services/NetOGlyc/ server

NetPicoRNA genome.cbs.dtu.dk/services/NetPicoRNA/ server

PSORT Server psort.nibb.ac.jp:8800/ server

SignalP www.cbs.dtu.dk/services/SignalP/ server

Secondary Structure Prediction

PSA bmerc-www.bu.edu/psa/ server

BTPRED www.biochem.ucl.ac.uk/bsm/btpred/ server

Jpred circinus.ebi.ac.uk:8081/ server

NNPRED www.cmpharm.ucsf.edu/ nomi/nnpredict.html server

PHD dodo.cpmc.columbia.edu/predictprotein/ server

IBCP Server pbil.ibcp.fr/NPSA/npsa server.html server
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a query sequence to the pre-determined profile
library derived from PROSITE and Pfam.

Another type of search method based on multiple
sequence alignment employs hidden Markov
models (HMM) [43]. This type of method typically
consists of the following three steps: (1) a standard
sequence-based search to find matches for a query
sequence; (2) construction of an HMM model
based on the alignments between the query
sequence and its matches to describe the position
dependent amino acid (including deletion and
insertion) probability distributions; (3) use of the
result to search sequence databases to find matches
to the constructed HMM model. Several computer
packages based on HMM are available for sequence
comparison, such as SAM-T98 [44, 45] and
HMMER [46].

Both PSI-BLAST and SAM-T98 are widely used.
PSI-BLAST is very fast. Typically, the results of
each iteration are returned from the Web server in
seconds. PSI-BLAST also allows users to select
parameters and proteins for building sequence
profiles interactively. Such a flexibility often yields
more remote homologs being found. On the other
hand, SAM-T98 is slower but more sensitive. It has
been shown that SAM-T98 detects more remote
homologs and generates fewer false positives at any
level of true positives than PSI-BLAST [47]. SAM-
T98, as an email server, does not allow interactive
selection of parameters and proteins for building
sequence profiles during a search process, as does
PSI-BLAST. Users can do the search using both
PSI-BLAST and SAM-T98 and compare the results
when any uncertainty exists.

3 SEQUENCE ANNOTATION

In this section, we will address the methods that
assign and predict properties for a query sequence,
including hydrophobic profile, prediction of
transmembrane region, active site, and signaling
sites, as well as prediction of secondary structure
and solvent accessibility. These methods are based
on the properties of the amino acids in a query
sequence or a match between a query sequence and
the characteristics obtained by sequence
comparison.

3.1 Hydrophobicity Profile and
Transmembrane Region Prediction

A hydrophobicity profile is derived from the
hydropathy scales of the amino acids along a

protein sequence. Hydropathy scale is a
physichemical property that quantifies the
hydrophobicity of an amino acid. Several sets of
hydropathy scales are available [48, 49]. A
hydrophobicity profile can be used to predict an
interaction site on the surface of a globular protein,
particularly for some active sites involving many
charged residues [50]. For example, a highly
hydrophilic region of an antigen is likely to be in an
antigenic site that interacts with an antibody. It can
also predict a protein's transmembrane regions,
which are highly hydrophobic. The value of the
hydrophobicity profile at a sequence position is
obtained by averaging the hydropathy scales of
several neighboring residues to reduce fluctuations.
The choice of window size depends on the particular
problem. A window size is suggested to be 7-9
residues for predicting surface sites, and 19 residues
for predicting transmembrane regions [51].
Hydrophobicity profile plots are available in several
commercial protein modeling packages, such as the
GCG package [12] and the Insight-II package [52].
They can also be obtained from on-line servers,
such as the Protein Hydrophilicity/Hydrophobicity
Search and Comparison Server [53].

Several specialized tools for predicting
transmembrane regions have been developed based
on hydrophobicity profiles and other characteristics
of transmembrane regions, e.g., aromatic residues
are clustered near the interface of the
transmembrane helices and proline residues are
more frequent in transmembrane regions. In
addition, these tools apply more sophisticated
methods to enhance sensitivity. For example, TMAP
[54] uses information derived from multiple
sequence alignments and TMHMM [55] employs a
hidden Markov model to locate transmembrane
regions. Because of the strong pattern in membrane
protein sequences, the predictions of transmembrane
regions are generally very reliable. Since membrane
protein structures are hard to obtain through
experimental approaches, the prediction of
transmembrane regions provides a very useful tool
to study the structures of membrane proteins.

3.2 Search of Possible Active Sites

Potential active sites can be searched using the
patterns extracted from motif databases such as
PROSITE and PRINTS [32]. Some patterns are
related to known protein functions. Hence, a match
to a pattern may suggest a function of the query
protein. However, since the statistical  significance
of a match is often low, given the few positions
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involved in a pattern, a hit in databases may be a
false positive. Therefore, the search results should
only be used as suggestions for possible active
sites. If a user knows the function of the query
protein and the active site pattern involved, a search
may identify the location of the active site. One can
use the MOTIF search engine [56] for active site
search, which includes PROSITE, BLOCKS,
ProDom, and PRINTS.

3.3 Prediction of Signaling Sites

Signaling sites in signaling proteins often show
special patterns within the sites and at the
boundaries of the sites. Several Web servers employ
the patterns to detect signaling sites for a query
sequence. The widely used SignalP server [1]
predicts signal peptides in secretory proteins and
their cleavage sites using a neural network approach.
A number of related servers have been developed by
the same research group using neural networks: e.g.,
the NetPicoRNA server [57] for cleavage site
analysis in picornaviral polyproteins and the
NetOGlyc server [58] for predicting of the O-
glycosylation sites of mammalian proteins. Another
Web server for predicting signal peptides and
domains is SMART [59]. SMART is based on the
patterns derived from a collection of multiple
sequence alignments, which represent more than
250 signaling and extracellular domains/sites.

3.4 Secondary Structure Prediction

Secondary structure prediction in three states (α-
helix, β-sheet, and coil) from sequence has reached
an averaged accuracy of more than 70% [60, 61].
Owing to this reliability, secondary structure
prediction is widely used and incorporated into
many other modeling tools, such as tertiary

structure prediction. Early methods used simple
statistical preference of each amino acid in different
secondary structure types [62]. New methods, such
as nearest neighbor approach [63], neural networks
[64], and the utilization of multiple sequence
alignments [65], have improved prediction
performance significantly. The most widely used
secondary structure prediction program is PHD
[60], which uses neural networks and multiple
sequence alignments. The PSA Server [66] provides
nice graphic outputs for the probability of each
secondary structure type along the sequence. I-sites
[67] predicts local structures, which may include
several contiguous secondary structures, using a set
of sequence patterns that strongly correlate with
protein structure on the local level. The SOSUI
server [68] specializes the secondary structure
prediction of membrane proteins with high
accuracy. The Consensus Secondary Structure
Prediction Server [69] gives predictions using
different methods, such as SOPM [70], DSC [71],
PHD, and PREDATOR [72], and builds a
consensus from them. Some secondary structure
prediction programs, such as PHD and the PSA
Server, also predict solvent accessibility of each
residue on a sequence, i.e., whether it is buried in the
interior of the structure or on the surface.

Figure 1 describes a partial output from the
consensus server for the secondary structure
prediction of the protein cyanase. As an example, it
does not represent the general performance of
different programs, but it shows typically what can
be expected from secondary structure prediction.
One can see that the secondary structure locations
are basically predicted correctly by all the
programs. However, none of the programs predicts
the boundaries of the secondary structures
accurately. The prediction performance varies from
protein to protein. In some cases, the secondary
structure type or the location of a secondary

Fig .  (1 ) .  Secondary structure predictions for the first 80 residues of cyanase (156 residues in total) using the Consensus
Secondary Structure Prediction Server [69]. The protein sequence, prediction results from nine methods, and the secondary
structure assignment using DSSP [83] based on the experimental structure (labeled by "ACTUAL" and shaded) are shown. The
"h", "e", and the blank space are the predictions of α-helix, β-sheet, and loop conformation, respectively.
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structure can be predicted incorrectly. Secondary
structure predictions for small proteins (with less
than 100 residues), especially those having several
disulfide bonds, are usually poor.

Some programs focus on the content of
secondary structures (the percentage of helix, strand,
and coil in a protein). They generally have higher
accuracies for the content of secondary structures
than secondary structure prediction programs. The
SSCP server [73, 74] uses neural networks to
predict the content of secondary structures based on
the amino acid composition as the only input
information.

4 STRUCTURE ANALYSIS

In this section, we will discuss the modeling tools
for analysis based on protein structures obtained
through experimental approaches or structure
predictions. These tools cover a wide range of
methods, including structure visualization, geometry
analysis, structure comparison, structure-based
family, molecular dynamics, quantum mechanics,
and electrostatics.

4.1 Visualization

Visualization is often the first step to inspect a
structure. Through different display methods, e.g.,
ribbons, molecular surface, cartoon, and lines,
structure visualization provides a convenient way to
study spatial relationships of atoms, residues,
secondary structures, domains, and subunits.
Commercial packages for protein modeling, such as
Insight-II [52], SYBYL [75], and LOOK  [76],
typically include visualization tools with extensive
features. Users can also find popular public domain
visualization tools, such as VMD [77] and RasMol
[78]. Several tools are best known for their unique
strengths for particular visualization aspects.
Molscript [79], which produces illustrative graphs in
postcript format with high quality, is widely used by
researchers in their publications. CHIME [80]
shows protein graphics inside Web browsers.
TOPS [81] can automatically generate protein
topology cartoons, using circles and triangles to
depict the arrangement of α-helices and β-strands.
GRASP [82] can show protein surface color-coded
with electrostatic potential or geometry properties.

4.2 Geometry Analysis

Geometry analysis of a given protein structure
provides further information related to the
conformation and energetics, as well as the quality

of a structure model. There are two types of
geometry analysis. One is based on the geometrical
relationship between atoms. For example, DSSP
[83] is a program that assigns protein secondary
structure based on the geometrical features of the
hydrogen bonds on protein backbones; HBPLUS
[84] determines a hydrogen bond according to the
atomic distances and angles. Another type of
geometry analysis is based on solvent-accessible
surface [85] and molecular surface [86]. The two
types of surfaces are defined through an imaginary
spherical probe (as a model for a water molecule)
with a typical radius of 1.4 Å rolling on the protein
structure while maintaining contact with the van der
Waals surface of the protein. The trace of the probe
center is the solvent-accessible surface, while the
inward-facing surface of the probe sphere as it rolls
over the protein is the molecular surface. Solvent-
accessible surface area can be calculated using
NACCESS [87] or ASC [88]. The Molecular
Surface Package [89] can compute the molecular
surface area and volume. One can use hydrophobic
and hydrophilic surface areas to derive semi-
empirical energetics [90, 50, 91], such as solvation
energy, entropy, and free energy in protein folding
or binding. Another application of protein surface is
domain partitioning, which cuts a protein structure
into several compact domains measured by their
surface area and volume. The Protein Domain
Server [92] can be used for domain partitioning. In
addition, the DALI domain library [93]) and the
3Dee database [94] provide the domain definitions
for the structures in the PDB [95].

Geometry analysis can also be employed to
check the quality of a protein structure model.
Various errors can be generated when building a
structure model, including (a) bad backbone
conformations, e.g., artificial cis peptide bonds; (b)
poor stereochemistry, e.g., unwanted D-amino
residues; and (c) unfavorable inter-residue packing.
These errors can be detected using programs such
as WHATIF [16] and PROCHECK [96]. The
overall quality of a model can be further assessed by
PROVE [97], which checks the departures of the
assessed structure from the standard atomic
volumes in high quality experimental structures.

4.3 Structure Comparison and Structure
Family

The 3D structures of proteins are better
conserved during evolution than their sequences.
Two proteins can share a similar structural fold even
when their sequences are not similar, and in some
cases not homologous. The relationship
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between proteins having similar folds is clearly
revealed through structure-structure comparison,
which often provides more reliable information
about the relationship between proteins than
sequence-sequence comparison alone. Several
structure comparison  tools are  available, e.g.,
VAST [98], SARF [99], and ProSup [100]. A

popular tool for comparing a query protein structure
against all the structures in the PDB is the DALI
server [101]. When new structures are solved,
researchers often submit them to the DALI server to
find structural neighbors and their alignments. The
results may reveal biologically interesting

Table 3. Selected Structure Annotation Tools

Visual izat ion

CHIME www.mdli.com Web

gOpenMol laaksonen.csc.fi/gopenmol/gopenmol.html executable

GRASP trantor.bioc.columbia.edu/grasp/ executable

LOOK www.mag.com executable

RasMol klaatu.oit.umass.edu/microbio/rasmol/ executable

VMD www.ks.uiuc.edu/Research/vmd/ executable

Geometry  Analys is

HBPLUS www.biochem.ucl.ac.uk/mcdonald/hbplus/ executable

NACCESS sjh.bi.umist.ac.uk/naccess.html executable

WAHTIF www.sander.embl-heidelberg.de/whatif/ executable

Domain Part i t ion

3Dee circinus.ebi.ac.uk:8080/3Dee/help/help_intro.html server

Domain Server bonsai.lif.icnet.uk/domains/assign.html executable

Alignment  /  Fami ly

SCOP scop.mrc-lmb.cam.ac.uk/scop/ server

CATH www.biochem.ucl.ac.uk/bsm/cath/ server

CE cl.sdsc.edu/ce.html server

Dali Domain Dictionary columba.ebi.ac.uk:8765/holm/ddd2.cgi server

FSSP www2.ebi.ac.uk/dali/fssp/ server

HOMSTRAD www-cryst.bioc.cam.ac.uk/~homstrad/ server

HSSP swift.embl-heidelberg.de/hssp/ server

LPFC bioinfo.mbb.yale.edu/align/ server

VAST www.ncbi.nlm.nih.gov/Structure/VAST/ server

Molecular Dynamics

AMBER www.amber.ucsf.edu:80/amber/ executable

CHARMM yuri.harvard.edu/charmm/charmm.html executable

GROMOS igc.ethz.ch/gromos/ executable

NAMD www.ks.uiuc.edu/Research/namd/namd.html executable

TINKER dasher.wustl.edu/tinker/ executable

X-PLOR xplor.csb.yale.edu/xplor-info/xplor-info.html executable
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similarities that are not detectable by sequence
comparison.

The relationship between the proteins in a
structure database can be classified at different
hierarchical levels according to structural and
evolutionary relationships. A widely used
classification includes family, superfamily, and fold
[102]. Proteins clustered into a family are clearly
evolutionarily related with a significant sequence
identity between the members. Different families
whose structural and functional features suggest a
common evolutionary origin are placed together in a
superfamily. Different superfamilies are categorized
into a fold if they have the same major secondary
structures in the same arrangement and with the
same topological connections. The structural
similarities between different superfamilies in the
same fold may arise just from the protein energetics
favoring certain packing arrangements instead of a
common evolutionary origin. Most protein structure
classification tools follow the concepts similar to
family, superfamily, and fold, but differ due to
detailed classification criteria and different structure-
structure comparison methods. CATH [103] is a
hierarchical classification of protein domain
structures. CE [104] provides structural neighbors
of the PDB entries with structure-structure
alignments and 3D superpositions. FSSP [105]
features fold tree, sequence neighbors, and multiple
structure alignments. SCOP uses augmented manual
classification with the hierarchical levels of class,
fold, superfamily, and family of close homologs
[102]. Among them, SCOP provides more function
related information. However, SCOP is not updated
as frequently as others due to the manual work
involved, while FSSP and CATH follow the PDB
updates closely.

4.4 Molecular Dynamics, Quantum Mechanics,
and Electrostatics

Most protein functions are achieved through a
dynamic process. A well established method to
study a dynamic process of protein is molecular
dynamics simulation [106, 107], which has been
applied to proteins for more than two decades [108,
109, 110]. A molecular dynamics simulation uses a
given structure for the initial coordinates. Each
atom is modeled as a particle with a certain mass
and a partial charge. The force fields, which describe
atomic interactions such as bond energy, van der
Waals energy, and Coulomb energy, are based on
empirical functions with analytical forms. Several
sets of energy function parameters have been
developed, including CHARMM [111], GROMOS
[112], and AMBER [113]. After assigning random

initial velocities to the atoms of the protein
according to the Boltzman distribution for a given
temperature, the dynamics governed by the
Newton's Law are carried out using numerical
integrations with a time step of about one
femtosecond (1X10-15 second). Many molecular
dynamics simulation programs are available, such as
CHARMM, GROMOS, and AMBER, TINKER [114],
XPLOR [115] and NAMD [116]. A molecular
dynamics simulation can be used to study small
conformational change and energetics such as free
energy differences between two protein states. A
limitation of molecular dynamics simulation is that
the time scale it can model (up to several
nanoseconds for a sizable protein) is shorter than
many interesting dynamic processes in protein (at a
time scale of several seconds or longer). Active
research is going to reach longer time scales
through algorithm developments [117, 118], parallel
implementations [119, 120], and special protocols to
artificially accelerate a dynamic process [121, 122].

Classical molecular dynamics simulation alone
cannot describe the quantum mechanical processes,
such as electronically excited states, spectroscopic
transitions, and chemical reactions in which bonds
are altered. The modeling tools for quantum
mechanical calculations, such as GAUSSIAN [123],
GAMESS [124], and Q-Chem [125], are designed to
tackle these problems. They can also be used to
obtain atomic partial charges and parameters of
energy functions for molecular dynamics
simulation. However, the quantum mechanics
calculation is very time consuming to simulate a
whole protein. A good approach is to combine a
quantum mechanical treatment for a small part of a
system with a molecular dynamics simulation
procedure to the rest [126, 127, 128]. This allows
the description of processes which cannot be
represented by a molecular dynamics potential.

Another weakness of classical molecular
dynamics simulation is the description of solvation
effects, such as solvation energy and electrostatics.
Although molecular dynamics simulation can add
explicit water molecules around a protein, it is often
insufficient to describe solvation effects due to the
lack of description for electronic polarization and
the limited time scale it can simulate. A better way to
calculate solvation effects is to use continuum
electrostatics [129, 130] governed by the Poisson-
Boltzman equation, where the water is modeled by
continuum media with a dielectric constant of about
80. A widely used program is DelPhi [131], which
uses finite difference method to solve the Poisson-
Boltzmann equation.
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5 PREDICTION OF 3D STRUCTURE

Predicting the 3D structure of a protein from its
amino acid sequence using computational methods
becomes more and more practical due to the
development of new methods. Many non-trivial
structure predictions [132, 133, 134] produced prior
to the experimental structure determinations turned
out to be fairly accurate. Most notably, the success
of protein structure prediction has been
demonstrated in the community-wide experiments in
the Critical Assessment of Techniques for Protein
Structure Prediction (CASP) [135, 136, 137]. In this
contest, there are two types of tertiary structure
predictions, i.e., ab initio methods which predicts a
protein structure based on physi-chemical principles
directly, and template-based methods, which use
known protein structures as templates. Template-
based methods include homology or comparative
modeling, and fold recognition via threading. The
coverage of protein sequences by template-based
methods (about 50-70% now) is expanding as more
and more structures are solved.

5.1 Homology Modeling

Homology modeling constructs the coordinates
of all the atoms in a query protein based on
sequence alignment between the query protein and
another protein of known 3D structure. It typically
consists of three steps: (1) identify the protein
templates with known 3D structures and produce an
alignment between the query sequence and its
templates; (2) build the model for the query protein
given its alignment with the template structures; (3)
evaluate the quality of the model.

A conventional homology modeling requires a
high sequence identity between a query protein and
its template in the protein structure database PDB
[95] for a reliable template recognition and the
sequence alignment. However, a sequence search
based on multiple sequence alignment can also be
used to find a suitable template, and often produces
better results than pairwise sequence alignment, as
shown in CASP-3 [137]. Template search and
alignment are essential for the correctness and the
quality of a homology model. Homology modeling
programs always generate a structure for any query
sequence using the conformation of the template
structures and the alignments between the query
protein sequence and its templates. If the templates
or the alignments are incorrect, the output model will
certainly be wrong as well.

Different homology modeling methods use
different approaches to construct a 3D model from
given templates and alignments. One way to

construct an atomic model is to use only the
backbone coordinates from the template, and to
build sidechain independently with tools such as
SCWRL  [138] and MaxSprout [139]. Alternative
methods for constructing atomic models employ
sidechain conformations of templates as well.
Automated servers (e.g., SWISSMODEL [140] and
CPHmodels [141]) provide an interface to submit a
sequence and get the model either interactively or
through email. These servers are fast and easy to
use. The WHATIF program [16] provides the
option to construct a crude model quickly or to
build a structure using a better, but much slower
method (several hours for a large protein).
COMPOSER [142] has a specific tool to deal with
the loop regions which contain gaps in the
alignment. COMPOSER under SYBYL [75] also
provides an interactive Graphic User Interface
(GUI) for model building, which allows a user to
edit at each step. The most widely used homology
modeling program is MODELLER [143]. It starts
with an extended strand for the query protein, and
then folds it to satisfy spatial restraints derived from
the alignment between the query sequence and its
templates. In particular, it tries to preserve main
chain dihedral angles or hydrogen bonding features
from the template structures. MODELLER also uses
physical force fields to prevent atoms from clashing
with each other. In the loop regions, with gaps in the
alignment, MODELLER uses statistical information
derived from the alignment of many proteins of
known 3D structure. The final 3D model is obtained
by optimization through conjugate gradients and
molecular dynamics with simulated annealing.

The quality of a model depends primarily on the
sequence identity between the query protein and the
template. The higher the sequence identity, the  more
accurate the structure derived from homology
modeling. For high sequence identity (typically
40% or more), it is not rare that homology
modeling produces models with an all-atom RMSD
lower than 2 Å between the model and the
experimental structure. Fig. 2(a) shows an example
for the typical quality of a constructed model. A
challenge in homology modeling is the construction
of regions with large alignment gaps. Although
loops with short alignment gaps can often be
modeled successfully, insertions of about  8
residues or more in the query sequence usually
cannot be modeled reliably. It is important to use the
quality assessment tools to check the structure
model. If errors are found, one can adjust the
alignment and rebuild the model. Another method to
use is to generate multiple models and find the
model with the least errors. It may be necessary to
repeat the process of alignment, model  construction,
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and assessment until a satisfactory model is
obtained.

5.2 Threading

Protein threading (sequence-structure alignment)
[144, 145, 146, 147, 148] is a promising template-

based method for fold recognition, which identifies
a suitable fold from a structure library for the query
sequence and provides an alignment between the
query protein and the fold. The basic idea of
threading can be summarized as follows. Given a
query protein sequence s of unknown structure,
threading searches the structure templates T to find

Fig .  (2) .  Comparisons between the predicted models using PROSPECT [147] and the experimental structures in the CASP-3
[180]. (a) Target t0068 drawn by VMD [77]. The predicted model is in thick lines and the experimental structure is in thin
lines. The template used and the target protein belong to the same family with the sequence identity of 25%. One can see that
almost all the backbone structures superimpose well between the model and the experimental structure. (b,c) Targets t0053 and
t0067, respectively, drawn by Insight-II [52]. The predicted models are at the left and the experimental structures are at the
right. The cylinders indicate alpha-helices, the strands indicate beta-sheets, the dark lines indicate turns, and the thin lines
indicate loops. The templates used and the target proteins belong to the same superfamily for t0053, and the same fold for
t0067, neither with significant sequence identity. The predicted models for t0053 and t0067 provide good folds but some
portions of the backbones in the models have wrong conformations.
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the best fit for s. A threading requires four
components [149]: (1) a library T of representative
3D protein structures for use as templates; (2) an
energy function to describe the fitness of any
alignment between s and t, where t is a template in
T; (3) a threading algorithm to search for the lowest
energy among the possible alignments for a given
s-t pair; (4) a criterion to estimate the confidence
level of the predicted structure. The threading
approach can be further subdivided into two
categories: (1) threading that considers only the
preference of amino acids in the query sequence at
single sites of the templates (singleton threading);

(2) threading that uses the preference on pairs of
amino acids in the query sequence within a contact
distance when they are aligned to a given structure.
In general, singleton threading is faster, while
threading using pairwise interactions is more
sensitive to detect the correct templates.

Singleton threading constructs a  one-
dimensional (1D) structure profile for each residue
position in a template structure using local 3D
environmental information such as secondary
structure type, degree of environmental polarity, and
the fraction of the residue surface accessible to

Table 4. Selected Protein Structure Prediction Tools

Homolgy  Mode l ing

COMPOSER www-cryst.bioc.cam.ac.uk/ executable

www.tripos.com/software/composer.html module (GUI)

CONGEN www.congenomics.com/congen/congen_toc.html executable

CPHmodels www.cbs.dtu.dk/services/CPHmodels/ server

DRAGON www.nimr.mrc.ac.uk/~mathbio/a-aszodi/dragon.html executable

LOOK www.mag.com/products/look.html module (GUI)

MODELLER guitar.rockefeller.edu/modeller/

www.msi.com/solutions/products/insight/modules/Modeler.html

executable

module (GUI)

SWISS-MODEL www.expasy.ch/swissmod/SWISS-MODEL.html server

WHAT IF www.sander.embl-heidelberg.de/whatif/ executable

Singleton Threading

123D www-lmmb.ncifcrf.gov/~nicka/123D.html server

TOPITS dodo.cpmc.columbia.edu/predictprotein/ server

SAS www.biochem.ucl.ac.uk/bsm/sas/ server

UCLA-DOE www.doe-mbi.ucla.edu/people/frsvr/frsvr.html server

Threading Using Pairwise Interactions

NCBI Package www.ncbi.nlm.nih.gov/Structure/ executable

PROFIT lore.came.sbg.ac.at/ executable

PROSPECT compbio.ornl.gov/structure/prospect/ executable

THREADER globin.bio.warwick.ac.uk/~jones/threader.html executable

ToPLign cartan.gmd.de/ToPLign.html server

D o c k i n g

AutoDock www.scripps.edu/pub/olson-web/doc/autodock/ executable

DOCK www.cmpharm.ucsf.edu/kuntz/dock.html executable
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solvent. The energy function is based on the
compatibility of the 20 amino acids for each
position in the 1D structure profile. The
compatibility is derived from the statistics of the
whole template database. Optimal 1D alignments
between a query sequence and a template can be
determined by dynamic programming. The final
template is selected according to the optimal score
or its statistical significance. The singleton threading
can incorporate secondary structure predictions and
position-dependent profiles based on multiple
sequence alignments into the energy function.
Several servers are available for singleton threading,
e.g., 123D [150], TOPITS [151], SAS [152], and the
UCLA-DOE Structure Prediction Server [153].

Threading using pairwise interactions considers
the propensity of two amino acids in the target
sequence to be aligned within a specified distance
using a score function compiled from a database of
structures. In the recent CASP-3, top performers
were most often among the groups using threading
with pairwise interactions [137]. Several threading
programs using pairwise interactions are available,
including the NCBI Threading Package [154],
PROFIT [145], PROSPECT [147], and
THREADER [146]. The NCBI Threading Package
provides a good statistical assessment for threading
result. PROSPECT guarantees to find the globally-
optimal alignments for a given energy function with
pairwise interactions. Figure 2 (b,c) shows the
prediction results for two CASP-3 targets using
PROSPECT. It provides a typical example of
structure information that can be expected from
successful threading.

The threading approach is more sensitive than the
sequence-based search methods like PSI-BLAST
and SAM-T98. However, a key difficulty for
threading is that the structure profile and the residue
pairs derived from the template may not adequately
describe the corresponding information in the query
protein due to the structure difference between the
two proteins, even when they share the same fold.
This is a more significant problem in the fold
category than in the superfamily category. In the
CASP-3, almost every protein in the superfamily
category was predicted correctly by at least one
threading program. However, few proteins in the
fold category were predicted correctly by any
method.

5.3 Ab Initio Prediction

An ab initio protein structure prediction derives a
structure model through the optimization of an
energy function which describes the physical

properties or statistical preferences of amino acids.
Ab initio tertiary structure prediction from sequence
has proven to be extremely difficult even after
tremendous effort for decades [155, 156, 157, 158,
159]. Ab initio prediction programs require long
computing time, and the prediction results are
generally unreliable. However, some recent
developments using hierarchic approaches, which
first build local structures and then assemble them
into a global structure, seem to provide new hope for
generating low resolution structures. Once local
structures are more or less defined, assembling them
requires a significantly smaller computational search
space. The optimization process is typically carried
out using genetic algorithms [160] or Monte Carlo
simulations [157]. Local structures can be built
through a search based on empirically derived data
about preferred torsion angles in secondary
structure elements as done by the program LINUS
[161]. The "mini-threading" method [162] may be a
more efficient way to build local structures. Mini-
threading methods obtain the matches between short
structure segments of template and the query
sequence for building local structures. Some
success of mini-threading has been demonstrated in
CASP-3 [137]. However, ab initio prediction
programs are typically unavailable to the general
research community.

5.4 Protein Docking

Protein docking determines a bound structure
complex formed from two proteins or a protein and
a substrate, starting with two separate unbound
structures. When the conformational changes of
each structure upon binding are assumed to be
insignificant (so called "rigid binding"), one can
often use shape complementarity to find tight match
between the surfaces of the two structures [163,
164]. In addition to the geometric fitness, the
energetics across the binding interface can be also
considered [165, 166]. A widely used docking
program is DOCK [163]. Prediction of rigid
binding often finds the experimental binding
conformation ranked among the top of the candidate
list. When a small ligand is flexible and the binding
protein is rigid, the search problem to find an
optimal solution can still be manageable, although
the results tend to be less reliable than the rigid
docking. AutoDock [167] is a program to predict the
bound conformations between flexible ligands and
rigid proteins. When the larger structure in the
binding complex undergoes a significant
conformational change upon binding, e.g., in some
protein-protein interactions, the structure flexibility
makes the induced docking problem as difficult as
the ab initio structure prediction. Current docking
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techniques are typically unable to identify the bound
structure in this case.

6 DISCUSSIONS

In this Section, we discuss some general issues
in protein modeling, including the availability of
tools and the relationship between experimental
approaches and computational methods, as well as
current trends and future outlook.

6.1 Availability of Tools

Most protein tools can be used through Web
servers or downloaded from the Internet. A reader
can get more information about these tools through
their Web pages (see Table 1-4). One can also find
more tools through links at our Web page
http://compbio.ornl.gov /structure/resource/. Most
of the tools are free of charge or with a minimum
cost to the academic users, while commercial users
sometimes have to pay a fee for license. Several
commercial packages for protein modeling, such as
Insight-II [52] by the Molecular Simulations Inc.,
GCG [12] by the Genetics Computer Group,
SYBYL [75] by the Tripos Associates, Inc., and
LOOK  [76] by the Molecular Applications Group,
provide various modules for different types of
protein modeling. While these packages may be
expensive, they typically have friendly graphic user
interfaces with few computer bugs. In addition,
technical supports can be provided from the
commercial vendors.

6.2 Experimental vs. Computational
Approaches

Experimental approaches and computational
methods complement each other in protein science.
Modern experimental techniques rely more and
more on computing. There are many computer tools
that assist experimental measurement or interpret
experimental data, for example, tools to help
determine X-ray crystallographic structures. Many
experimentalists use computational tools routinely
to study proteins. On the other hand, most results
from computational tools are predictions and subject
to further experimental verification. A user should
always keep in mind the general quality and the
confidence level of the predictions when using them
to draw any conclusion. Usually, it is rewarding to
try different tools available. The consensus and
variations among different predictions may provide
a clue about whether the predictions are reliable or
not. Whenever any experimental information is

available, a user should incorporate the information
in the tools or at least use the information to verify
the output results.

6.3 Trends and Outlook

Protein modeling is a rapidly developing field,
where new methods and tools are produced
frequently. Several current trends, as listed below,
probably indicate the future directions of this field
for the next decade.

● Web interfaces. As shown above, a large
number of tools, particularly sequence
analysis tools, are implemented in the Web
servers. Some servers, e.g., the Biology
WorkBench [168], provide a Web-based
computing environment that integrates a wide
variety of analysis programs into a single
interface.

● Genome-wide analysis. Several groups
employed computational tools to study all the
coding sequences in a whole genome [169,
170, 171]. These studies provide timely
analyses for the current genome sequencing
efforts, and allow gene-hunting researchers to
find valuable information quickly. They may
also help the understanding of a genome as a
whole and the comparison between different
species.

● Large-scale modeling. Using parallel/network
computers and better algorithms, researchers
are reaching larger and larger scales in
modeling, e.g., (1) combinatorial search to
find the optimal solutions for complex
computing problems [147]; (2) large systems
[172], particularly complex system of proteins
with their environments (solvent, lipid, etc.)
[173]; (3) longer time scales for molecular
dynamics simulations [174].

● Interactive modeling. Several modeling tools
allow users to provide input interactively
during a modeling process [175]. For
example, one can carry out a molecular
dynamics simulation in an interactive
computer graphics system that keeps track of
user control (e.g., manually moving a water
atom away from a protein) while maintaining
a physically valid representation [176, 177].
Virtual reality and speech recognition as
possible input methods for interactive
modeling have also been explored.
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● Using a combination of tools together. It
is often more fruitful combining different
modeling tools to study a particular protein
problem. For example, sequence alignment,
transmembrane segment prediction, secondary
structure prediction, homology modeling, and
molecular dynamics simulation were applied
in predicting the structure of a membrane
protein [133]. In another example, docking,
molecular dynamics simulation, electrostatics,
and quantum mechanics were used when
studying the binding between a ligand and a
receptor [178, 179].

6.4 Summary

In summary, significant advances during the past
two decades have made protein modeling tools more
reliable and easy to use. Not only computational
biologists but also experimentalists benefit
tremendously from these tools, which often provide
useful information about the structure and function
of a protein. However, one cannot use modeling
tools blindly. Further experimental evidence may be
needed for some predictions, which could be
inaccurate or even wrong. There are still many
challenging problems in protein modeling and the
related research is very active. We believe, with the
technical improvement in modeling methods and so
many genes (protein sequences) discovered, protein
modeling tools will play an even more important
role in the post-genome era.
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