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ABSTRACT 

 

Thermal imaging of crop canopies has been proposed more than a decade 

ago as a sensitive methodology to determine water status of different crops. 

This paper describes the development of a semi-automated and automated 

methodology using MATLAB® programming techniques to analyse infrared 

thermal images taking into consideration the pitfalls pointed out previously in 

the literature. The proposed method was tested in an irrigation reduction and 

recovery trial for Chardonnay in the 2010-11 season and in the 2009-10 

season from seven varieties in field conditions. There was a clear separation 

(assessed by principal component analysis) between control and recovery 

compared to stress treatments using leaf area index (LAI), stomatal 

conductance, stem water potential and indices derived from canopy 

temperatures measured by infrared imaging. High and significant correlations 

were found between canopy temperature indices and other measures of water 

stress obtained in the same vines that were independent of LAI. Furthermore, 

a fully automated analysis method has been proposed using ancillary weather 
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information obtained from the same locations of infrared thermal images. This 

paper is a first step towards automation of infrared thermography acquisition 

and analysis in the field for grapevines and other crops.    

 

Key words: infrared thermography, remote sensing, MATLAB® 

programming, crop water stress index, irrigation scheduling. 

 

INTRODUCTION 

 

Canopy conductance (gc), taken as the averaged leaf conductance (gL) for the 

whole canopy, is one of the most sensitive parameters to water stress. This 

parameter can be estimated from leaf-based measurements of stomatal 

conductance (gs), after scaling to the whole canopy using leaf area index (LAI) 

to obtain gc. However, this method of estimating canopy conductance has 

disadvantages that limit its practical use for irrigation scheduling (Lu et al., 

2003). These include: i) spatial variability of gs within the leaf, canopy, 

irrigation block or the whole vineyard (Jones and Vaughan, 2010); ii) time 

consuming, depending on the number of measurements per leaf and leaves 

per canopy; iii) instrumentation required can be cost prohibitive.  

Canopy conductance can also be estimated from infrared thermal imaging 

providing “snapshots” of the whole canopy, or several rows of grapevines 

when taken from a height above the canopy, making this method a more 

integrative approach (Moller et al., 2007; Wang et al., 2010). Furthermore, 

besides still thermal images, currently there are cameras available that can 

record infrared videos, allowing the incorporation of an in-built geographic 
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positioning system (GPS) that can be used to produce spatial maps with 

canopy temperature distributions and potentially distribution of crop water 

stress indices (CWSI) within a field (i.e. SC series cameras, FLIR Systems, 

Portland, USA).  

Canopy temperature has been proposed as an indicator of plant water stress 

since the 1960s (Tanner, 1963) based on the cooling effect of the 

transpiration process. Since then, technological advances have allowed 

improved applications in agriculture from temperature sensors clamped on 

leaves to short range remote sensing, such as infrared thermometry and 

thermal imaging. The latter, has been recognised as a more suitable method 

to assess variability of thermal properties within grapevine canopies (Cifre et 

al., 2005; Jones, 2004; Jones et al., 2002b). Since thermal images are 

effectively snapshots, they can include non-leaf material within the image of 

canopies, such as branches, wires from training systems, bunches, sky and 

soil (Figure 1a), which need to be excluded from the analysis (Fuentes et al., 

2005a; Jones, 1999a; Jones, 1999b; Jones et al., 2002b). Non-leaf material 

can be excluded from thermal images using a variety of methods, such as: i) 

manual selection of leaf material using polygonal or user defined shapes, ii) 

the use of “wet” and “dry” reference materials (or leaves) “painted” with 

petroleum jelly and water within the thermal image (Figure 1b) in order to 

obtain the maximum (Tdry) and minimum (Twet) canopy temperatures, 

respectively to exclude non-leaf material outside this range (Fuentes et al., 

2005a; Guilioni et al., 2008; Jones, 1999b; Jones et al., 2002b; Lindenthal et 

al., 2005), iii) other studies have proposed estimating Tdry and Twet using 
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ancillary weather variables to derive these parameters using energy balance 

algorithms (Moller et al., 2007). 

A wide range of research has been done recently in grapevines to obtain 

CWSI based on thermal image analysis, which correlate to other well 

established plant water stress parameters, such as gs and leaf or stem water 

potential (Ψs) (Ferrini et al., 1995; Grant et al., 2007a; Guilioni et al., 2008; 

Jones, 1999a; Jones, 1999b; Jones et al., 2002b; Moller et al., 2007; Stoll et 

al., 2008c). Furthermore, the use of thermal images has been proposed for 

pathogen detection, which can also affect thermal and water transference 

dynamics of leaves or sections of the canopy with the atmosphere (Lindenthal 

et al., 2005; Stoll et al., 2008a; Stoll et al., 2008b; Stoll et al., 2008c).  

Though the potential of infrared imaging for irrigation scheduling has been 

highlighted (Jones, 2004) there are some disadvantages and specific 

considerations that need to be taken into account, such as: i) windy conditions 

that can complicate the accuracy of the grapevine water status assessment 

due to rapid changes in gs within a single canopy (Guilioni et al., 2008); ii) 

inclusion of non-leaf material in the analysis; iii) difficulty in the analysis of 

large volumes of data, since every pixel from each image is effectively a 

temperature reading (usually 5 megapixels per image) (Wang et al., 2010); iv) 

grapevines offer an extra complication due to the heterogeneity of their 

canopies compared to broad acre crops with more homogeneous canopies 

and closed canopies or cover (Grant et al., 2007a; Jones, 1999b; Jones et al., 

2002b).  To minimise thermal variability within grapevine canopies, it has been 

proposed the shaded side rather than the sunny side be used to obtain 

thermal images (Jones et al., 2002b); and finally, v) Guilioni et al. (2008) 
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identified a problem of consistency in previous studies related to the way that 

reference leaves were treated with both petroleum jelly and water to obtain 

Tdry and Twet, respectively. Some studies obtained reference leaves by 

painting only one side while others were applying on both sides of the 

reference leaves.  

Initial analyses of infrared thermal images were achieved using specialised 

computer programs from the IR camera providers, such as FLIR 

QuickReport® and Reporter Pro® (FLIR Systems, Portland, USA) (Cohen et 

al., 2005). These software packages offer basic computations of mean, 

maximum and minimum temperature from regions of interest (ROI) obtained 

by drawing ROIs by hand using either square, polygonal or user-defined 

shape selections. This technique is time consuming considering that a 

considerable number of thermal images are required to have a representative 

assessment of the spatial variability of plant water status of an irrigation block 

or a complete vineyard.   

A combined approach using visible and thermal images has been proposed 

by pre-analysing the visible Red, Blue and Green (RGB) components of each 

image to separate leaf and non-leaf material by colour discrimination 

(Leinonen and Jones, 2004a) using a custom made code in C+ (Moller et al., 

2007). However, this method requires further steps in the analysis and an 

extra three-fold data volume to be analysed, considering visible (RGB) and 

infrared data per canopy. This approach also lacks the option of batch 

analysis for large quantities of images. An automated method has been 

proposed by Wang et al. (2010), using a similar approach that consists of 

analysing visible and thermal images through a combination of colour 
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identification and Gaussian mixture distribution extraction techniques to obtain 

CWSI. However, this work only offered comparisons of results (CWSI) with Ψs 

as a physiological parameter with low and statistically non-significant 

correlations.  

Considering previous research, a simple and robust automated imaging 

analysis technique is required for a rapid and effective assessment of water 

status of grapevines. This system would allow the implementation of thermal 

image analysis to schedule irrigation using a plant-based technique. In this 

paper, we have focused on the problems identified in previous work to 

develop an automated methodology for thermal image analysis using the Tdry 

and Twet reference leaves and calculated Tdry and Twet using leaf energy 

balance models and matrix analysis techniques. Furthermore, this 

methodology can be applied to analyse thermal images and thermal videos 

automatically using the versatility offered by MATLAB® programing to 

manage very large matrices of data as indexed images in an efficient and 

rapid way. A spatial data analysis technique is also proposed to assess data 

quality within thermal images and to identify potential sources of temperature 

variability within canopies, which can be associated with windy conditions, 

thermal influence of bare soils (in the case of low canopies), pathogen or 

insect attacks, or any other biotic and abiotic factors affecting the gL and 

therefore the index obtained from infrared thermal image analysis (IG), which 

is proportional to gL (Jones et al., 2002b) and CWSI within canopies. 

 

MATERIALS AND METHODS 
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Thermal images and physiological data were collected during the seasons 

2009-10 and 2010-11 in Australia. A detailed study, incorporating leaf area 

index, was conducted on the variety Chardonnay within an irrigation reduction 

and recovery trial (Chardonnay trial). The automated system was also tested 

on infrared thermal images from a fully irrigated variety trial (variety trial). 

Infrared thermal images and physiological data acquisition was from 12:00 

and 14:00 hours (LST), which coincides with the maximum atmospheric 

demand recorded at the field sites. These data is regarded as “midday” in this 

paper. 

 

Experimental sites and plant material 

 

Chardonnay trial 

The experiment was carried out during February 2011 in an irrigation 

reduction and recovery after water restrictions have been applied trial within a 

commercial Chardonnay vineyard at Qualco (SA), (Yalumba Nurseries). This 

trial started in the 2008-09 season using a total area of 3.69 ha with a 

randomised block design considering four blocks (Figure 2). The vines in the 

trial are 8-years-old grafted on Ramsey rootstock and trained on a two – wire 

vertical trellis system with row spacing of 1.8 m between vines and 3 m 

between rows.  From this trial, three irrigation strategies were considered for 

this study: full irrigation or control (C), and reductions to, 30% (30S) and 10% 

(10S) of the control. The Control treatment represented the amount of 

irrigation that is normally applied to the vines in a season (5 ML ha-1 year-1). 

Each treatment consisted of three rows divided into three sections of 30 vines 
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each. In the 2009-10 season one of these three sections for each treatment 

was changed to the control irrigation level in order to study the physiological 

changes of vines in recovery from irrigation reduction. Thus, two recovery 

treatments were added, these were 30% (30R) and 10% (10R). All treatments 

were irrigated with Netafim Dripmaster pressure compensated in-line drippers 

with a 2.3 L h-1 of flow. All irrigation events were scheduled to apply 6 mm in 4 

hr. To apply the reductions in irrigation volume, the interval between irrigations 

was increased using the Irrigated Crop Management Service (ICMS) Water 

Budgeting Tool (SARDI). Infrared imaging acquisition and physiological 

measurements were made in parallel on the same vines at midday for three 

consecutive days in the trial site at the post-veraison stage (17th, 18th and 19th 

of February 2011). 

 

Variety trial 

The variety experiment was carried out in the Coombe vineyard at the Waite 

Campus of the University of Adelaide, South Australia, during the 2009-10 

season.  Infrared thermal images were acquired in two consecutive dates, the 

19th and 20th of January 2010. Three red and three white wine varieties were 

selected for the study. The varieties were: Shiraz, Merlot, Pinot Noir, 

Chardonnay, Pinot Gris and Sauvignon Blanc. All varieties are own-rooted, 

planted in 1991 with a vine spacing of 1.8 m in the row and 3 m between 

rows.  The training system for all varieties is a bilateral spur pruned cordon 

with the shoots vertically positioned.  All vines were drip irrigated twice per 

week by in-line drippers discharging 1.5 L/h. Infrared imaging acquisition and 
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physiological measurements were performed in parallel on the same vines at 

midday for the two days of measurements. 

 

Infrared thermal image acquisition 

Thermal images were acquired from canopies using an infrared camera FLIR 

T-series (Model B360) (FLIR Systems, Portland USA), with a resolution of 320 

x 240 pixels. The camera measures temperature in the range of -20 oC to 

1200 oC. The thermal sensitivity of the camera is < 0.08 oC @ + 30 oC / 80 mK 

with a spatial resolution of 1.36 miliradians.  Each pixel is considered an 

effective temperature reading in degrees Celsius (oC). Infrared images were 

acquired from the shaded side of the canopy to reduce variability in the 

estimation of IG and CWSI to be compared with other plant water status 

indicators, such as gL and Ψs (Fuentes et al., 2005a; Jones et al., 2002b). 

One thermal image from the canopy, from each of four plants per treatment 

(Chardonnay trial) and per variety (Variety trial), were obtained from a 

constant distance of 2.5 m perpendicular to the row direction (distance 

between rows is 3 m). Infrared thermography parameters (IG and CWSI) were 

compared with physiological measurements acquired immediately after 

obtaining each thermal image from the same vines. All thermal images were 

acquired on clear days with minimal wind conditions, which were assessed 

visually by leaf movement at the top of canopies previous thermal image 

acquisition, to avoid the influence of air movement on temperature variability 

within the canopy and reference leaves. Reference temperatures (Twet and 

Tdry) were obtained by selecting two non-detached mature and representative 

leaves from a reference plant per treatment. These leaves were “painted” on 
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the abaxial and adaxial sides two minutes before taking the thermal images. 

One leaf was painted with a solution of water and detergent (dishwashing 

soap) 0.01% (v/v) to obtain the Twet reference and the second leaf with liquid 

petroleum jelly (Vaseline) to obtain the Tdry reference. 

 

Algorithms used 

Crop water stress index (CWSI) was calculated using the following equation, 

proposed by Jones (1992) modified from Idso et al. (1981) after determining 

Tdry and Twet: 

 

 

 

where Tcanopy is the actual canopy temperature obtained from the thermal 

image and Tdry and Twet are the reference temperatures (oC), obtained using 

the method of painting both sides of reference leaves with petroleum jelly and 

water respectively (Idso, 1982; Jones, 1992). 

An index, proportional to leaf conductance to water vapour transfer (gL) can 

be obtained using the relationship proposed by Jones et al. (2002) as follows: 

 

 

where raw = boundary layer resistance to water vapour, rRH = the parallel 

resistance to heat and radiative transfer (Jones, 1992), γ = psycrometric 

constant and s = slope of the curve relating saturation vapour pressure to 

temperature (Jones, 2004);(Jones et al., 2002b). 
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Thermal image analysis 

Thermal images were analysed using custom code written in MATLAB® 

2010b (Mathworks Inc., Natick, MA, USA) and the Image Analysis Toolbox®. 

The use of the automated code requires that all thermal images (JPEG) are 

saved into a Microsoft Excel® file, in which each image is stored as a 

separate worksheet. To change the file formatting, thermal images were 

loaded firstly using the FLIR QuickReport® (FLIR Systems, Portland USA) 

software and exported to Excel® (FLIR Systems, Portland, USA). This 

process can be automated using the FLIR ThermaCAM™ Researcher 

software (FLIR Systems, Portland USA). 

Thermal images are imported by the code and stored in matrix variables 

automatically, which can be treated in MATLAB as 8-bit indexed images. 

Therefore, each variable assigned in MATLAB corresponds to an indexed 

image represented by a matrix A(m,n) with the pixel position (m,n) as indices 

and temperature (T) in oC as the values: 

 

             

 

Since (m,n) represents pixels in the thermal image, the maximum thermal 

image dimension is constant and corresponds to m= 320 and n= 240 pixels.  

 

Analysis of thermal images from reference leaves to obtain Tdry and Twet 
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As a first step, the code asks which spreadsheets correspond to thermal 

images containing the reference leaves (Twet and Tdry). The user inputs are 

numerical and correspond to the number of the specific spreadsheets from 1 

to n. Once the reference images are specified, the data is uploaded to obtain 

Tdry and Twet as an average of the region of interest (ROI) delimited by the 

user on the image. For this purpose, a selector is displayed on the image to 

obtain Twet on the cooled leaf and Tdry on the heated leaf. Once these 

thresholds are calculated as the average T (oC) value of the specific ROI, the 

code asks for the images to be analysed in batch.  

 

Analysis of thermal images from ancillary information to obtain Tdry and Twet 

Ancillary information can be obtained using sensors at the same time and 

position from which the infrared thermography images are obtained. Micro-

meteorological data was used from the LiCOR 6400 readings that were made 

in the same canopies from which infrared thermal images were obtained (see 

Physiological measurements). Further meteorological data was obtained from 

a nearby automatic meteorological station (Measurement Engineering 

Australia, Adelaide). Ancillary meteorological measurements were used to 

calculate local Tdry and Twet reference temperatures using the basic leaf 

balance approach (Jones, 1999a; Jones et al., 2002b). The algorithms used to 

compute Tdry and Twet were: 
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where Ta is the air temperature measured at the same positions and time as 

infrared thermography acquisition, rHR is the parallel resistance to heat and 

radiative transfer, Rni is the net isothermal radiation (the net radiation that 

would be received by an equivalent surface at air temperature), ρ is the 

density of air and cp is the specific heat capacity of air. This formula uses the 

concept of isothermal radiation and assumes a dry surface with the same 

aerodynamic and radiative properties, in which the sensible heat loss will 

equal the net radiation absorbed (Jones, 1992). 

 

 

 

were raW is the boundary layer resistance to water vapour transfer (assumed 

to be largely determined by the stomatal resistance), γ is the psychrometric 

constant, s is the slope of the curve relating saturation vapour pressure to 

temperature, δe is the water vapour pressure deficit in the air. 

 

Automated sub-division of thermal images 

Based on the hypothesis that wind velocity will affect primarily the upper part 

of canopies, due to architectural arrangement of rows in a vineyard 

configuration, the code sub-divides each thermal image to assess wind 

velocity on spatial variability of canopy temperatures. For this purpose, each 

image (A(m,n)) is automatically divided in to three (d) horizontal sections 

corresponding to the top (At), middle (Am) and bottom (Ab) for differential 

analysis.  
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Equations 1 and 2 are used to analyse separately each sub-matrix to obtain 

CWSI and IG for the top, middle and bottom sections of each canopy. 

 

Customised sub-division 

For a more detailed spatial analysis of canopies, a second tool was developed 

to divide each image (A(m,n)) in a number of sub-images defined by the user 

(d). This algorithm was previously used for LAI estimation using gap analysis 

and image sub-division (Fuentes et al., 2008). This tool divides each thermal 

image in n x m subdivisions, where n = m and corresponds to the user input 

(i.e. a sub-division input d = 5, will divide the image in 5 x 5 = 25 sub-

divisions).  For each sub-division the IG index can be calculated (Eq. 2), which 

allows generating a 2D image to discriminate sections of the canopy that 

could be influenced by biotic and abiotic factors that can explain variability 

within a single canopy. This analysis can be visual or statistical based on the 

analysis of variability of means for IG values.  

To test the customised sub-division tool, a 30 cm (diameter) fan was located 

facing the top of canopies from a distance of 2 m of well-irrigated vines 

(control) in the Chardonnay trial. The windspeed was measured using a 

portable watch with wind sensor (WindMaster® Swiss – made Sensor, Swiss). 

The windspeed (u) was maintained approximately constant at 1.39 m s-1. 

Infrared images were obtained after 2 minutes of applying wind. From these 

thermal images the IG index was calculated using the sub-division (top, middle 
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and bottom) to obtain any statistical differences in these three sections of the 

canopy. For the customised sub-division tool, a d value of d = 12 was used, 

giving a total number of sub-divisions of 144. 

 

Automated filtering of non-leaf material from sub-images 

For each thermal image, a simple filter rule was used to exclude all T values 

above Tdry and below Twet, which were considered non-leaf material or sun – 

exposed leaf material as follows: 

 

 

 

where Aif is a sub-image filtered matrix with values of T that meet the rule set 

in Eq. 4 and “0” values replacing T that does not meet the filter rule (Figure 

3b). After filtering, calculations of mean temperatures, standard deviation of 

the mean, IG and CWSI can be obtained for each sub-matrix. 

 

Outputs handling 

Numerical outputs from thermal images analysis are automatically saved in an 

Excel® file containing relevant data, such as Tdry, Twet, mean canopy 

temperature (Tc), maximum canopy temperature (Tmax), minimum canopy 

temperature (Tmin), standard deviation of temperatures in the canopy (SDT), IG 

and CWSI for the entire thermal image, for the three main sub-divisions or for 

the customised sub-division methods. The program has also an option to 

obtain frequency distribution of temperatures for determined thermal images 

(Figures 1c and 1d). 
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Physiological measurements 

Stem water potential (Ψs) 

Measurements of Ψs were performed on each plant studied using a 

Scholander type pressure chamber (PMS Instruments, Model 1005, Albany, 

OR. USA). For this purpose, a fully expanded mature leaf was selected from 

each plant and bagged for at least 30 minutes before each measurement with 

a plastic bag coated with aluminium foil (n = 24). No more than 30 sec 

elapsed between the leaf cutting and measurement of bagged leaves.  

 

Gas exchange and leaf conductance measurements 

Leaf conductance (gL), transpiration rate (E) and photosynthesis (A) were 

obtained using a portable LI-COR 6400 gas exchange system (LI-COR 

Environmental, Lincoln, Nebraska, USA). All LI-COR measurements were 

obtained from three mature and fully expanded leaves from each plant per 

replicate, per treatment at the same time as infrared thermal images and Ψs 

measurements (n = 72). For the Variety trial, leaf conductance (gL) was 

measured on five mature and fully expanded leaves per plant and per variety 

(n = 120) using a non-steady state porometer (AP4, Delta-T Devices, 

Cambridge, UK). All physiological measurements were performed immediately 

after thermal imaging acquisition and from the same plants at midday. 

 

Canopy size measurements 

Leaf area index (LAI) was obtained in February 2010 using a LAI-2000 plant 

canopy analyser (Licor Inc., Lincoln, Nebraska, USA). Canopy measurements 
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were performed the day before of physiological and thermal image data 

acquisition using the same plants. 

 

Statistical analysis 

Principal component analysis (PCA) with full cross validation was used to 

obtained a hierarchy of variables analysed, to find patterns in the data, 

detection of outliers and to classify any combination of variables that could 

explain links between IG, CWSI and physiological and growth parameters 

measured. For PCA analysis, the Unscrambler® software (version X 10.1 

CAMO, Oslo, Norway) was used.  The dataset used for PCA analysis 

contained the following variables: IG, CWSI, Ψs, and LAI.  

Correlation analysis were used to compare: i) reference temperatures 

obtained using reference leaves from infrared thermal images (IRT leaves) 

and calculated using energy balance models (Eqs. 4 and 5), ii) CWSI and IG 

calculated from thermal images and physiological variables obtained from the 

same canopies. The correlation analysis was performed using the Curve 

Fitting Toolbox® (MATLAB® 2010b, Mathworks, Natick, MA, USA). 

Significance of correlations and separation of means between i) treatments, ii) 

infrared indices and iii) spatial distribution of indices within thermal images 

and were obtained using the CoStat statistical software (CoHort, Monterrey, 

CA, USA) and using the Student-Newman-Keuls test with a significance level 

of P ≤ 0.05. 

 

RESULTS  
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Outputs from the automated thermal image analysis 

The semi-automated method was able to discriminate leaf material from 

sunny exposed leaves and non-leaf material using the threshold temperatures 

obtained from reference leaves. The example presented in Figure 2a shows a 

thermal image with considerable amount of branches, a few small gaps with 

very low temperature, located in the upper section of the canopy, 

corresponding to sky and a training system wire running horizontally in the 

upper half of the thermal image. Figure 2b shows the filtered image in which it 

can be clearly seen the exclusion of non-leaf and sun-exposed material in 

dark blue by using the Twet and Tdry thresholds.  

Reference temperatures and statistical analyses of automated outputs are 

presented in Tables 1 and 2 respectively. Table 1 shows the reference 

temperatures obtained for different treatments from the Chardonnay trial with 

non-significant differences between reference leaves. Table 2 shows the 

averaged outputs for thermal images obtained at midday (maximum 

atmospheric demand) at the Chardonnay trial. The data did not show 

significant differences for temperatures and indices shown in Table 2 from top, 

middle and bottom sections for each canopy. There were significant 

differences for temperatures and indices between treatments (Table 2). The 

control treatment showed the lowest Tc (23.7 oC), Tmax (24.2 oC), Tmin (22.4 

oC) and minimal difference between Tmax and Tmin. Tmax, Tmin and Tc varied in 

the rest of the treatments with averaged Tmax of 27.4 oC and Tmin of 23.4 oC 

and Tc of 25.9 oC. The control treatment was significantly different from other 

treatments for all the parameters obtained and calculated from thermal 

images, with exception of Tmin. The IG and CWSI values for the control 
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treatment were in average 2.3 and 0.31, respectively. The treatment with 

reduced water applied (10S) also differentiated statistically from the rest of the 

treatments for Tc, IG and CWSI with averaged values of 26.4 oC, 0.24 and 0.81 

respectively. Moreover, the IG indices were not statistically different for the 

recovery treatments and 30S.  

 

Calculated versus reference leaves temperatures 

Figure 3 shows the relationship between the calculated Tdry and Twet reference 

temperatures using Eqs. 4 and 5, compared to the reference leaves 

temperatures obtained using the analysis proposed and manual ROI analysis 

in MATLAB® (IRT leaves). There was a strong and significant correlation 

between IRT and calculated T for two days of measurements (SEE = 10.16; 

R2 = 0.95; RMSE = 0.85; p < 0.001). 

 

Physiological and canopy growth response to water application 

Physiological responses of irrigation treatments and relationships between the 

variables measured (Ψs and LAI) and indices calculated from thermal images 

(CWSI and IG) are presented in Figure 4 as a PCA score plot (Fig. 4a) and a 

correlation loadings plot (Fig. 4b). The IG and CWSI best differentiated and 

separated the control and 30R from other treatments, which are associated 

with values of gL of 278 mmol m-2 s-1 (control) and 178 mmol m-2 s-1 (30R) in 

average, compared to 161 mmol m-2 s-1 (10R) and 121 mmol m-2 s-1 (10S). 

Recovery treatments showed values of Ψs of -0.45 MPa on average. The 30S 

and 10S treatments reached values of Ψs = -0.61 MPa and -0.75 MPa, which 

can be considered as non water stressed and mild water stress conditions 
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respectively for the experiment (Acevedo-Opazo et al., 2010). Canopy growth 

also responded to water applications. LAI ranged from 3.87 corresponding to 

the 30R treatment to 2.15 corresponding to the 10S treatment (Table 3). 

There were no significant differences between the control, 30R and 30S 

treatments, but they differentiated from the 10S and 10R treatments. Canopy 

leaf area was reduced 35% for the 10S and 10R treatments compared to 

control, 30S and 30R. The PCA in Figure 4a shows positive correlations 

between IG, Ψs and LAI. An inverse correlation was found for the previous 

variables and CWSI. The two factors shown in the PCA are factor 1 and factor 

2, which explained 81% and 17% of the variability in the data respectively. 

The two factors combined explained 98% of the data variability. Factor 1 was 

identified as vine water status and factor 2 as vegetative growth in response 

to water availability.  

 

Thermal imaging and physiological responses to irrigation 

Highly significant correlations were obtained between gL measured and IG and 

CWSI obtained using the semi-automated thermal image analysis method 

proposed in this paper for the Chardonnay and the variety trial (Table 4). 

Positive linear correlations were found, considering all treatments for the 

Chardonnay trial, between gL and IG at midday (R2 = 0.92; Fig. 5a) and for the 

Variety trial (R2 = 0.81; Fig. 6a). Negative linear correlations were found 

between gL and CWSI at midday for the Chardonnay trial (R2 = 0.87; Fig. 5b) 

and the Variety trial (R2 = 0.83; Fig. 6b). These results are in agreement with 

studies by Grant et al. (2007), Leinonen et al. (2006) and Jones et al. (2002), 

which found that IG is proportional to gL for grapevines. Results for the 
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relationship between gL and CWSI also are in accordance to studies by Moller 

et al. (2007).  

  

Discrimination of wind influence in thermal images  

Mean values and statistical analysis obtained from the top, middle and bottom 

sections of the canopy submitted to wind are shown in Table 5. A statistically 

significant higher value of IG = 3.30 was found for the top section of the 

canopy. There were no statistically significant differences for the mean values 

of IG found for the middle (IG = 1.16) compared to the bottom sections of the 

canopy (IG = 1.09). Furthermore, a significantly higher standard deviation of 

means was found also for the top section of the canopy (SD = 2.97) compared 

to the middle and bottom sections (SD = 0.54 and 0.61 respectively).  

Figure 7 shows the original thermal image submitted to windy conditions 

(Figure 7a). A more visible blue colour can be seen at the top part of the 

canopy (dashed square) compared to the bottom section, corresponding to 

higher IG. Figure 7b shows the filtered IG image in which all values above IG = 

3.0 were forced to a light blue colour (top part) and all IG values below IG = 0.3 

were forced to a red colour (bottom part). Higher and lower criteria were 

obtained from physiological data presented in Figure 5a. 

 

DICUSSION 

 

Reference leaves compared to leaf energy balance calculations 

Results from comparisons between calculated Tdry and Twet using ancillary 

information and those obtained using the reference leaves are in accordance 
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to those obtained in previous studies (Leinonen et al., 2006b). Even though 

Leinonen et al. (2006b) found good correlations between IRT reference 

temperatures with calculated temperatures, the latter were more stable than 

those obtained using reference leaves. Furthermore, the calculated 

temperatures did not reflect the canopy-to-canopy variability of Tdry and Twet 

as accurately as the painting method and reference leaves. This can be 

explained by the single estimation of reference temperatures from an 

automatic meteorological station located close to the vineyard site where the 

experiment was conducted. In our study, we obtained micrometeorological 

data from the Licor 6400 to compute calculated Tdry and Twet, the result were 

higher correlations between reference temperatures from reference leaves 

(IRT) compared to calculated reference temperatures. Therefore, having 

microclimatic ancillary information helps to improve the estimation of Tdry and 

Twet making possible a higher degree of automation in the use of thermal 

images to obtain grapevine water status. 

Further studies are required to acquire parallel microclimatic data using a 

customised mini-meteorological station along with the infrared thermal images 

to improve accuracy of Tdry and Twet estimates. Specifically, to obtain the net 

isothermal radiation (Rni), which for the purpose of this study was assumed to 

be equal to the absorbed short-wave radiation. This assumption was based on 

studies made by Jones (1992) and Leinonen et al. (2006). Consecutive data 

acquisition and processing its possible using MATLAB® and the Instrument 

Control Toolbox® making the collection of infrared thermal images, ancillary 

weather information and calculations of Tdry, Twet, IG and CWSI automatic. This 
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integrated system will be tested in following seasons for grapevines and will 

be available as freeware to interested researchers in a beta version. 

 

Thermal indices and physiological measurements 

Results from the Chardonnay trial were consistent with previous physiological 

studies (season 2006-07) obtained from the same trial site for Ψs and gL 

(season 2009-10) (De Bei et al., 2011). Therefore, it can be said that 

physiological responses found for the period used for the Chardonnay trial 

were representative of the seasonal treatment response to irrigation. Our 

study on six varieties using a normalised stabilisation time of two minutes for 

the wet and dry leaves gave similar correlation values and significance 

compared to the Chardonnay trial. Variations observed in gL, IG and CWSI can 

be attributed to: i) differences in stomatal response due to differences in 

phenological stage and water requirements of the different varieties and ii) 

spatial variability within the irrigation block (water application), which was 

assessed through a drip uniformity test (du = 81%, data not shown).  

The PCA in Figure 4a, separated the irrigation treatments explaining a higher 

percentage of variability (81%) due to plant water status (Factor 1). Statistical 

analysis showed that the 10S, 10R and 30S were the treatments that 

presented mild water stress (higher CWSI and lower Ψs and gL and IG) 

compared to control and 30R for the days of the experiment. There was 

higher variability for data from the control and 30R treatments compared to 

30S, 10R and 10S along the IG vector, which has been shown to be 

proportional to gL (Leinonen et al., 2006a; Leinonen and Jones, 2004b). This 

effect on water stress treatments can be explained by higher stomatal 
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regulation due to reductions in water supplied to the vines. It has been shown 

that chemical signals from root-to-shoot, mainly abscisic acid (ABA), 

increases stomatal sensitivity to VPD due to soil moisture depletion and roots 

exposed to drying soil (Collins et al., 2009; Fuentes et al., 2005b). A strong 

and significant inverse correlation between Ψs and CWSI found in this study 

(R2 = 0.75; SSE = 0.034; RMSE = 0.11) is in accordance to studies made by 

Moller et al. (2007). Factor 2 on the PCA was related to vigour, which was 

affected by long-term levels of water supply by irrigation (Figs. 4a and 4b).   

 

Leaf area index 

Canopy growth and architecture can affect the amount of sun-exposed leaf 

material and therefore, the amount of filtering required per thermal image. 

Control treatments, with a higher LAI, will present more shading and bigger 

canopy walls. On the contrary, water stress treatments will present 

significantly smaller canopies with a higher gap fraction, which will result in 

more sun-exposed leaf material.  

Canopy growth, measured as LAI, did not affect significantly thermal 

properties of reference leaves. Even though there were non-significant 

differences among reference leaves, the control treatment registered the 

lowest averaged temperature compared to the rest of the treatments (Table 

1). Factors such as: canopy growth, structure, leaf area and thickness and 

their influence in thermal properties of reference leaves and canopy 

temperature need to be studied in more detail for different varieties under 

water stress treatments.  
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Automated differential analysis of IG within the canopy 

The separation of thermal image analysis between top, middle and bottom 

regions allowed the detection of wind velocity influence on the spatial 

variability of canopy thermal signature, which according to the training system 

used in the Chardonnay trial (Scott Henry) is expected to be more influential in 

the top sections of canopies for transversal winds in relation to row 

orientation. According to Jones et al. (2002), canopy temperatures, and hence 

reference temperatures and calculated indices, start to change considerably 

at wind velocities (u) of around 1 m s-1. This effect is mainly due to the 

removal of the boundary layer resistance to water vapour from the surface of 

leaves, which increases leaf transpiration, and therefore IG, in non water 

stress conditions. In our study, infrared thermal images were always obtained 

in very calm wind conditions to minimise this effect for validation purposes of 

the infrared technique.  

The spatial analysis tools proposed in this study can be used as a data quality 

assessment for data obtained from sites with moderate wind conditions. In the 

example presented in this paper (Table 5 and Figure 7), mild wind conditions 

were forced upon the top part of the canopies of well-irrigated Chardonnay 

vines. The customised sub-division tool and analysis allowed detecting the 

changes of canopy temperature in the top section by statistically analysing 

changes on the calculated IG index spatially within the canopies. In regards to 

the analysis time, it did not vary considerably when changing the d value from 

10 to 250, the latter corresponding to the sub-division of an image to the 

maximum possible value, or pixel-by-pixel (approx. 3 to 6 seconds per image 

using a Mac Book Pro®, 8Gb RAM, 2.7 GHz, core i7). However, this small 
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difference in analysis time could become important when batch-analysing 

several images.   

Since the automatic division (top, middle and bottom) and the customised 

sub-division tools filter each sub-image using Tdry and Twet, non-leaf material is 

generally excluded from the differential analysis. Therefore, gaps that show 

sky, which are below zero due to lack of reflection, will not be included as 

possible wind effect. Furthermore, leaves that are too damaged by 

senescence, insect or disease attacks will loose their capacity of thermal 

regulation through transpiration (presenting temperatures closer or higher 

than Tdry), which could fall into the non-leaf material thermal range. This effect 

can be seen in Figure 7, where the dry and wet reference leaves (bottom 

right) were left with petroleum jelly and the water solution for more than 10 

mins after application. After this time, Twet increased temperature and was not 

included as “anomalous” low temperature in the analysis, since the specific IG 

value for this leaf was IG = 2.0. Three leaves were included in the criteria of IG 

≤ 0.3 (from Fig. 5a), which were located in the bottom part of the image. 

These leaves corresponded to the Tdry and two leaves that showed signs of 

senescence assessed visually (red and yellow colours). 

Further development of the code has been started to incorporate direct 

statistical analysis tools to assess spatial differences within canopies that can 

explain variability of data from single infrared thermal images. 

 

Use of thermal indices for irrigation scheduling 

For a potential application of infrared thermography in irrigation scheduling, it 

would be recommended to use the IG data obtained in the period of maximum 
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atmospheric demand to assess plant water status (Flexas et al., 2002). This is 

the same time of the day and conditions that has been commonly used to 

measure midday Ψs, which is considered one of the most integrative plant 

water status parameters since it integrates the soil–plant–atmosphere 

conditions at the time of measurement (Acevedo-Opazo et al., 2010; Chone et 

al., 2001). Other researches have shown correlations between IG and Ψs 

using manual thermal image analysis techniques (Moller et al., 2007) and 

lower correlations using other automated methods (Wang et al., 2010).  

Furthermore, a more automated procedure of acquiring thermal images and 

relevant data for analysis can be achieved by using microclimatic ancillary 

information obtained at the same time and locations of thermal imaging data. 

The extra cost of implementing this method will not be significant due to the 

low price of reliable sensors that can be integrated in thermal camera system. 

Further research has been started by our group to automatically integrate 

infrared imagery collection from the field, ancillary microclimatic data and data 

processing using the method proposed in this paper to obtain real time plant 

water status assessment. The latter method will allow obtaining and analysing 

a higher volume of data for a more representative spatial and temporal 

assessment of grapevine water status within the canopy and field scales.  

 

CONCLUSIONS 

This paper has proposed the use of a semi-automated and automated infrared 

image analysis technique to obtain accurate plant water status indicators 

using MATLAB® programming tools. Results can be acquired in a rapid form 

to be statistically analysed and be applied for experimental research or 
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potentially irrigation scheduling management and decision-making. Further 

studies will be conducted to automate the data acquisition and analysis for 

real time assessment. Since this methodology considers the automated 

separation of top, middle and bottom sections of the canopy, plus a 

customised sub-division of thermal image for variability analysis within a 

canopy, data quality techniques can be implemented to assess the influence 

of wind speed on the variability of estimation of IG and CWSI or potentially the 

detection of biotic and abiotic stresses from sections of the canopy. These 

tools can be of great help for other experimental trials that are more specific in 

the study of these stresses. The use of these automated tools could allow the 

implementation of precision irrigation scheduling according to the specific 

physiological behaviour of different grapevine varieties and their responses to 

water application. Due to the sensitivity of infrared thermography, this 

technique can be used to implement irrigation techniques such as regulated 

deficit irrigation (RDI) or partial root-zone drying (PRD), which require narrow 

plant water status thresholds to maximise quality of grapes, water use 

efficiency and minimise detrimental effects on yield.  
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TABLES 

Table 1: Infrared reference temperatures (Tdry and Twet) and canopy 

temperatures (Tc) obtained from reference thermal images. Standard 

deviations (SD) correspond to the ROI selected for the Chardonnay trial. All 

values are in oC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment Tdry  SD Tdry Twet  SD Twet Tc  SD Tc 

10R; 10S 27.1 0.42 22.8 0.94 25.2 0.48 

30R; 30S 27.7 0.72 22.4 1.29 25.9 0.64 

Control 27.0 0.34 22.2 0.67 23.6 0.54 
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Table 2: Averaged values of temperatures in oC for canopy (Tc), maximum 

canopy temperature (Tmax), minimum canopy temperature (Tmin), IG and CWSI 

from infrared thermal images. Chardonnay trial. 

Position Treatment Tc Tmax Tmin IG CWSI 

Topns 10R 26.6ab 27.2b 23.5ab 0.57bc 0.65 b 

10S 26.4a 27.2b 23.9a 0.22c 0.82 a 

30R 25.2b 27.5a 22.9ab 0.95b 0.52 b 

30S 25.6ab 27.7a 23.1ab 0.65bc 0.61 b 

Control 23.7c 24.2c 22.5b 2.22a 0.32 c 

Middlens 10R 25.7b 27.2b 23.5ab 0.51bc 0.67 b 

10S 26.4a 27.2b 24.1a 0.23c 0.82 a 

30R 25.1c 27.6a 22.9b 1.01b 0.51 c 

30S 25.7b 27.7a 23.1ab 0.63bc 0.62 b 

Control 23.7d 24.2c 22.4b 2.21a 0.32 d 

Bottomns 10R 25.5b 27.2b 23.1ns 0.67bc 0.62b 

10S 26.3a 27.2b 23.7ns 0.27c 0.80a 

30R 25.0b 27.6ab 23.3ns 1.12b 0.49c 

30S 25.6b 27.7a 23.4ns 0.66bc 0.61bc 

Control 23.6c 24.2c 22.2ns 2.46a 0.30d 

Means followed by different letters are different at P ≤ 0.05 and ns correspond 

to non-significant differences. 
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Table 3: Canopy size results (LAI) measured in February 2011 per irrigation 

treatments. Chardonnay trial. 

 

 

 

 

 

 

 

 

Means followed by different letters are different at P ≤ 0.05 and ns correspond 

to non-significant differences. 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment LAI 

10R 2.54b 

10S 2.15b 

30R 3.87a 

30S 3.37a 

Control 3.62a 
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Table 4: Results of correlations between leaf conductance (gL), the infrared 

index (IG), crop water stress indices (CWSI) calculated by infrared thermal 

image analysis for the Chardonnay and the Variety trials.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial Dataset R
2
 SEE RMSE Significance 

Chardonnay gL vs IG 0.92 0.56 0.18 P < 0.001 

gL vs CWSI 0.86 0.03 0.04 P < 0.001 

Varieties gL vs IG 0.87 0.14 0.12 P < 0.001 

gL vs CWSI 0.83 0.04 0.06 P < 0.001 



 34 

Table 5: Results of the sub-division tool on a thermal image from a canopy 

submitted to wind velocities of 1.39 m s-1 on the top section. IG values 

correspond to the mean from a particular section of the infrared thermal 

image. 

 

 

 

 

 

 

Means followed by different letters are different at P ≤ 0.05 and ns correspond 

to non-significant differences. SD = standard deviation of the mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trial Section IG  SD Significance 

Chardonnay Top 3.30a 2.97 P < 0.001 

Middle 1.16b 0.54 

Bottom 1.09b 0.61 
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FIGURES 

Figure 1:  (a) Example of digital image from a grapevine canopy depicting the 

dry and wet reference leaves with a red and blue arrow respectively, (b) 

corresponding infrared thermal image, (c) temperature frequency distributions 

considering the whole thermal image and (d) considering only the range 

between Tdry and Twet (d). Dry and wet reference leaves can be seen in the 

bottom left corner of Fig. 1b. From Fuentes et al. (2005). 

 

Figure 2: (a) Example of infrared thermal images obtained using reference 

leaves (middle right) and (b) filtered thermal image using Twet and Tdry as 

thresholds. Dark blue colour in the filtered image corresponds to non-leaf or 

exposed leaf material exclusion. Colourbar shows temperatures in oC for the 

Chardonnay trial. 

 

Figure 3: Comparison between temperature thresholds obtained from 

reference leaves (IRT T in oC) and calculated using energy balance 

algorithms (Eqs. 4 and 5). Tdry (filled circles) and Twet (clear circles) 

corresponded to two days of measurements (18th and 19th of February 2011). 

 

Figure 4: (a) Principal component analysis (PCA) showing the separation of 

treatments for the Chardonnay trial by the score plot and (b) the correlation 

loadings showing the relationship between the physiological variables 

measured: leaf conductance (gL) and stem water potential (Ψs), the thermal 

indices calculated: infrared index (IG), crop water stress indices (CWSI) and 

canopy growth (LAI).  
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Figure 5: (a) Relationship between leaf conductance (gL) and infrared index 

calculated for thermal images and (b) with crop water stress index (CWSI) for 

the Chardonnay trial.  

 

Figure 6: (a) Relationship between leaf conductance (gL) and infrared index 

calculated for thermal images and (b) with crop water stress index (CWSI) for 

the Variety trial. Each point corresponds to the averaged values of four plants 

per variety measured in two days, six days apart. 

 

Figure 7: (a) Thermal image from a control canopy submitted to wind at the 

top section. Dashed rectangle shows roughly the area where wind was 

applied. Dashed circles indicate gaps in the canopy with low temperatures. 

User-defined polygons at the bottom right are the wet and dry reference 

leaves. (b) Filtered IG image obtained using the customised sub-division tool 

with a d = 12 corresponding to 144 sub-divisions. Values of IG ≥ 3 were 

coloured light blue and IG ≤ 0.3 were coloured red to denote areas influenced 

by wind or consistent temperatures close to the Tdry threshold respectively. 

 

REFERENCES 

 

Acevedo-Opazo, C., Ortega-Farias, S. and Fuentes, S., 2010. Effects of 

grapevine (Vitis vinifera L.) water status on water consumption, 

vegetative growth and grape quality: An irrigation scheduling 

application to achieve regulated deficit irrigation. Agricultural Water 

Management, 97(7): 956-964. 



 37 

Chone, X., Van Leeuwen, C., Dubourdieu, D. and Gaudillere, J.-P., 2001. 

Stem water potential is a sensitive indicator of grapevine water status. 

Annals of Botany, 87: 477-483. 

Cifre, J., Bota, J., Escalona, J.M., Medrano, H. and Flexas, J., 2005. 

Physiological tools for irrigation scheduling in grapevine (Vitis vinifera 

L.): an open gate to improve water-use efficiency? Agriculture, 

Ecosystems & Environment, 106(2/3): 159-170. 

Collins, M.J., Fuentes, S. and Barlow, E.W.R., 2009. Partial rootzone drying 

and deficit irrigation increase stomatal sensitivity to vapour pressure 

deficit in anisohydric grapevines. Functional Plant Biology, in press. 

De Bei, R., Cozzolino, D., Sullivan, W., Cynkar, W., Fuentes, S., Dambergs, 

R., Pech, J. and Tyerman, S., 2011. Non-destructive measurement of 

grapevine water potential using near infrared spectroscopy. Australian 

Journal of Grape and Wine Research, 17(1): 62-71. 

Ferrini, F., Mattii, G.B. and Nicese, F.P., 1995. Effect of Temperature on Key 

Physiological Responses of Grapevine Leaf. Am. J. Enol. Vitic., 46(3): 

375-379. 

Flexas, J., Bota, J., Escalona, J., eacute, M., Sampol, B., Medrano, H., oacute 

and lito, 2002. Effects of drought on photosynthesis in grapevines 

under field conditions: an evaluation of stomatal and mesophyll 

limitations. Functional Plant Biology, 29(4): 461-471. 

Fuentes, S., Collins, M., Rogers, G., Kelley, G. and Conroy, J., 2005a. Use of 

infrared thermography to assess spatial and temporal variability of 

stomatal conductance of grapevines under partial rootzone drying: An 

irrigation scheduling application. Acta Horticulturae, 689: 309-316. 

Fuentes, S., Conroy, J.P., Rogers, G., Kelley, G. and Collins, M., 2005b. Use 

of infrared themography to assess spatial and temporal variability of 

stomatal conductance of grapevines under partial rootzone drying. An 

irrigation scheduling application. Acta Horticulturae, 689: 309-316. 

Fuentes, S., Palmer, A.R., Taylor, D., Zeppel, M., Whitley, R. and Eamus, D., 

2008. An automated procedure for estimating the leaf area index (LAI) 

of woodland ecosystems using digital imagery, MATLAB programming 

and its application to an examination of the relationship between 



 38 

remotely sensed and field measurements of LAI. Functional Plant 

Biology, 35(10): 1070-1079. 

Grant, O.M., Tronina, Å., Jones, H.G. and Chaves, M.M., 2007a. Exploring 

thermal imaging variables for the detection of stress responses in 

grapevine under different irrigation regimes. Journal of Experimental 

Botany, 58(4): 815-825. 

Grant, O.M., Tronina, L., Jones, H.G. and Chaves, M.M., 2007b. Exploring 

thermal imaging variables for the detection of stress responses in 

grapevine under different irrigation regimes. Journal of Experimental 

Botany, 58(4): 815-825. 

Guilioni, L., Jones, H.G., Leinonen, I. and Lhomme, J.P., 2008. On the 

relationships between stomatal resistance and leaf temperatures in 

thermography. Agricultural and Forest Meteorology, 148(11): 1908-

1912. 

Idso, S.B., 1982. Non-water-stressed baselines: A key to measuring and 

interpreting plant water stress. Agricultural Meteorology, 27(1-2): 59-70. 

Jones, H.G., 1992. Plants and microclimate: a quantitative approach to 

environmental plant physiology. Cambridge University Press, 413 pp. 

Jones, H.G., 1999a. Use of infraerd thermometry for estimation of stomatal 

conductance as a possible aid to irrigation scheduling. Agricultural and 

Forest Meterology, 95: 139-149. 

Jones, H.G., 1999b. Use of thermography for quantitative studies of spatial 

and temporal variation of stomatalconductance over leaf surfaces. 

Plant, Cell and Environment, 22: 1043-1055. 

Jones, H.G., 2004. Irrigation scheduling: advantages and pitfalls of plant-

based methods. Journal of Experimental Botany, 55(407): 2427-2436. 

Jones, H.G., Stoll, M., Santos, T., de Sousa, C., Chaves, M.M. and Grant, 

O.M., 2002a. Use of infrared thermography for monitoring stomatal 

closure in the field: application to grapevine. Journal of Experimental 

Botany, 53(378): 2249-2260. 

Jones, H.G., Stoll, M., Santos, T., de Sousa, C., Chaves, M.M. and Grant, 

O.M., 2002b. Useof infra-red thermography formonitoring 

stomatalclosure in the field: application to the grapevine. Journal of 

Experimental Botany, 53: 2249-2260. 



 39 

Jones, H.G. and Vaughan, R.A., 2010. Remote sensing of vegetation. 

Principles, practices and applications. Oxford University Press, New 

York, 353 pp. 

Leinonen, I., Grant, O.M., Tagliavia, C.P.P., Chaves, M.M. and Jones, H.G., 

2006a. Estimating stomatal conductance with thermal imagery. Plant 

Cell and Environment, 29(8): 1508-1518. 

Leinonen, I., Grant, O.M., Tagliavia, C.P.P., Chaves, M.M. and Jones, H.G., 

2006b. Estimating stomatal conductance with thermal imagery. Plant, 

Cell & Environment, 29(8): 1508-1518. 

Leinonen, I. and Jones, H.G., 2004a. Combining thermal and visible imagery 

for estimating canopy temperature and identifying plant stress. Journal 

of Experimental Botany, 55(401): 1423-1431. 

Leinonen, I. and Jones, H.G., 2004b. Combining thermal and visible imagery 

for estimating canopy temperature and identifying plant stress. Journal 

of Experimental Botany, 55(401). 

Lindenthal, M., Steiner, U., Dehne, H.-W. and Oerke, E.-C., 2005. Effect of 

Downy Mildew Development on Transpiration of Cucumber Leaves 

Visualized by Digital Infrared Thermography. Phytopathology, 95(3): 

233-240. 

Lu, P., Yunusa, I.A.M., Walker, R.R. and ller, W.J., 2003. Regulation of 

canopy conductance and transpiration and their modelling in irrigated 

grapevines. Functional Plant Biology, 30(6): 689-698. 

Moller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., 

Ostrovsky, V., Sprintsin, M. and Cohen, S., 2007. Use of thermal and 

visible imagery for estimating crop water status of irrigated grapevine. 

Journal of Experimental Botany, 58(4): 827-838. 

Stoll, M., Schultz, H., Baecker, G. and Berkelmann-Loehnertz, B., 2008a. 

Early pathogen detection under different water status and the 

assessment of spray application in vineyards through the use of 

thermal imagery. Precision Agriculture, 9(6): 407-417. 

Stoll, M., Schultz, H.R. and Berkelmann-Loehnertz, B., 2008b. Exploring the 

sensitivity of thermal imaging for Plasmopara viticola pathogen 

detection in grapevines under different water status. Functional Plant 

Biology, 35(4): 281-288. 



 40 

Stoll, m., Schultz, H.R. and Berkelmann-Loehnertz, B., 2008c. Thermal 

sensitivity of grapevine leaves affected by Plasmopora viticola and 

water stress. Vitis, 2: 133-134. 

Tanner, C.B., 1963. Plant temperatures. Agronomy Journal, 55: 210-211. 

Wang, X., Yang, W., Wheaton, A., Cooley, N. and Moran, B., 2010. 

Automated canopy temperature estimation via infrared thermography: 

A first step towards automated plant water stress monitoring. Comput. 

Electron. Agric., 73(1): 74-83. 

 

 



 41 

 

 

 



 42 

 

 



 43 

 

 



 44 

 

 



 45 

 

 



Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Fuentes, S;De Bei, R;Pech, J;Tyerman, S

Title:
Computational water stress indices obtained from thermal image analysis of grapevine
canopies

Date:
2012-11-01

Citation:
Fuentes, S., De Bei, R., Pech, J. & Tyerman, S. (2012). Computational water stress indices
obtained from thermal image analysis of grapevine canopies. IRRIGATION SCIENCE, 30 (6),
pp.523-536. https://doi.org/10.1007/s00271-012-0375-8.

Persistent Link:
http://hdl.handle.net/11343/283200

http://hdl.handle.net/11343/283200

