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Abstract

Background: The field of metagenomics, defined as the direct genetic analysis of uncultured samples of genomes

contained within an environmental sample, is gaining increasing popularity. The aim of studies of metagenomics is to

determine the species present in an environmental community and identify changes in the abundance of species

under different conditions. Current metagenomic analysis software faces bottlenecks due to the high computational

load required to analyze complex samples.

Results: A computational open-source workflow has been developed for the detailed analysis of metagenomes. This

workflow provides new tools and datafile specifications that facilitate the identification of differences in abundance of

reads assigned to taxa (mapping), enables the detection of reads of low-abundance bacteria (producing evidence of

their presence), provides new concepts for filtering spurious matches, etc. Innovative visualization ideas for improved

display of metagenomic diversity are also proposed to better understand how reads are mapped to taxa. Illustrative

examples are provided based on the study of two collections of metagenomes from faecal microbial communities of

adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity and their mothers.

Conclusions: The proposed workflow provides an open environment that offers the opportunity to perform the

mapping process using different reference databases. Additionally, this workflow shows the specifications of the

mapping process and datafile formats to facilitate the development of new plugins for further post-processing. This

open and extensible platform has been designed with the aim of enabling in-depth analysis of metagenomic samples

and better understanding of the underlying biological processes.
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Background
The purpose of metagenomics is to identify the species

present in an environment. Different types of studies

can be performed based on metagenomics. Some exam-

ples include the analysis of changes in the presence

of species in a given environmental sample and the

use of phylogenetic analysis to follow up the spread or

determine the origin of a species. A large number of

tools are emerging in the form of stand-alone programs
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(e.g. MEGAN [1]), interoperable Web services (e.g. MG-

RAST [2]) or tools accessible through the Internet (e.g.

EBI Metagenomics [3]).

MEGAN performs taxonomic analyses of a

metagenome by mapping reads to different taxa based

on BLAST [4] search results and the NCBI taxonomy. To

perform this task, the program runs the lowest common

ancestor (LCA) algorithm to classify input reads. Most

metagenomic tools are constructed following a workflow

scheme offering distinct stages of data processing. In

this line, the open-source EBI Metagenomic workflow

is split into two branches following the quality control

step. The first branch performs taxonomic classification
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based on 16S rRNA, whereas the second branch performs

functional analysis based on protein-coding sequences.

Unannotated reads are kept out of the pipeline. How-

ever, these reads should be taken into account for whole

metagenomic analysis in order to improve the accuracy of

taxonomic classification and better understand the roles

of species in environmental samples.

The number of comparative metagenomic tools is the

key point of the metagenomic RAST (MG-RAST) plat-

form. MG-RAST builds clusters of proteins at a given

percentage of identity level using QIIME [5]. Once built,

the longest sequence of each cluster is subject to simi-

larity using sBLAT, an implementation of the BLAT [6]

algorithm. MG-RAST also uses the NCBI taxonomy for

taxonomic classification. Functional profiles are available

through comparison against data sources that provide

hierarchical information. Abundance profiles are themain

output for displaying information on datasets. The MG-

RAST annotation pipeline does not generally provide a

single annotation for each submitted fragment of DNA.

Steps in the pipeline map a read to multiple annotations

and vice versa. Data privacy is one of the concerns of

the scientists using this tool. Firstly, they are reluctant to

upload their unpublished and/or confidential data to a

public website. Secondly, the priority of analysis requests

to the website is subject to the level of confidentiality

of input data (with lower priority and therefore longer

waiting times for private data).

Recently, a new DNA sequence analysis workflow called

META-pipe [7] has been developed to find novel com-

mercially exploitable enzymes from marine microbial

communities. META-pipe uses tools such as MetaGe-

neAnnotator (MGA) [8] and Protein BLAST to identify

sequences found in the UniProtKB database. MGA is a

new version of MetaGene [9] where a prophage gene

model is offered in addition to bacterial and archaeal mod-

els. MGA uses di-codon frequencies estimated by the GC

content of an input sequence to map genes using regres-

sion models. In addition, MGA offers an approach for

the analysis of ribosomal binding sites (RBSs) to detect

specific patterns of ribosomal sequences in species. How-

ever, due to their tendency to undergo highly degenerative

changes, RBSs are particularly difficult to identify [10].

In the line of pipelines used to facilitate the comparative

analysis of high throughput sequencing, MOCAT [11] is

a modular tool for processing raw sequence reads pro-

duced by the Illumina technology [12]. The main steps in

MOCAT are 1) read trimming and filtering 2) read assem-

bly, 3) gene prediction and 4) estimation of taxonomic

abundance profiles.

The fine-grainedmetagenomic analysis workflow devel-

oped by our group can operate over a user-defined col-

lection of genomes -thus accelerating the computational

process- and with the advantages of being able to map

reads over unannotated regions of genomes. Our software

provides different mapping methods and different map-

ping alternatives apart from the best read-genome match-

ing. In addition, it provides information about the quality

of mapping and about differences between mapping

options. Unlike the methods currently available, which

deduce that a species is not present in a sample when

its abundance is low (in number of reads), the proposed

method can detect low-abundance species by finding

reads mapping to particular specific regions of genomes.

In addition, the developed workflow is an open plat-

form composed of an expandable set of separate modules

that use well-defined format datafiles. This enables the

easy on-demand incorporation of new processing tools.

Along with low-abundance species support, other tools

have been included to verify the correctness of taxonomic

assignation and extrapolate DNA sequencing data to gene

expression levels.

System andmethods
System and requirements

The designed workflow (see Fig. 1) includes all the

needed steps for data processing. The quality control

step can be performed using SeqTrimNext [13] for the

case of 454-pyrosequencing [14] reads, whereas Trimmo-

matic [15] can be used for Illumina reads. These programs

are available in our workflow implementation under our

Galaxy [16] instance. With regards to the sequence com-

parison algorithm, we suggest to use the GECKO [17]

package to accelerate the process. Since several metage-

nomic packages for 454-pyrosequencing reads are based

on the matches provided by a BLAST run, the developed

workflow offers a parser to translate BLAST’s output,

and therefore the same strategy (parsing) can be used

when other sequence comparison software is employed.

In addition, the sequence comparison tool SHRiMP [18]

is included along with a parser that is also available and

described in the Additional file 1.

In the line to offer a broad scope of the presented soft-

ware, the proposed workflow can handle sequences of

different length obtained with different sequencing tech-

nologies (e.g. SOLiD [19], Illumina, 454-Pyrosequencing).

For instance, in the case of colour-space reads these can be

compared using SHRiMP, which natively supports colour-

space reads. The proposedmethod focuses in the compar-

ison and mapping procedures, while the pre-processing

steps can be carried out with common publicly available

software.

The workflow operates over a user-defined collection

of genomes. This database might as well be a custom

selection of genomes which hold particular interest, a pre-

selection of the most common species for the type of

metagenome analysis, or even a complete database such

as GenBank [20].
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Fig. 1 The Workflow diagram. Top: Quality control layer and input files. Center: Comparison software layer. Bottom: Mapping kernel (GMAP), which

provides open-source datafile definitions and enables many on-demand post-processing experiments (Right)

The workflow is specialized in matching (reads-species

mapping) and post-processing procedures, which require

the following input: (1) Sequence comparison files, (2)

taxonomic description of the reference dataset, and (3)

annotation files for the genomes (optional, only needed

for post-processing).

(1) Sequence comparison files: the workflow has been

designed so that it is compatible with any sequence com-

parison software (i.e. BLAST family, FASTA family, pro-

prietary software, etc). The default comparison software

used in this workflows is GECKO, however, the user can

employ other packages. To include other comparison soft-

ware a format conversion program would be needed. A

parsing conversion system for BLAST is already included

in the workflow. The parsing module converts sequence

comparison files to a format composed of headers (read-

genome tuples) followed by rows, where each row repre-

sents a fragment for the tuple. Fragments belonging to a

read-genome match are defined by a 12-tuple:

t12n,k =(k, score, identities, length, similarity, igaps, egaps,

strand, rStart, rEnd, gStart, gEnd)

Where k is the k − th fragment reported by the read

n (see Additional file 1 for further reading). The fields

rStart, rEnd, gStart, gEnd represent the anchoring posi-

tions in the read r and genome g. Reversed fragments are

found by comparing the read with the reverse comple-

ment of genome g. Notice that rEnd and gEnd are redun-

dant for ungapped fragments, but necessary for gapped

fragments.

(2) A taxonomic description file allows the customiza-

tion of hierarchical relationships between organisms in

the reference database as assigning strain relationships

between species or separating strains that belong to a

common ancestor. Such file can be generated automat-

ically using a module of the workflow and/or can be

manually built to insert customized relationships between

species. The format of the file generated is a text file

including a 5-tuple per line, each tuple being a new

genome:

t5n,m =(n,m, genome accession number, genome name,

length)

Where n and m are the specie and subspecie id’s. These

can be used to set up custom boundaries. For further

details, please see “Taxonomy files” in the Additional

file 1).

(3) Annotation files are used to carry out all coding

region-related computations in the post-processing phase.
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Therefore, these files are optional and should be included

if annotation post-processing modules are to be used.

As in the case of comparison software, a parsing sys-

tem is implemented; e.g. a parsing system for GenBank’s

annotation files has been included in our workflow.

Extension of ungapped HSPs

Comparative analysis of metagenomes is an expensive

computational process that involves comparing a large set

of DNA fragments against an enormous database of can-

didate sequences (genes, proteins or genomes). It should

be noticed that, by definition, bacteria in the metagenome

are uncultured species and the sequences in the databases

that already exist are not –most likely– the correspond-

ing to the species in the metagenome. Even some large

mutations (inversions, deletions, etc) can happen regu-

larly. Therefore a more flexible matching is proposed,

which differs from an assembly bymapping in which there

are quite close representatives of the sequenced bacteria.

Thereby we included the option of using a custom glo-

cal [21] alignment, which yields longer fragments and

larger evolutionary gaps. This method generally improves

mapping results, as global alignment methods are less

accurate when identifying species.

Once local alignments are calculated (using GECKO,

BLAST or any other similar program), fragments are

extended by joining those that are close enough accord-

ing to a given maximum-gap parameter. This is done by

calculating the Needleman-Wunsch matrix between the

start and the end of the matching read within the genome

region with a customized implementation.

Furthermore, glocal alignment can be performed by

combining the local alignments produced by alignment

tools such as BLAST or GECKO with the provided cus-

tom glocal alignment. All parameters can be user-defined,

thus providing data processing flexibility. Table 1 shows

an example of candidate fragments that are extended to

conform a glocal alignment.

New score and expected value calculation

The extension of fragments requires the re-calculation of

fragment scores to identify the best match out of a list of

candidates during the mapping process. The properties of

the extended fragment, namely length –of bases–, num-

ber of identities and inserted gaps stand for the raw score.

The raw score has to be normalized in order to obtain the

expected value of a reported fragment. This is performed

using K and Lambda parameters using a similar approach

to that of the BLAST family. K and Lambda parameter are

calculated as described in [22].

To compute the raw score of the extended fragment

produced by our custom glocal alignment we apply a tra-

ditional affine scoring model (with open and extension

gap penalties), as shown in the following formula:

RS = I ∗ Mr + (L − (Gi + Ge) − I)

∗ Mp + Gi ∗ Pi + Ge ∗ Pe
(1)

Where RS stands for “Raw Score”, I for the total number

of identities in the fragment, Mr for the match score, L

for the total length of the fragment in base pairs, Gi for

the total number of open gaps in the fragment, Ge for the

total number of extension gaps in the fragment,Mp for the

mismatch penalty, Pi for the penalty of an open gap and Pe
for the penalty of an extension gap.

Mapping

Themapping module (GMAP) process offers a three-level

mapping option that not only discovers highly abundant

species that hide others in terms of abundance due to

high similarity or uncertainty in the alignment, but to also

obtain quality distance measurements between the best 3

candidates for every match. The top three candidates are

selected based on identity and coverage thresholds and

expected values. Moreover, users can perform different

mappings by restraining subsets of reads using different

thresholds.

Table 1 Before-and-after extension example of a read with two candidate fragments to be joined

Before extension of local or ungapped alignments

029701.102903— NC_004663.1 — Bacteroides thetaiotaomicron 897405

N SCORE IDEN LEN SIM IGAPS EGAPS STRA R1 R2 G1 G2

1 - 134 145 84 0 0 Plus\Plus 1 133 1631420 1631563

2 - 94 104 80 0 0 Plus\Plus 147 249 1631564 1631666

After extension (“glocal-like” alignment)

029701.102903— NC_004663.1 — Bacteroides thetaiotaomicron 897405

1 - 224 248 90 1 2 Plus\Plus 2 249 1631420 1631665

In the top, the table before extension. Fragments (1) and (2) are separated by a relatively small gap of 14 base pairs (The ending read coordinate R2 of (1) is 14 base pairs away

from R1 in (2)). These fragments represent an example of candidate fragments. The after subtable (bottom) displays the resulting extended fragment and shows a longer

alignment with still high similarity and a low number of gaps (one opening gap and two extension gaps). The score is calculated afterwards (See “New score and expected

value calculation”).
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In a scenario with a highly abundant organism, further

analysis can be performed by only considering certain

genomes using certain options e.g. to observe differences

and extract statistical indicators of close candidates.

About the mapping decision

Every read yields a list of reported fragments to which the

following algorithm is applied.

1. Filtering step: A filtering step allows the researcher to

consider only a subset of reported fragments,

enabling a levelling up mapping method. If a

fragment does not reach pre-filtering thresholds, it

will be discarded. Such filtering allows a two phases

pre-filtering:

(a) Coverage threshold phase: The length of the

match divided by the length of the read.

(b) Identity threshold phase: The number of

identities in the match divided by the length

of the match.

2. Repeat this step for 3-option mapping and, if

fragments are still active: Select the fragment with

the smallest expected value and if it is lower than the

maximum allowed expected value. This fragment is

included in the mapping file as first, second or third

candidate depending on the number of options

chosen and the genome is inactivated for the next

option iteration.

3. If no more fragments are still active or none of them

exceeds the thresholds, the read is decided with either

no mapping option or up to 3 mapping options.

See “Mapping decision and fragments” in the Additional

file 1 for more information.

Results and discussion
Rather than developing a monolithic application with

graphical interfaces, we opted for a simple pipelining

procedure in which new software modules can be used

to exploit results. To facilitate user interaction, a com-

plete web-based interface has been developed based on

Galaxy workflow manager, which enables users to easily

run their analyses in both a local instance or in dedicated

servers. In addition, a User Guide [23] is available. Regard-

ing software modules, all specifications about input and

result file formats are shown, facilitating the use of third-

party software, such as common graphical libraries and

spreadsheets.

The results given by our workflow software are illus-

trated by an experiment where two collections of 6

metagenome samples each were extracted from fae-

cal microbial communities of adult female monozygotic

and dizygotic twin pairs concordant for leanness or

obesity and their mothers [24]. Raw data (i.e. .sff files)

were obtained by 454-pyrosequencing, and inherent arte-

facts or low-quality sequences were further filtered and

removed using Replicates [25] software and SeqTrimNext

(See “Filtering and trimming parameters” in the Addi-

tional file 1 for used parameters). The average size of

the read collection ranged from 172 bp to 237 bp after

quality control and sequence trimming. The total num-

ber of sequences was 2,724,867 for lean metagenomes

and 2,972,697 for obese ones. For testing purposes, in

this technically-oriented paper we opted to design a syn-

thetic case-control study of two metagenomes by joining

samples from lean and obese individuals.

Reads-abundance and taxonomy classification of reads

The analysis of the species present in metagenomic sam-

ples enables taxonomic classification based on abundance

of mapped reads. Information about the species present in

metagenomes and variations across a collection of species

is yielded by GMAP in Comma Separated Value (csv) for-

mat files that can be edited using common spreadsheet

software (see Fig. 2a).

Abundance data are primarily used to determine the

species that are present in a metagenomic sample and

can be exploited in comparative studies on the over- or

under-abundance of species in different samples. How-

ever, abundance data does not provide information on the

quality and certainty of mapping. This lack of reliabil-

ity can be partially compensated by using the n-mapping

method.

Three-options mapping analysis Our software has the

ability to perform the mapping of reads through a

multiple-level strategy. After the best read-genome map-

ping value is used, the used fragment is inactivated and the

genomes belonging to different strains of the same species

are optionally inactivated, and the process is repeated.

This way, we get the second, third and subsequent best

read-genome mapping values. A long separation between

the mapping options provides stronger evidence support-

ing the validation of the mapping procedure.

When comparing 3-mapping options, the detection of

peaks in second or third options means that a particular

species is repeatedly the second or third candidate (see

Fig. 2b). These peaks suggest that strong similarities exist

between a specific pair of species and careful examination

is required since the accuracy of mapping is not certain.

For instance, it would be interesting to study if the alpha-

betical order of the BLAST output for sequences with

the same expected value is affecting the mapping. These

observations can be supported by the analysis of map-

ping precision (see Fig. 2c), which considers the closest

reads given a distance parameter and shows the separa-

tion in mapping length, the number of identities, or any
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(a)

(b)

(c)

(d)

Fig. 2 Three-options mapping analysis. Some data from GMAP-based mapping analysis. a Abundance plot for the averaged Lean (blue) and Obese

(orange) metagenomes of the most read-abundance genomes. The plot depicts total mapped reads per specie in the two averaged metagenomes.

b Three-option abundance by organism. In blue, total first option abundance, (number of reads assigned). In red and green, the number of times an

organism was the second and third best candidate for a read. Bacteria with red or green peaks reveal that another organism is probably hiding them

(regarding abundance) and there is not a direct consensus. c Total reads assigned in log10 scale per species as best candidate (first option, blue) and

from that total, the number of reads that had two very similar candidates (defined as a distance in terms of identity, length and coverage) from the

second best candidate (in red). d An exhaustive-one-vs-all user-defined analysis where a bacterium is compared against all species in the database.

The peak in the plot (near the middle) is the analyzed genome, Ruminococcus obeum ATCC 29,174. This particular scenario depicts a comparison of

the target genome against all species by length and abundance. In blue, the percentage of reads that were mapped as second candidate when the

best candidate was the target genome. In orange, the average length of such mapped reads

other chosen parameter between the assigned read and its

second best candidate. Additionally, this separation shows

the extent of differences between first and second candi-

dates, and therefore is another indicator of the quality of

mapping.

In addition, the 3-mapping approach allows to assess the

mapping certainty at both reads and species level; at read

level by comparing fragments quality indicators of partic-

ular genomes against the rest (see Fig. 2d), and at species

level by comparing the abundance levels of the different
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options for the particular genomes. For example, for all

reads mapped over a given genome, information about the

identity and coverage level of the second and third map-

ping option would provide information about the quality

or certainty of the first option.

On the other hand, in a joint analysis of the Fig. 2b and c,

no peaks in second or third options, along with a larger

separation gap on mapping precision analysis suggest that

the accuracy of mapping is high, which reduces the ran-

dom assignment of reads to genomes and, therefore, the

results obtained are more reliable.

Figure 2c displays the number of reads assigned to each

species and, in relation to each assignation, the times the

second option was almost as good as the first (namely,

“shared” reads). The fact that the blue and red lines of two

species are close to each other suggests that mapping is

not accurate and careful examination is required.

Fine-grained tuning and closer examination In a sce-

nario where a specific species has been the second

option a higher number of times compared to the first

option, as discussed in the previous Section, the mapping

should be exhaustively analyzed and compared with other

species. Such analysis would provide more certainty of

the presence of a low-abundance genome by checking the

properties of its matches, and would enable contrasting

the variances in the matches between a high-abundance

genome and its best second option. Moreover, it is pos-

sible to perform a one vs. one, one vs. some, or, some

vs. some comparative analysis of the target species. This

type of analysis can be performed based on any of the

properties of the mapped reads, such as length, similar-

ity, coverage, or any user-defined properties. This infor-

mation is particularly useful when the first and second

mapping options identify different species (in some cases,

remotely-related species).

Figure 2d illustrates how a number of reads map to very

similar sequence regions shared by different species (due

to high similarity at genome level –i.e. conserved genes).

For example, the mentioned Figure displays the second

mapping option of the reads that were mapped as first

solution to the Ruminococcus obeum ATCC 29,174. The

blue peak in the middle of the plot stands for almost

25 % of the reads assigned to Ruminococcus as first

option and to Dorea longicatena DSM 13,814 as second

option, which evidences strong similarities in several areas

of the two sequences. Additionally, the orange peak at

the right side suggests a longer alignment in the second

option –Ruminococcus gnavus AGR2154–, thus requiring

in-depth analysis of such reads.

Statistical significance of variations between samples

The presented software can provide statistical data on a

number of aspects or characteristics, such as the Z-score

test to detect significant variations in the abundance of

species in different experimental conditions; or to con-

trast the significance of the variation at a species level

between samples calculating the p-values. An interest-

ing example is case-control studies in which differences

in reads abundance along genomes can be identified. Z-

scores provide accurate information on the significance

of such differences (see “Statistical Significance” in the

Additional file 1 for more information).

Genome-specific experiments and quality assessment

Reads mapping to specific regions of genomes Besides

the proximity measures provided by three-option map-

ping, there is another important aspect concerning the

provision of evidence about the presence of species with

low-abundance of reads in the metagenome. The main

idea is to find regions in a particular organism that do not

exist or do not share similarity at all with other organisms

present in the collection of genomes. To accomplish this,

N − 1 comparisons between the reference genome and

the N genomes contained in the collection are performed

using GECKO. This process yields the detected regions

and the assigned reads that have been mapped to these

regions.

The extracted reads mapped to these regions provide

strong evidence on the presence of low-abundance species

in the metagenomic sample, since the mapped read does

not fit over other genomes (see “Reads mapping to spe-

cific regions of genomes” in Additional file 1 for more

information).

Differential abundance in annotated regions of

genomes Another useful tool is the comparison plot of

abundance of annotated regions (potential coding regions

that could change abundance values in different samples).

This assay is conducted on a particular genome by only

considering the reads mapped to annotated regions of

the genome and comparing abundance between different

samples in the same way as RNA-seq transcriptome

expression analysis is performed. Differences in the abun-

dance of reads mapped to annotated regions –when sam-

pling genomic DNA– might be related to environmental

changes. This hypothesis is based on the experimental

resemblance of the differential expression plot of anno-

tated regions when two samples whose environmental

conditions change are compared. Figure 3a suggests

that some annotated regions are being over- or under-

represented, thus suggesting that abundance in annotated

regions may be related to variations in the samples.

Genome profiling of mapped reads A genomic pro-

file of mapped reads is the accumulated number of

reads mapping to a given position within the genome.

Accumulated histograms of abundance of reads provide
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(a)
(b)

(c)

(d)

Fig. 3 Genome-specific experiments. Some of the results oriented at a genome-specific-level. a DNA-seq differential expression plot. Each point

represents an annotated region for a particular genome. In the x-axis and y-axis, the percentage of reads that are mapped to each annotated region

divided by the total mapped reads. b Accumulated reads mapped onto each position of the genome smoothed using a window of size 10000. In

the x-axis, the genome bases from 1 to a portion of its length. In the y-axis, absolute accumulated number of reads mapped. c This plot shows how

proteins found by searching with annotated (Left) and non annotated (Right) reads accumulate along similarity and length. The annotated search

depicts higher length and similarity matches, resembling Sanders curve (reference in the main text), whereas non-annotated search shows mostly

non significant matches. d Annotation mapping. This plot shows reads mapped to a particular genome distributed by annotation properties. The

three groups are plotted in different colours and shapes, namely a orange crosses for unannotated reads, b yellow crosses for semi-annotated reads

and c purple points for fully-annotated reads. The background grey area represents the accumulation of reads for the whole mapped metagenome

in logarithmic scale; thus, darker areas represent higher accumulation
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information about the number of reads at region level, and

therefore about variations in such accumulation (in case-

control experiments). In principle, when working with

genome sequencing, a more or less flat profile would be

expected, as opposed to transcriptomics sequence data.

The genomic profile helps detect highly active regions or

different number of copies in such regions. This visual-

ization tool (see Fig. 3b) shows how reads are distributed

in a particular species and whether the assigned reads are

present along the whole genome or only in the most active

areas. Another possibility offered by this tool is that it

helps the user decide whether to perform or not a pre-

assembly of the reads mapped to a specific genome to

support the connections found between reads.

Extensive and further verification We propose that the

distribution of fragments based on the comparison of

reads versus genomes is now divided into two different

distributions, as seen in Fig. 3c. Additional verification

was performed by representing the matching values for

reads falling into annotated and unannotated regions.

This is obtained by blasting the set of annotated and

unannotated reads mapped to a given genome against a

database of proteins –such as swissprot [26]. As expected,

different distributions are obtained, which evidences the

suitability of using different thresholds. This affirmation is

supported by the different levels of sequence conservation

in annotated and unannotated regions.

Mapping over annotated regions of genomes Annota-

tion mapping is another example of in-depth analysis of a

specific genome and, in particular, of low abundance ones.

Our workflow uses all the reads assigned to a genome

and divides them into three groups: (1) No annotations, in

the sense that the annotation files obtained did not con-

tain any annotation at the position where the read was

mapped; (2) Semi-annotations, when a part of the mapped

read contains annotations, and (3) Full annotations, when

the whole read contains an annotation.

These three groups are plotted onto the whole mapped

metagenome distribution (see Fig. 3d). The background

grey area represents the accumulation of reads for the

whole mapped metagenome in logarithmic scale; darker

areas represent higher accumulations. The identity-length

distribution of reads for all fragments (with any filtering)

is provided by GECKO and can be partially obtained from

data evidencing significant alignments yielded by other

programs (BLAST) (which can be tuned to also report

random distribution). The rationale of this result comes

from the experiments of Sanders et al. [27] and Rost [28]

that significance is related to the tail of the distributions.

Therefore, displaying mapping values on the grey area

distribution provides first-glance information about the

accuracy of mapping.

Comparison with other metagenomic tools

In order to prove that the results of the proposedworkflow

are consistent with those of other metagenomic analysis

software suites (in terms of abundance in the taxonomic

classification), the following test was performed using

results from BLASTn based on metagenomic samples

from faecal microbial communities. Both, our workflow

(MG workflow) and MEGAN were executed using the

same input from BLASTn and ran with default parameters

(available in the Additional file 1 under “Comparison with

MEGAN”).

On comparison of the lean metagenome based on

MEGAN, the abundance plot (see Fig. 4a) shows simi-

lar results to ours. Standard deviation from ratios (using

abundance data provided by MEGAN and by our work-

flow) was 0.25, which is not significant enough to identify

relevant variations (see Fig. 4b, c). However, whereas the

analysis of a metagenome using MEGAN can last nearly

an hour, our MG workflow took about six minutes to ana-

lyze the obese metagenome and five minutes for the lean

one when the comparison had been done with BLAST.

With GECKO, the duration of the process was further

reduced, taking about only one minute for the lean sample

and three minutes and a half for the obese metagenome.

Runtime executions were measured using a regular Intel

i5 machine with 4 GB of RAM.

Conclusions
Metagenomics is an effervescent field and there are still a

number of questions that need to be addressed before a

stable version of data analysis software becomes available.

Currently, metagenomic analysis tools generally repre-

sent a closed environment and offer few configuration

options and limited extension possibilities. Our aim was

to develop a software framework to which other mod-

ules could be added. An additional motivation to develop

this software was the need for software sensitive enough

to detect the presence of low-abundance species. Finally,

our intent was to provide data in standard and editable

formats that facilitate further analysis with external

software.

The proposed workflow software offers several notable

advantages over the software currently available in the

market. Firstly, the use of GECKO enables this software to

compute similarity searches in the samples against a col-

lection of genomes in a reasonable time. We found that

better results are obtained if a collection of genomes –

rather than genes or proteins– is used. At least this was the

case when not all genes/proteins from the genomes were

registered in reference databases. Moreover, if genomic

samples are used (not only transcriptomics), a significant

amount of reads would map to unannotated regions, and

therefore they would not match to databases composed of

genes or proteins.
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(a)

(b)

(c)

Fig. 4MEGAN and MGWorkflow comparison. Comparative analysis for the lean metagenome shows similar mapping abundances. a Abundance

plot by species in percentages. b Total reads assigned by each method and total number of reads in the metagenome. c Abundance chart by family

(except Actinobacteria, shown as Phylum)

Providing different mapping alternatives helps set up a

sort of quality measures of the mapping process based

on abundance differences across mapping alternatives.

In addition, the study of the different alternatives could

reveal hidden interactions or shared similarities between

species that cooperate in some aspects.

The proposed software is designed to provide evi-

dence of the presence of low-abundance species by find-

ing particular specific regions of genomes with mapped

reads. These mapped reads provide strong evidence of

the species present in samples. The methods developed

for assessing and evaluating the quality of mapping also

improve accuracy and reliability in terms of the identifica-

tion of the species present in a sample.

From our perspective, the most important contribution

of this workflow software is that it offers the possibil-

ity of incorporating new software to extend the analysis

workflow by showing datafile specifications enabling fine-

grained metagenomic data analysis.
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Additional file 1: Supplementary material. (PDF 1269 kb)
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