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Fig. 1. The interplay of camera position and focal length allows a photographer to achieve different compositions of the same scene. Moving the camera

away from the scene while increasing the focal length f affects the sense of depth of the scene, as well as the relative magnification of objects at different

depths, see (a) through (c). Note that the woman did not move while these three pictures were being taken. Given a stack of images captured with a fixed focal

length at different distances from the scene, our framework allows us to modify the composition of the scene in post-capture, and leverages multi-perspective

cameras for added flexibility. This is shown in the animation in (d), which can be viewed by clicking on it in a media-enabled PDF viewer, such as Adobe

Reader. The colors overlaying the key-frames of the animation indicate regions imaged with different focal lengths, shown in the visualization on the right.

The static frame shows the final composition and the multi-perspective camera used to render it.

Capturing a picture that “tells a story” requires the ability to create the right

composition. The two most important parameters controlling composition

are the camera position and the focal length of the lens. The traditional

paradigm is for a photographer to mentally visualize the desired picture,

select the capture parameters to produce it, and finally take the photograph,

thus committing to a particular composition. We propose to change this

paradigm. To do this, we introduce computational zoom, a framework that

allows a photographer to manipulate several aspects of composition in post-

processing from a stack of pictures captured at different distances from

the scene. We further define a multi-perspective camera model that can

generate compositions that are not physically attainable, thus extending

the photographer’s control over factors such as the relative size of objects

at different depths and the sense of depth of the picture. We show several

applications and results of the proposed computational zoom framework.

CCS Concepts: • Computing methodologies→ Reconstruction; Com-

putational photography; Image-based rendering;
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1 INTRODUCTION

Pictures can be powerful devices of communication when their

composition allows the photographer to tell the right story. By

composition, we refer to the process of adjusting the relative posi-

tions and sizes of foreground and background objects in the image.

Photographers traditionally accomplish this by varying capture pa-

rameters such as the camera position and the focal length of the lens.

When skillfully employed, the interplay of these parameters affects

the resulting image in fundamental ways. One example of this is

shown in Fig. 1(a-c), where the foreground subject is standing in the

exact same position, but the composition (and therefore the “story”)

of each image is fundamentally different. In this case, this was done

by increasing the focal length and moving back the camera.

Figure 1(a) shows that a short focal length provides a large field

of view (FOV), thereby capturing a large portion of the background.

In this case, the image provides a better context of the scene in

which the person is standing. Furthermore, because the camera

is close to the subject, there is more perspective distortion (also
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known as extension distortion1) on the foreground, making it look

more three-dimensional. Depending on the situation, this may or

may not be a desirable quality.

On the other hand, switching to a longer focal length magnifies

the objects in the scene. If the camera is then moved backwards

to compensate for the magnification of the foreground subject, the

scene appears more shallow, as in Fig. 1(c). Here, the rusty bridge in

the background appears closer to the subject, affecting the story the

picture tells. Also, because the camera is farther away, the image

of the woman is not distorted and appears flatter.

The effect of the interplay of camera position and focal length

has long been exploited in still photography and film. For example,

a popular cinematographic technique that leverages this is the dolly

zoom, also known as the "Vertigo" effect. A dolly zoom is a video

sequence that is made more dramatic by collapsing or expanding the

apparent depth of the scene around the main subject, often during

an important, perspective-altering event. This effect is achieved by

moving the camera in or out of the scene (a motion called dollying),

while the focal length is progressively changed so as to maintain

the magnification of the main subject.

However, adjusting the composition of the image by manually

changing the camera position and focal length appropriately presents

several difficulties. First of all, varying these parameters as needed

may be impractical or demand advanced skills. For instance, dolly

zoom sequences require either specialized devices that change the fo-

cal length to exactly compensate for the camera motion, or a skilled

camera crew of several people to execute the maneuver. Addition-

ally, the range of focal lengths covered by the lenses at hand may

be limited, thereby reducing the range of compositions that can be

captured. Furthermore, the photographer is limited to compositions

that are physically possible. Finally, but perhaps most importantly,

any adjustments to the composition using these capture parameters

must be decided by the photographer before capturing the sequence.

To address these problems, we present computational zoom, a

framework that allows a photographer to adjust composition as a

post-process. At capture time, we simply require the photographer

to take a dolly-in video (or a stack of pictures) without changing

the focal length of the lens—thus supporting widespread consumer

devices such as camera phones. After capture, our computational

zoom framework allows photographers to modify the FOV, the ex-

tension distortion, and the perspective of the image. They can also

play with the sense of depth of the scene and the relative magnifica-

tion of objects at different depths. Moreover, our framework allows

compositions that would not be possible with a physical camera

system: it can simulate multi-perspective cameras that can image

different depth ranges in the scene with different focal lengths.

Figure 1(d), shows an animation of the type of post-capture con-

trol our method offers. Each frame in the sequence is rendered

by our framework and results from the camera projection model

shown on the right. Initially, the FOV (red cone) is decreased and the

camera is moved back to preserve the magnification of the woman,

reducing the perspective distortion. Subsequently, the appearance

1Extension distortion is a function of camera-to-subject distance alone, and is inde-
pendent of the focal length. However, shorter focal lengths allow the photographer to
move closer to the subject and still keep it entirely in frame, thus exacerbating this
effect.

of the foreground subject is preserved and the background (briefly

marked in green in the animation) is imaged with a shorter focal

length (green cone). Finally, the very back of the scene is “pulled

closer” by increasing the focal length for the part of the scene behind

the first green column in the scene (shown in blue).

This paper makes several contributions to the filed of compu-

tational photography. The first is the idea of computational zoom

itself, a framework that allows a photographer to change the sense

of depth of a scene, the relative magnification of objects at differ-

ent depths, the amount of perspective distortion, and other aspects

of picture composition in post-capture. One key ingredient of our

approach is the definition of multi-perspective cameras that can

image different depths of the scene with different focal lengths. We

have developed a real-time tool that shows how the composition

changes as the user changes these parameters. We also propose a

novel method to estimate high-quality, dense 3D estimation despite

the limited parallax induced by a dolly-in motion. Finally, we adapt

the unstructured lumigraph rendering approach [Buehler et al. 2001]

to deal with multi-perspective cameras.

Throughout the paper we use animated figures to better convey

our results. They are indicated with a bold caption, and can be

viewed in a media-enabled PDF viewer, such as Adobe Reader, by

clicking on them.

2 RELATED WORK

Computational zoom has three different components: dense depth

reconstruction from a dolly-in sequence, the specification of a de-

sired multi-perspective camera, and image synthesis of the final

result. Here we provide an overview of related work in each area.

2.1 Dense 3D Reconstruction

We need to estimate dense depth-maps for multiple frames in order

to synthesize images under multi-perspective camera projections.

An excellent survey of multi-view stereo reconstruction methods

is available in Seitz et al. [2006]. Many multi-view stereo (MVS) re-

construction methods [Fuhrmann et al. 2014; Furukawa and Ponce

2010] are designed to give a dense 3D model for a well sampled

scene. However, for image stacks captured with a dolly-in motion,

these approaches give very sparse reconstructions, leaving large

holes in the estimated depth-maps and cannot be used for our image

synthesis application. This problem occurs because the dolly-in mo-

tion, by construction, causes the epipole of each camera to fall inside

the field of view of other cameras, making it harder to reconstruct

geometry in these regions. We show the output of Furukawa and

Ponce [2010] and Fuhrmann et al. [2014] on our captured image

stacks in Fig. 7.

Instead, we rely on a class of 3D-reconstruction algorithms that

estimate 3D plane parameters for each patch in an image. For exam-

ple, PatchMatch stereo reconstruction [Bleyer et al. 2011] estimates

plane parameters at each image patch using randomized Patch-

Match [Barnes et al. 2009] to efficiently search the large space of

plane parameters. Heise et al. [2015] extend this approach to the

multi-view case with a variational framework. Galliani et al. [2015]

present a fast local-matching approach that allows to extend Patch-

Match stereo to multi-view on a GPU. This is one of the top perform-

ing algorithms according to standard benchmarks. However, these
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approaches all assume a lateral camera motion, and do not handle a

dolly-in motion well, since the latter motion reduces the parallax to-

wards the center of the images. In contrast, we propose a multi-pass

reconstruction approach designed for dolly-in camera motion which

gives us dense, accurate depth maps. Specifically, we leverage the

plane parameters to estimate the change in scale between patches

and thereby compute depths where parallax is negligible. We build

upon Galliani et al.’s fast patch-matching algorithm to do this.

2.2 Multi-Perspective Imaging

As their name suggests, multi-perspective images combine multiple

perspectives of a scene into a single image. There has been a lot

of work in multi-perspective modeling, rendering, and imaging, as

detailed in the state-of-the-art survey by Yu et al. [2008].

Here we present some of the work in multi-perspective imag-

ing that combine images captured with different motions of a pin-

hole camera into a single image. Sietz et al. [2003] and Zomet et

al. [2003] synthesize multi-perspective images and show different

visualizations of the scene by re-sampling a video cube obtained by

moving cameras in a continuous manner. Multi-perspective panora-

mas [Agarwala et al. 2006; Kopf et al. 2010; Roman et al. 2004]

combine images captured by a sideways-moving camera to gener-

ate long, image panoramas of urban façades. Yu et al. [2004] show

multi-perspective rendering of objects by combining different per-

spectives of objects captured on a turntable. In our work, the multi-

perspective images are formed by combining images captured by

roughly moving the camera in a dolly-in or dolly-out motion.

Our multi-perspective camera model is closely related to the

Graph Camera model [Popescu et al. 2009] that combined mul-

tiple pinhole cameras in general positions. However, the Graph

Camera model is mainly focused on visualizing virtual 3D models,

and shows very limited use for real-world scenes. More recently,

Lieng et al. [2012] proposed an interactive system to generate multi-

perspective images by combining multiple viewpoints. Their system

pastes part of one image into a polygonal portal in another image,

and hence has limited applicability for general composition.

There has also been some work that manipulates the perspec-

tive of objects using a single photograph. For example, Fried et

al. [2016] allows changing the perspective distortion of a face in

post-processing. This approach is limited as it can remove the un-

desirable perspective distortion only for close-up portraits. Our

approach, on the other hand, is more general and allows a user to

change the perspective of any object, although at a higher computa-

tional cost and with some limitations as we discuss later. Carroll et

al. [2010] provide an interface to distort the perspective in (mostly)

architectural photographs. The user provides constraints on van-

ishing points and lines, which are then used to warp the image,

thereby enabling the simulation of telephoto or wide-angle projec-

tions, among others. Although our approach can achieve similar

effects for certain scenes, it differs in several important ways. Specif-

ically, we do not focus on architectural scenes and do not require the

explicit modification of vanishing points and lines. Rather a user can

selectively change the perspective based on depth, which requires

handling occlusions, disocclusions, and fine-grained segmentation.

c1

f1

c1

f2

c2

f2
ξ

(a) (b) (c)

Fig. 2. Given a scene and a camera position c1, two different focal lengths

will produce the same image, only with a different magnification and crop-

ping, (a) and (b). However, if the camera is also moved, the relative magnifi-

cation of objects at different depths changes. In fact, objects that lie at the

intersection of the fields of view of cameras at different locations (marked

by ξ in (c)) will have the same magnification and the rest of the scene will

be zoomed either in or out, see text.

2.3 Image-Based Rendering

Image-based rendering (IBR) uses captured images of a 3D scene

to synthesize arbitrary views [Shum et al. 2007]. Although most

previous work focused on novel-view synthesis with a pin-hole pro-

jection, our goal is to synthesize new views with a multi-perspective

camera projection. To do this, we borrow ideas from previous work

with some modifications. In the original light-field rendering work,

Levoy and Hanrahan [1996] showed that image-based rendering

can be done in ray space by capturing many images of the scene

without needing an intermediate geometric representation of the

scene. However, others have shown that more accurate results are

possible if the captured images are augmented with approximate

geometry [Chen and Williams 1993; Debevec et al. 1996; Gortler

et al. 1996].

Building on that, Buehler et al. [2001] take images captured from

arbitrary positions and orientations along with the approximate

geometry of the scene to perform view interpolation. We modify

this approach to synthesize images under multi-perspective cam-

era projection. Recent approaches by Chaurasia et al. [2013; 2011]

tackle the problem of uncertain depth estimation by performing

depth synthesis and using shape preserving warps to improve view

interpolation. Chen et al. [2011] introduces interactive approach for

3D video editing that allows for viewpoint changes. Another set of

recent approaches [Kopf et al. 2013; Sinha et al. 2012] are focused

on handling scene reflections, glossy surfaces and transparent sur-

faces. Such approaches could be adopted in our image synthesis

framework to further improve the quality of our results.

3 THE COMPUTATIONAL ZOOM FRAMEWORK

The goal of our computational zoom framework is post-capture

modification of a picture’s composition. We achieve this by allow-

ing the manipulation of focal length and camera position, and by

extending their interplay with the introduction of multi-perspective
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cameras. We start by reviewing how these parameters affect the

final image. First, recall that the field of view (FOV) of a lens is

inversely proportional to its focal length, f :

FOV = 2 · arctan
d

2f
, (1)

where d is the size of the sensor or film. The toy example in Fig. 2

demonstrates how this impacts the final image by showing a scene

captured with different focal lengths and camera positions. Assume

that the first focal length, f1, is sufficiently short (i.e., the FOV is

sufficiently wide) to capture most of the scene from position c1, as

shown in Fig. 2(a). Capturing an image from the same position, but

with a longer focal length f2, will zoom and crop this image (see

Fig. 2(b)). Here, the narrow FOV maps a smaller part of the scene

to the same area on the sensor or film, thus effectively magnifying

it. A particularly interesting configuration is one where the camera

with focal length f2 is moved back so that the two FOV frustra

intersect at the depth of the foreground object, as in Fig. 2(c): objects

at the depth where the width of the two FOVs is the same will be

imaged with the same magnification by the two cameras. However,

the background will be zoomed in by the camera at c2, since its FOV

is narrower.

This observation allows us to formalize how a dolly-zoom video

sequence is created: while the camera is moved in or out of the scene,

the focal lengthmust be changed so that the FOVs of different frames

intersect at a plane, which we call the dolly plane ξ . This ensures

that the magnification of a subject at the dolly plane stays the same

throughout the sequence.

By simulating different focal lengths and camera positions, we

enable the same flexibility that a photographer has in the field, but

in post-capture. However, the magnification of objects at different

depths in the scene still remains constrained in one of two ways.

If either the focal length or the camera position are changed, the

whole scene is zoomed in or out (Fig. 2(b)), though not necessarily

by the same amount at all depths. If both the focal length and camera

position are changed, a dolly plane is defined (Fig. 2(c)); when objects

in front of the dolly plane are magnified, objects beyond it will be

reduced in size, and vice versa. In the next section, we present a

multi-perspective camera model that overcomes these limitations.

3.1 A Flexible Multi-Perspective Camera Model

To decouple the magnification of different depth ranges, we can

define different types of multi-perspective cameras where the focal

length changes with depth. For instance, we can define a long-short

configuration (see Fig. 3(c)), where the focal length decreases beyond

a given plane, or a short-long configuration (see Fig. 3(d)), where

the opposite is true.2 The first configuration, for instance, would

magnify objects in front of the dolly plane and zoom out those

beyond it, thus capturing a larger part of the background. The

second configuration would allow the opposite composition, and

would increase the extension distortion of the foreground objects.

To achieve such configurations, we can merge information from the

two cameras c1 and c2. For instance, the short-long configuration in

2“Short” and “long” here do not refer to an absolute focal length, but rather indicate a
relative change: for a short-long multi-perspective camera the focal length increases
beyond the dolly plane.

c2
c1

(a)

c2

ξ1

c1

(b)

c2
c1

ξ1

(c)

c2
c1

ξ1

(d)

Fig. 3. Throughout the paper, we represent a camera with its center of

projection and the boundaries of its field of view (FOV). (a) Given two

cameras c1 and c2 with the same focal length but different positions, (b)

we can zoom and crop the FOV of camera c2 to match the FOV of c1 at

dolly plane ξ1. (c) We define a long-short multi-perspective camera as one

whose focal length decreases beyond certain depth, while (d) a short-long

multi-perspective camera is one where focal length increases beyond certain

depth.

Fig. 3(d) can be synthesized by using camera c1 for objects in front

of the dolly plane, and camera c2 for the rest of the scene.

To define multi-perspective cameras more formally, suppose we

want to simulate a short-long configuration using two pin-hole cam-

eras with centers of projection c1 and c2. Without loss of generality,

assume both cameras have the same focal length f , Fig. 3(a), and that

their projection matrices are P1 and P2, respectively (recall that the

projection matrix subsumes the focal length in its representation).

Since we merge information from two cameras, the two FOVs

must match at the dolly plane in order to avoid artifacts around the

transition region. To enforce this, we modify the projection matrix

P2 to P̂2 = H
ξ1
2→1

P2, where H
ξ1
2→1

is the homography induced by ξ1
from c2 to c1. This homography specifies how points in camera c2
map to camera c1 when projected first to plane ξ1. With few simple

matrix operations, it is easy to see that:

x̂2 = P̂2X = x1, (2)

whereX is a point at the dolly plane, x1 is its projection onto c1, and

x̂2 is the projection ofX in the new camera defined by P̂2. Equation 2

shows that P̂2 satisfies our requirement, as the image of a 3D point

on the dolly plane is mapped to the same location on the sensor

of the two cameras (here assumed to have the same resolution for

simplicity).

Hence, images of an object that lies on the dolly plane are aligned

when imaged using P̂2 and P1. An object that lies beyond the dolly

plane is magnified when imaged using P̂2 as compared to P1 and an

opposite effect happens for an object in front of dolly plane. We dis-

cuss this in detail and offer a derivation of Eq. 2 in the supplementary

material.3

The image of a scene pointX from of a short-longmulti-perspective

system can then be computed as:

x =

{
P1X for X ∈ [c1, ξ1)

P̂2X for X ∈ [ξ1,∞)
, (3)

where, with a slight abuse of notation, [c1, ξ1) indicates the range

of depths from the center of projection c1 to plane ξ1. The image

by a long-short multi-perspective system can be similarly defined

3Supplementary material can be found here: https://doi.org/10.7919/F4VD6WCJ
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c2

c1

c3

ξ2

ξ1

(a)

ξ2

ξ1

(b)

Fig. 4. (a) We can extend multi-perspective cameras to have more than

one dolly plane by using multiple camera positions. (b) A�er appropriately

warping the cameras, we can, e.g., define a multi-perspective camera whose

focal length increases a�er each of the planes.

by swapping the cases in Eq. 3 (see supplementary material). This

equation shows that we need to know per-pixel depth for each input

image in order to create a multi-perspective image. We explain our

depth estimation in detail in the next section.

To avoid abrupt perspective changes at the dolly plane, we can

also define a dolly transition region. Mathematically, we represent

this region as a sequence of dolly planes that approximate a smoothly-

varying focal length with a piece-wise linear function. To show how

this can be done, we add a third camera with projection matrix P3
even farther from the scene, and define a second plane ξ2. To make

the FOV of this camera intersect the FOV induced by P̂2 (see Fig. 4),

we need to modify its projection matrix to be:

P̂3 = H
ξ1
2→1

H
ξ2
3→2

P3. (4)

We can now extend this definition from three regions to N regions

separated by N − 1 dolly planes, such that, for each region K (where

1 ≤ K ≤ N ), we define:

x = P̂KX if X ∈ [ξK−1, ξK ), (5)

where

P̂K =

K∏

i=1

H
ξi−1
i→i−1PK . (6)

Since there is no camera at c0, H
ξ0
1→0

is specified by the user and

adjusts the projection of the first camera to incorporate desired

transformations such as scaling, translation, or an arbitrary ho-

mography. It can also be simply set to identity in order to use the

information from the first camera directly.

Equation 5 defines our multi-perspective camera model. Note

that, although Eq. 6 assumes a specific order in which the cameras

are used in each region (the camera at cK is used in region K ), it is

trivial to extend it to work with a generic sequence, which may even

include the same camera multiple times (we offer a generalization

of Eq. 6 in the supplementary material).

The ability to define multiple dolly planes allows us to create dolly

transition regions, and, more importantly, gives us flexibility over

which depth range is imaged with which projection matrix. Note

that any combination of long and short focal length sequences is

valid: in Fig. 1, for instance, the final result is produced with a long-

short-long multi-perspective camera. We show a second example

of a long-short-long multi-perspective composition in Fig. 5. While

any number of dolly-transition regions could be defined, empirically

we found that two regions, each of which defined by two to five

dolly planes, are sufficient for most scenes.

Discussion. Our framework can be seen as an application of image-

based modeling and rendering (IBMR). However, unlike previous

methods, we need to combine information from cameras that are

potentially far from the desired view. When the depth estimation

is inaccurate, the farther the cameras, the more visible the artifacts

from warping. This puts more stringent constraints on the quality

of the depth estimation. In Sec. 4, we describe a novel depth esti-

mation method designed to overcome these issues. Moreover, our

image synthesis strategy must account for the unavoidable depth

uncertainty, and must cope with large disocclusion regions caused

by the light bending as the focal length changes. We describe our

multi-perspective image synthesis algorithm in Sec. 5.

4 DEPTH ESTIMATION

For each image in the input stack, we need to compute a dense, high-

quality depth-map in order to apply Eq. 5. The depth estimation

algorithm needs to achieve the following goals:

• Maximize geometric consistency across the image stack.

Because we combine the content of multiple images, we must

ensure that corresponding points in the different images are the

projection of the same 3D point. This can be achieved by enforc-

ing geometric consistency between the different depth maps.

• Strike a balance between high depth certainty and pixel

coverage. We need high-quality depth to warp images correctly.

A high threshold on depth certainty would produce high-quality

depth-maps, but may result in a large number of pixels not having

a depth estimate.

• Maximize photometric consistency across the image stack.

When warping one image to another, a slightly incorrect depth

that produces a photometrically-consistent warped source is ac-

ceptable.4

• Cope with limited parallax. The input stack is captured while

walking into the scene, causing the epipoles of image pairs to

project inside the images themselves.

To address these issues we propose the multi-pass, patch-based,

multi-view stereo (MVS) strategy, shown in Fig. 6. The input to

our system is the dolly-in stack, as well as the camera parameters

estimated from it with VisualSFM, a standard structure-from-motion

package [Wu 2011;Wu et al. 2011]. From these, we first estimate both

depth and normalmaps using each image as a reference against other

images in the stack (Sec. 4.1). Initially, there is no guarantee that

the estimated values are consistent across different images, because

the maps are computed for each image independently. Therefore,

we explicitly enforce consistency across the stack. For this task,

the combination of normals and depth allows us to better deal

with the lack of parallax, as we can define matching criteria other

than simple disparity (Sec. 4.2). However, we still need depth and

normals information for the areas where the previous step rejected

inconsistent parameters. Therefore, we introduce a cross-bilateral

propagation step (Sec. 4.3). Finally, we use an multi-pass approach

4The rationale, common to other view-interpolation methods, is that an inaccurate
estimate of the depth that allows the images to warp onto each other correctly, should
also allow to warp them to novel views that are close to the original camera locations.
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(a) Four input images from the stack (b) Undistorted foreground (c) Set desired size for the tree (d) Magnify far background

Fig. 5. Sample multi-perspective workflow. (a) Four of the input pictures captured with a fixed focal length while walking away from the scene. We would like

the man in the foreground to be the same size in the final result as in the top le� image. However, in that image his legs are distorted, so we remove the

distortion by zooming and cropping the bo�om-le� image in (a) to get the result as shown in (b). However, this changes the composition of the rest of the

image. (c) A long-short composition allows us to bring the tree back into frame. (d) Finally, a long-short-long multi-perspective camera magnifies the far

background, thus achieving the desired composition.

(a) Original Image (g) Point cloud at the 
        first iteration

(b) Per-frame MVS
(first iteration)

(d) Propagation(c) Geometric consistency
(first iteration)

(e) Per-frame MVS
(second iteration)

(f) Final maps
Depth estimation

(h) Final point cloud 

Fig. 6. Our depth reconstruction pipeline. For each image in the stack such as the one shown in (a), we compute (b) depth and normal maps using multi-view

stereo (MVS) by enforcing photometric consistency (see Sec. 4.1). (c) We then enforce geometric consistency across all these depth and normal maps. This

results in more accurate maps, but there may be missing values. (d) We then perform cross-bilateral propagation to fill in missing information, and (e) use both

the propagated and original values in a multi-pass scheme. (f) Our approach yields dense, high-quality maps, suitable for computational zoom applications.

Insets (g) and (h) show the reconstruction quality a�er only enforcing photometric consistency, and a�er the whole pipeline, respectively.

to determine high-certainty correspondences, while ensuring that

we have a depth estimate for a sufficient number of pixels (Sec. 4.4).

4.1 Per-Frame Multi-View Stereo

We take the relatively standard approach of enforcing photometric

consistency to perform our depth reconstruction. For each pixel p

of each image Ii in the stack, we estimate the parameters of the

plane tangent to the corresponding 3D scene point, πi (p) = [nTd],

where n is the plane normal and d is the depth, both specified in a

global coordinate system. To do this, we use the PatchMatch stereo

approach proposed by Bleyer et al. [2011], and extended to MVS by

Galliani et al. [2015]. Inspired by the PatchMatch algorithm [Barnes

et al. 2009], these methods use alternating propagation and random-

ization steps to generate tangent plane hypotheses, thus allowing

for an efficient exploration of the space of parameters.

For this stage we follow the method by Galliani et al., which we

briefly describe here for completeness. Given πi (p), we can compute

the coordinates of q, the corresponding pixel in a second image

Ij , through the plane-induced homography: q = H
πi (p)
i→j p. We can

similarly compute the neighborhood Nj (q) corresponding to the

neighborhood Ni (p). We can then define the photometric consis-

tency induced by the plane πi (p) as:

Ephoto(πi (p)) =
∑

j ∈Ji (p)

ρ(Ni (p),Nj (q)), (7)
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where ρ(·) is a dissimilarity (distance) function that includes bilateral

weights to decrease the influence of pixels in Ni (p) that may differ

from pixel p. We elaborate on the details of Eq. 7, including the

definition of the neighborhood and the formula of the plane-induced

homography, in the supplementary material. Finally, Ji (p) is the set

of the Q images in the stack that yield the smallest Ephoto(πi (p)).

We discuss how we select Q in Sec. 4.4. Unlike Galliani et al., we do

not constrain that images in Ji (p) to be separated by a large viewing

angle.

4.2 Geometric Consistency Across the Stack

At this point, for each pixel p in every input image Ii , we have an

estimate of the tangent plane parameters πi (p). These parameters

are estimated using as many images from the stack as possible, but

taking one image at a time as reference Ii . This can potentially

yield different estimates for different images. However, in the IBR

stage we combine information from multiple images into one, thus

requiring the depth estimates to be consistent across the stack.

To enforce depth consistency explicitly, we first compute a geo-

metric error between the plane parameters estimated for two images

Ii and Ij . To do this, we can use the plane parameters πi (p) to find

the 3D point Xp associated with pixel p, and then project it onto Ij
to find pixel q, which, in turn, will map to 3D point Xq . A common

approach to checking for consistency is to compute the error in

disparity space [Galliani et al. 2015].

However, because our images are captured with a dolly-in motion,

the epipoles are within the images themselves, making disparity

a poor criterion for our approach. Instead, we could use the plane

parameters themselves to measure consistency. Specifically, plane

parameters πi (p) and πj (q) are consistent when the induced homo-

graphies warp corresponding patches from Ii and Ij to the same 3D

patch. Therefore, our consistency error could ideally be computed

by comparing the product of the two homographies to the identity

matrix I :

E = H
πj (q)

j→i · H
πi (p)
i→j − I . (8)

Note that the error in Eq. 8 is a 3 × 3 matrix that subsumes sev-

eral measures of consistency, not all of which are associated with

a physical meaning, so it is not clear how to weigh these terms to

compute a scalar error. Instead, we focus on two specific criteria

that Eq. 8 incorporates that have a physical impact on our results,

and which can be computed from the plane parameters: reprojec-

tion consistency and scaling error. We also add a third consistency

measure based on color information to improve the quality of our

reconstruction. We describe these three metrics below.

Reprojection Consistency. To determine whether the depth values

associated with the pixels in image Ii are consistent with those of

pixels in image Ij , we compute a reprojection error as

E
{i, j }
r (p) = |p − p̂ |. (9)

To obtain p̂, we first project p to its corresponding pixel q in Ii
using the 3D point Xp . Then, we project q back to Ii using the 3D

point Xq to find p̂. This criterion has two shortcomings. First and

foremost, for pixels close to the epipole, any Xp and Xq would yield

a small E
{i, j }
r . Second, the reprojection p̂ uses only one of the plane

parameters, the depth.

Scaling Error. The problem near the epipole can be addressed

using scale, since the homography induced by plane πi (p) scales a

patch from image i based on its depth and orientation, regardless of

its proximity to the epipole. Specifically, we can compute the scale

change induced by homograpy H as:

Scale(H ) =

√
det

( [
h11 − h13 · h31 h12 − h13 · h32
h21 − h23 · h31 h31 − h23 · h32

] )
, (10)

wherehrc are the elements ofH , normalized byh33. Given the scales

si, j = Scale(H
πi (p)
i→j ) and sj,i = Scale(H

πj (q)

j→i ), we define the scaling

error as:

E
{i, j }
s (p) = |si, j · sj,i − 1|. (11)

While there exist planes with different normals that could produce

a low E
{i, j }
s , we find that this measure is sufficiently discriminative

for our purposes.

Color Consistency. If two pixels are imaging the same point in

the scene, their color information should be consistent, under the

typical assumption of a diffuse shading model. Therefore, we define

an additional color consistency term:

E
{i, j }
c (p) = max

C={R,G,B }

��Ci (p) −Cj (q)
�� , (12)

where Ci (·) is one color component in image i at a particular pixel.

In practice, we allow a little tolerance on the exact location of the

pixels to account for the artifacts due to color interpolation in the

different stages of the imaging pipeline: instead of only looking at

p, we compute Eq. 12 for all of the pixels in a 3 × 3 neighborhood

around it, and take lowest error among all of them.

Combining these three metrics, we then say that the plane pa-

rameters πi (p) are Q-consistent if there exist at least Q images Ij for

which the following Boolean expression is true:
(
E
{i, j }
r (p) < 1.5

)
∧

(
E
{i, j }
s (p) < 0.1

)
∧

(
E
{i, j }
c (p) < 15

)
. (13)

The thresholds used above were found empirically. We discuss the

choice of Q , which is the same as in Eq. 7, in Sec. 4.4. Once we find

the Q-consistent plane parameters, we fuse (i.e., average) them to

further reduce their noise [Galliani et al. 2015]. We then update

the plane parameters for all the consistent points with the fused

estimate. To easily identify consistent points to use for initialization

in our multi-pass approach (Sec. 4.4), we maintain a consistency

indicator map for each frame Ci (p) that is 1 if πi (p) is Q-consistent,

and 0 otherwise.

4.3 Cross-Bilateral Propagation of Consistent Plane
Parameters

At this point, for each input image Ii , we have regions for which we

have Q-consistent estimates of tangent plane parameters. However,

we typically lack an estimate for some of the pixels, in particular

for stringent (high) values of Q . To address this problem, we make

the common assumption that pixels that are close to each other

in image space and have similar colors are likely to belong to the

same surface, and therefore share similar plane parameters. Hence,

we use image Ii as a guide to propagate plane parameters from

the consistent regions to the nearby inconsistent areas. A simple
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cross-bilateral filter would propagate information, but also smooth

the Q-consistent estimates. To preserve the consistent information,

we apply the same cross-bilateral filter to a second map initialized

with 1’s for pixels associated with a Q-consistent estimate, and 0’s

elsewhere. Normalizing the output of the original cross-bilateral

filter by this second map ensures that the original values are left

unchanged [Gallo et al. 2015].

Note that there is no guarantee that the propagated plane param-

eters are Q-consistent as well. For this reason, together with Ci (p),

we maintain a second consistency map, Bi (p), that indicates the

pixels whose estimate was propagated from nearby regions rather

than having been estimated directly. This allows us to use them as

initialization values for subsequent passes of our algorithm, as we

explain in Sec. 4.4. Also note that, after this step, a portion of the

pixels might still not have an estimate of their plane parameters.

4.4 A Multi-Pass Approach for Se�ing Q

In Sec. 4.2, we introducedQ-consistency, which indicates the number

of images from the stack used to compute Eq. 7, as well as the

minimum number of images that should satisfy Eq. 13 in order for

the plane parameters to be labeled as consistent. Choosing the right

value forQ is critical. If a 3D point corresponding to pixel p is visible

only in a small subset of images because of occlusions, using a high

Q could penalize the correct plane πi (p). On the other hand, using

a Q that is too small will reduce the quality of the depth estimation.

Although our goal is to have the best depth estimate for each pixel

in all images, for some pixels we must settle for depth estimates

with higher uncertainty.

Therefore, we propose to use a multi-pass approach. We first

estimate high-quality plane parameters using a high value of Q ,

at the cost of doing so for a small portion of the pixels. We then

progressively relax our requirement on the quality of the estimation

by loweringQ , which yields a depth estimate for increasingly larger

portions of the pixels.

Specifically, we set Q = min{N /2, 15} in the first pass, where N

is the total number of images. In each subsequent pass, we lower Q

roughly logarithmically. We initialize each pass with the plane pa-

rameters found in previous iterations for pixels for which Ci (p) = 1

(i.e., they passed the consistency check) or Bi (p) = 1 (i.e., their

parameters were propagated from neighboring regions), and with

random values for the remaining pixels. We then enforce the Q-

consistency and propagation steps described earlier, updating the

plane parameters everywhere except for pixels with Ci (p) = 1. This

preserves the higher-quality parameters found in earlier passes.

Even after a few passes, some pixels may still not have consis-

tent parameters estimates. For such regions, we perform a final

cross-bilateral propagation as described in Sec. 4.3, but without an

additional consistency check.

4.5 Results of Our Depth Reconstruction

We show results of our depth reconstruction algorithm for differ-

ent scenes in Figs. 6 and 7. Figure 7(a)-(c), in particular, provides

a comparison with state-of-the-art algorithms, which struggle to

produce a dense point cloud due to the limited parallax induced

by the dolly-in motion. Even only after the first pass, our method

produces a denser point cloud, Fig. 7(d). Note that both the result

by Galliani et al. [2015], Fig. 7(c), and ours, Fig. 7(d), are obtained

with the same Q ; our method produces denser results thanks to the

geometric consistency criteria we describe in Sec. 4.2. Figure 7(e)-(g)

shows our result after the final pass for views that are significantly

different than any of the original camera positions. Our point clouds

are generally dense and accurate, aside from regions that are seen

by few (or no) cameras, and for large texture-less regions, such as

the sky or the woman’s black coat.

5 IMAGE SYNTHESIS

Given the stack of input images and their estimated depth-maps

from the previous section, we now want to synthesize novel multi-

perspective projections of the scene. To do this, we build upon

the unstructured lumigraph rendering (ULR) method of Buehler et

al. [2001], which was designed to synthesize a novel view of a scene

given proxy geometry and a stack of images. However, our problem

differs from the original ULR approach in two ways: 1) we need to

synthesize multi-perspective images, and 2) we have depth-maps

instead of proxy geometry.

5.1 Multi-Perspective Epipolar Consistency

One simple, yet powerful observation made by Buehler et al. is that

if a ray required for the novel view passes exactly through the center

of projection of one of the physical cameras, the value for that pixel

in the novel view should be taken directly from that camera. They

refer to this property as epipole consistency. We now describe how

this maps to the multi-perspective case, assuming that we have

perfect depth information.

Epipolar Consistency with a Single Dolly Plane. Without loss of

generality, we focus on the short-long multi-perspective case shown

in Fig. 8(a). Here, the black lines indicate the rays ri that project the

scene points Xi to the multi-perspective image. Note that r1 is the

same ray that would project X1 to c1. On the other hand, r2 bends

at the dolly plane. While no physical ray exists that matches r2, the

ray that maps X2 to c2 matches the segment of r2 that lies beyond

the dolly plane (dotted line from X2 to c2). The epipole consistency

then dictates that we take the pixel for X1 from c1, and the pixel for

X2 from c2.

More formally, given the two input images (I1 and I2) of the same

size, their respective depth maps (D1 and D2), and the depth of the

dolly plane, z, we can compute the multi-perspective image IMP as:

IMP = I1 ⊙ ✶{D1≤z } + I2 ⊙ ✶{D2>z } ⊙ ✶{D1>z }, (14)

where ⊙ is an element-wise product, and ✶A is an indicator vector

of the size of each image, which has a 1 for the elements in setA, and

0 otherwise. Note that the images and depth maps here have already

been warped using the homography discussed in Sec. 3.1, and that

the depth maps are represented in a common, global coordinate

system. Also, this equation is applied at every pixel, but we have

omitted the explicit dependence on pixel position for clarity.

Equation 14 first segments the images with respect to the dolly

plane, and then combines pixels from I1 that are in front of the

dolly plane with pixels from I2 that are behind the dolly plane in
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Furukawa and Ponce
[2010]

(a)

Fuhrmann et al.
[2014]

(b)

Galliani et al.
[2015]

(c)

Ours,

first pass

(d)

Ours,

final (view 1)

(e)

Ours,

final (view 2)

(f)

Ours,

final (view 3)

(g)

Fig. 7. Depth reconstruction comparisons. State-of-the-art methods, (a) through (c), produce sparse reconstructions because of the limited parallax induced by

a dolly-in motion. A�er the first pass, our method produces a denser result than the method by Galliani et al. [2015] (note that Q is the same for (c) and (d)).

A�er our multi-pass approach, our point clouds are dense and accurate, thus allowing to render views that are significantly far from any of the original views,

(e) through (g). The problematic regions for our approach are those that are not seen from any of the original cameras, and some texture-less regions, such as

the woman’s black coat.

X1

X2
X3

c2

c1

ξ

(a) (b) Short (c) Long (d) Short-long

Fig. 8. (a) Short-long multi-perspective projection diagram, (b,c) input im-

ages, and (d) result of applying Eq. 14. Note the holes in (d), which are

caused by points beyond the dolly plane that are occluded in (c), but visible

in the multi-perspective result because the projection rays bend.

both I1 and I2.
5 Although this equation guarantees that the epipolar

consistency is satisfied for the single dolly plane case, it does not

handle occlusions. For example, in Fig. 8(a), X3 is occluded in c2
because of the red object, as shown by the blue dotted line. However,

it is visible in the multi-perspective image because r3 bends around

the object. This results in holes in IMP, see Fig. 8(d). We observe that

the hole regions H can be identified as:

H = ✶{D1>z } ⊙ ✶{D2<z }, (15)

and we describe how we deal with them in Sec. 5.2.

Epipolar Consistency with Multiple Dolly Planes. In practice, we

always want to use more than one dolly plane—even in the simple

5To simplify our analysis, we assume that the dolly planes are orthogonal to the
z-axis and hence segmentation using the dolly plane simply involves thresholding
the depth maps Di using depth z . Extending the analysis to slanted dolly planes is
straightforward.

short-long or long-short cases, multiple dolly planes allow for a

smoother transition between the two focal lengths.

Given N − 1 dolly planes, our goal is to identify which of the

N cameras should be used for the image of a given 3D point so

that the epipolar consistency is respected. In other words, we seek

to find the set of masks {Mi }i ∈[1,N ] that indicates which regions

from images {Ii }i ∈[1,N ] satisfy the epipolar consistency for a given

multi-perspective camera. The multi-perspective image could then

be synthesized as follows:

IMP =

N∑

i=1

Ii ⊙ Mi . (16)

To do this, we first introduce the map Mi, j = ✶{Di ≤zj } , which

identifies the pixels in image i that are in front of dolly plane ξ j
at depth zj , along with its complement Mc

i, j = ✶{Di>zj } . In the

supplementary, we prove that:

Mi =




M1,1 for i = 1(
i−1∏

k=1

⊙ Mc
k,k

)
⊙ Mc

i,i−1 ⊙ Mi,i for i ∈ [2,N − 1] ,

(
i−1∏

k=1

⊙ Mc
k,k

)
⊙ Mc

i,i−1 for i = N

(17)

where we use the symbol
∏
⊙ to denote the concatenation of element-

wise products. This equation offers a simple rule to generate masks

that guarantee epipolar consistency.
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(a) Depth thresholding (b) Confidence map (c) Refined segmentation (d) User scribbles (e) Final result

Fig. 9. Robust depth-based image segmentation. Accurate foreground/background segmentation with respect to a dolly plane is needed for synthesizing

multi-perspective images. (a) A naïve segmentation by simply thresholding the depth-maps is bri�le and results in artifacts. (b) A confidence map is obtained

by warping the naïve segmentations from the other cameras and filtering them based on color similarity. Here, the intensity of red indicates the number of

foreground votes, and green denotes background votes. A simple majority voting scheme gives us good segmentations, which is further refined with image

ma�ing, shown in (c). Nevertheless, if the depth for some regions is consistently wrong in multiple images, we will get wrong segmentation results. When

this happens, we allow user to perform interactive segmentation by detecting the problematic regions as shown by yellow boxes in (d) and then providing

foreground/background scribbles to get the final result shown in (e).

5.2 ULR for Multi-Perspective Camera Projections

The multi-perspective image generated with Eq. 16 may contain

holes due to disocclusions. We fill these missing regions using in-

formation from other images with the ULR approach [Buehler et al.

2001], but modified in two ways. First, we define the weights for

the fragments as:

w = α wang + β wdist + γ wstretch, (18)

where we fix α = 0.7, β = 0.15, and γ = 0.15. For the angular

weight, wang, which defines the angle between the desired view

and the input view, we use the definition by Buehler et al. directly.

However, because the camera motion is a dolly-in, the points around

the epipole have low angular weight regardless of which camera

they come from. The distance weight,wdist, solves this problem by

penalizing cameras ck that are far from the desired camera ci :wdist =

exp(‖ck − ci ‖/σ
2), where σ is set to 20% of the distance between

the closest and farthest camera. Finally the texture stretch weight,

wstretch, penalizes fragments that are stretched anisotropically, as

defined by Kopf et al. [2014].

Second, unlike the standard ULR approach, we do not have a

proxy geometry but rather dense depth maps. Because of occlusions

and different FOVs, some cameras ck may see parts of the scene that

are occluded in camera ci . To prevent this from causing artifacts,

we cluster the depth of the different fragments after warping them

to camera ci , and only average the ones from the closest cluster

similar to the approach of Kopf et al. [2014].

5.3 Robust Depth-Based Segmentation

Equations 14 and 16 require an accurate prediction of whether a

pixel is in front or beyond a dolly plane. In practice, however, when

the depth is even slightly inaccurate, a prediction based on hard-

thresholding is noisy, as shown in Fig. 9(a). To address this issue, we

propose a strategy to robustly segment the depth around the dolly

plane.

Specifically, we need to decide whether pointX , which projects to

pixel p in image I , lies in front or beyond a certain plane. Barring oc-

clusions, a stack of N images will yield N −1 additional observations

of X . Therefore, we first warp the additional observations to image

I . Each observation consists of a color and a binary decision on

(a) Two input images (b) Animated multi-perspective result

Fig. 10. This example shows how our method is able to deal with occlusions

due to fine structures. Occasional errors can be handled with minor manual

intervention as shown in Fig. 9.

whether the point is in front or beyond the plane. We then remove

the warped observations whose color does not match that of pixel

p, and make a decision based on a majority vote of the remaining

observations. Note that this is analogous to the work of Klose et

al. [2015], where warping to image I corresponds to their gather

step, and our majority vote to their filtering step.

5.4 Implementation Details

To produce the final results shown in the paper, we added a few small

steps to the algorithm described so far. For example, at the dolly

planes, the masks Mi change abruptly. To further reduce potential

artifacts at those depths, we refine the segmentation by performing

matting on the corresponding images using the approach by He et

al. [2011]. Figure 9(c) shows an example of our final segmentation

result.

Also, despite the generally high quality of our depth-based seg-

mentation, we sometimes still observe artifacts, particularly at the

boundary between textured and texture-less regions (see Fig. 9(c)).

For such cases, we allow the user to interactively identify the prob-

lematic region, and mark the foreground/background regions with

a few strokes, see Fig. 9(d). With this information we refine the

segmentation using the standard graphcut algorithm by Boykov
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Fig. 11. A typical workflow to achieve the desired composition in the viewer.

The point cloud is color coded to match the color of the FOV they are imaged

with. Animated sequence.

and Kolmogorov [2004], see Fig. 9(e). Empirically, we found that

we need to perform this step in only few datasets, and usually the

interaction is limited to one, sometimes two regions. Out of all the

results shown in this paper, only the datasets of Figs. 10 and 17

required a minimal user interaction, shown in Fig. 9(d) for Fig. 10.

Lastly, in our pipeline, we use images of 15MP or more. For effi-

ciency reasons, rather than computing depth on the full-resolution

images, we use 2MP images to estimate the depth and perform joint

bilateral upsampling [Kopf et al. 2007] to obtain the full-resolution

depth-maps.

6 THE COMPUTATIONAL ZOOM WORKFLOW

The traditional paradigm for capturing a picture requires a pho-

tographer to visualize the desired composition, adjust the capture

parameters to produce it, and finally trigger the shutter. Compu-

tational zoom offers the ability to manipulate the composition of

the picture in post-processing. The first, more obvious, advantage

of this approach is that the requirement to commit to a particular

composition at capture time is lifted. Furthermore, our framework

allows one to explore compositions that may not have been apparent

when the picture was taken. Finally, it allows one to experiment

with focal lengths that were not available at capture time, or that are

not possible with a physical lens, as with multi-perspective imaging.

To capitalize on these advantages, we need a viewer that allows

the user to control composition at interactive rates. However, the

depth segmentation described by Eq. 16, and the image-based ren-

dering described in Sec. 5 in general, are too slow for interactive

viewing. Since we do not need high-quality images to experiment

with composition, we obviate this problem by showing a preview

using only the 3D point cloud, which we manipulate with OpenGL.

Then the user can specify horizontal and vertical translations in

image space (within some constraints), one or more dolly planes,

and the corresponding focal lengths.

Figure 11 shows an example of a typical workflow in our viewer.

First, we decide on the desired amount of perspective distortion

of the foreground. This can be done by selecting a dolly plane at

the depth of the person in the foreground, and by adapting the

dolly zoom as desired. This composition, however, crops out the

tree. Therefore, a second dolly plane can be added just beyond the

foreground subject, and the tree can be brought back in the picture

by decreasing the focal length beyond the second dolly plane (points

in green in the animation). Finally, we wish to magnify the person

in the background leaving the rest of the composition untouched.

We achieve this by adding a third dolly plane just behind the tree,

and increasing the focal length behind it.

Note that the prototype viewer we describe here (also shown

more extensively in the supplementary material) is designed to

expose the fine level of control that our framework offers, and to

show that such manipulation can be performed interactively. An

exploration of better user-interaction strategies for computational

zoom, such as tap-to-select, or pinch-to-zoom, would be the subject

of interesting future work.

7 RESULTS

In this section, we describe several examples of how our computa-

tional zoom framework can be used to achieve the desired composi-

tion for different types of scenarios. All the scenes were captured

with a DSLR camera and, depending on the complexity of the scene,

we use between 15 and 40 input images for the depth reconstruction

and synthesis. The images were taken mostly along a straight line,

but in some cases we move sideways as well to capture information

to fill disocclusions. Note that using frames from a video as input

is also possible, so long as they are not affected by rolling shutter

artifacts.

We begin with examples of extension distortion, which is an im-

portant element of composition that may be desirable depending on

the story the photographer wants to tell. For instance, in Fig. 12 the

photographer wants to use the subject and pillars in the foreground

to frame the building in the background, as shown in Fig. 12(a).

However, the perspective distortion of the bench is apparent in this

image. Capturing the image from farther away and with a longer

focal length removes this distortion, but crops the background (see

Fig. 12(b)).

With our method, we can first apply a dolly zoom to get the

desired foreground composition, and then “push the background

away” with a long-short configuration, as shown in the animation

in Fig. 12(c). Figure 12(d) shows the foreground, background, and

transition regions, {Mi }i=1:3 from Eq. 17. Each color corresponds to

a particular {Mi }, and black regions are disocclusions for which we

need to use the method described in Sec. 5.2. A similar composition

is shown in Fig. 16.

The opposite effect is achieved in Fig. 13, where a short-long con-

figuration leverages extension distortion to magnify the foreground

person more than the cross (short focal length), while also bringing

importance to the church in the back (long focal length).

Figures 1 and 5 show more elaborate uses of our computational

zoom framework. The final multi-perspective result in Fig. 1 allows

us to move away the green roller-coaster track to provide a natural

image frame, while bringing the bridge in the back closer. Similarly,

Fig. 5 shows how a long-short-long multi-perspective camera allows

to remove the foreground distortion, and resizes the tree to frame

the picture nicely, all while magnifying the subject in the back.

The animation in Fig. 10(b) shows that, thanks to the depth seg-

mentation described in Sec. 5.3, our approach can deal with occlu-

sions due to fine structures. However, occasional errors in depth

estimation still happen. This example was generated with the man-

ual intervention described in Sec. 5.4, and shown in Fig. 9(e).
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(a) Desired background (b) Desired foreground (c)Multi-perspective result (d) Label map

Fig. 12. The desired foreground in (a) and the desired background composition in (b) can be combined together in the long-short, multi-perspective composition

in (c). The multi-perspective result is animated. (d) A label map for one of the frames in the sequence, see text.

(a) Two input images (b) Multi-perspective result

Fig. 13. A short-long example, which magnifies the man in the foreground

more than the cross (short focal length), while also appearing to bring the

background closer (long focal length).

(a) Two input images (b) Animated multi-perspective result

Fig. 14. The bo�om input image shows the desired composition; however,

the le� bench is not facing the camera, whereas it is in the top input image.

Using a short-long multi-perspective zoom, we can have a combination of

both.

Computational zoom can be used for more advanced manipu-

lations of the composition. The animation in Fig. 14 shows how,

by placing a dolly plane roughly in the middle of the circle of

benches, a user can expand the circle by using a dolly zoom. Since

the background is zoomed out by this operation, a short-long multi-

perspective camera configuration can help magnify it back to its

original size.

Finally, we can also combine multiple videos to obtain interesting

effects. For instance, we can take two videos, one with the camera

static and with a moving subject (shown in Fig. 15(a)), and the

second captured like a regular dolly-in stack (Fig. 15(b)). Using user-

supplied segmentation masks, we can then combine the videos into

one where the person appears to be “pushing away” the background,

as shown in the animation in Fig. 15(d). Full-resolution versions of

these and other results can be found in the supplementary material.

8 DISCUSSION AND EVALUATION

Our framework enables the manipulation of important elements

of composition, such as the perspective distortion of foreground

objects, by allowing the FOV to change with depth. However, this

operation effectively bends the light rays coming from the scene,

which can produce visible distortions. In this sense, we are offering

a tradeoff between different types of distortions. This phenomenon

is particularly visible in the animation in Fig. 16(c) because of the

tiles on the floor exacerbate the effect from curved rays. The choice

of which distortion is preferable is up to the photographer.

Aswith other stack-based computational photography algorithms,

our framework may fail in the presence of dynamic scenes. How-

ever, all the examples in our paper were captured in uncontrolled

environments. In fact, many stacks were captured in the presence

of foliage, people walking (Fig. 1), and even cars driving in the

background (Figs. 13 and 14). In general, we observe that isolated

moving objects do not create objectionable artifacts. In fact, they

are deemed geometrically inconsistent by the depth reconstruction

and our rendering algorithm treats them as a dis-occlusion, thus

filling them with other images not affected by motion in the area.

In this sense, our geometric consistency criteria act as a deghosting

algorithm.

For some of the scenes in the paper, the depth layers may be

relatively simple to segment, as in Fig. 17. An experienced user

could try to stitch together the images in the stack directly in an

image editor to create the desired composition. While this is possible

to some extent, our framework allows the user to experiment with

different compositions interactively, some of which may not be

immediately apparent. This exploration stage would not be possible

in standard photo editing software. Moreover, as shown in Fig. 17(c),

some disocclusion regions (marked in black) that may be too large

for standard hole-filling tools; in contrast, we use the whole stack

of images to generate their content. Finally, manually stitching

together such an image stackwithout introducing artifacts is difficult

when areas spanning a large depth range, such as the ground, are

visible throughout the stack. We asked an advanced Photoshop
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(a) Two input images and masks for FG (b) Two input images (c) First frame (d) Last frame (Animated)

Fig. 15. Multi-perspective, dolly-zoom video effect. An input video of the person doing a push motion is combined with a dolly-in video (without the person)

as well as a foreground(FG) mask to create the illusion of the person “pushing away” the scene.

(a) Desired FG size (b) Desired FG

composition

(c)Multi-perspective

result

(d) Label map

1

2 3

(e) Photoshop layering

Fig. 16. Example of foreground(FG) distortion removal with a long-short

camera. Our framework introduces a tradeoff between changing geometric

distortion and bending light rays, as the lines on the ground show. The

multi-perspective result is animated.

user to attempt reproducing some of the single dolly-plane results.

Figure 16(e) shows one such result, which was produced in roughly

10 minutes. Note the artifacts due to disocclusions (1), and to the

sharp discontinuity between foreground and background, (2) and

(3). On the other hand, our framework automatically fills in the

disocclusions with plausible content and computes a smooth and

natural-looking transition between the different images.

Like any other patch-based method, our depth-reconstruction

algorithm struggles in large, texture-less regions. The cross-bilateral

propagation step described in Sec. 4.3 helps but, for very large

regions such as the sky, it is not sufficient. Luckily, in these areas,

the artifacts due to warping images with the wrong depth are not

usually apparent, exactly because of the lack of texture. Figure 18 is

a counter-example in which artifacts are visible above the lifeguard

tower, and thus shows a limitation of our approach.

In terms of timing, the depth estimation is the most time consum-

ing stage of our algorithm, which takes less than 2 hours for a stack

of roughly 30 images. After defining a composition in real-time as

described in Sec. 6, the production of the high-quality version of

the image takes a couple of minutes for a 1 mega-pixel image.

Finally, we comment about the resolution of the captured images.

For the results in this paper we used high-resolution images as an

(a) Long (original) (b) Long-short (c) Label map

(d) Five input images from the stack

Fig. 17. While it is theoretically possible to combine an input stack (d)

in photo editing so�ware to create an output like (b), it would be quite

difficult in practice due to the detailed segmentation required as well as

large disocclusions, shown in black in (c).

(a) Two input images (b) Animated multi-perspective result

Fig. 18. Mismatches in our patch-based depth estimation do not usually

lead to artifacts, as there are few of them and they mainly occur in plain

areas. However, they can occur, such as in this example where artifacts

appear in the sky above the lifeguard tower.

input, which certainly helps to maintain detail when the images

are magnified by the homographies during composition. However,

the quality of the depth and normals we recover would allow us

to perform high-quality patch-based super-resolution, should high-

resolution images not be available. This is an interesting area for

future exploration. Moreover, certain cameras such as the Light

camera, the iPhone 7, and other hand-held devices are equipped
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with multiple cameras with different focal lengths that could also

allow us to capture the required data.

9 CONCLUSION

In this paper, we have presented computational zoom, a framework

that enables photographers to adjust the composition of an image

post capture. In particular, it allows photographers to change the

camera distance as well as the focal length using a stack of im-

ages that were acquired with a dolly-in motion. This already gives

photographers a flexibility that was difficult to achieve previously.

Furthermore, we introduced a multi-perspective camera model

that can generate compositions that are not attainable with physical

lenses. This gives the photographer full control over the relative com-

position at different depths—allowing one to “push” certain depth

ranges further away, while bringing others in. The photographer is

presented with an interactive viewer to try different compositions

before the framework generates a high-quality result. To demon-

strate this flexibility, we showed various results that are not possible

to capture with real imaging systems.
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