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COMPUTATIONALLY EFFICIENT AMPLITUDE MODULATED SINUSOIDAL AUDIO
CODING USING FREQUENCY-DOMAIN LINEAR PREDICTION

Mads Græsbøll Christensen and Søren Holdt Jensen

Department of Communication Technology
Aalborg University, Denmark
{mgc,shj}@kom.aau.dk

ABSTRACT

A method for amplitude modulated sinusoidal audio coding is pre-
sented that has low complexity and low delay. This is based on a sub-
band processing system, where, in each subband, the signal is mod-
eled as an amplitude modulated sum of sinusoids. The envelopes are
estimated using frequency-domain linear prediction and the predic-
tion coefficients are quantized. As a proof of concept, we evaluate
different configurations in a subjective listening test, and this shows
that the proposed method offers significant improvements in sinu-
soidal coding. Furthermore, the properties of the frequency-domain
linear prediction-based envelope estimator are analyzed.

1. INTRODUCTION

Parametric coding of audio and speech has received considerable at-
tention in the research community and standardization bodies in re-
cent years [1, 2, 3]. In order to achieve good performance at low
bit-rates, parametric coding relies on signal models that describe
the signal in few physically meaningful parameters. Parametric au-
dio coders perform extremely well when the signal fits the signal
model. However, when this is not the case, the coded signal may
be of very low perceived quality. This can be observed from sub-
jective listening tests where the scores may vary greatly depending
on the signal (see e.g. [4]). In [4] it was shown that even when
using rate-distortion optimal segmentation [5], constant-amplitude
sinusoids do not lead to satisfactory results for critical transient ex-
cerpts such as those from SQAM [6]. It was demonstrated that an
amplitude modulated (AM) sinusoidal audio coder lead to signifi-
cant improvements over a sinusoidal coder for such signals. The
coder was based on an analysis-by-synthesis parameter estimation
procedure using a perceptual distortion measure. As a consequence,
the coder suffered from high complexity and delay. Further, it was
also shown in [4] that significant improvements are gained by the
combination of rate-distortion optimal segmentation and amplitude
modulated sinusoidal audio coding, i.e. that model adaptation and
flexible segmentation are complementary tools. The rate-distortion
optimal segmentation requires that all possible segment lengths at
different starting positions be coded. This, of course, adds consid-
erable complexity and delay, which may be prohibitive for some ap-
plications. For example, the MPEG-4 Low Delay Audio Coder [7]
does not use block switching and minimizes the use of the bit reser-
voir due to the delay associated with these methods. A powerful and
successful method for efficient coding of transients in the context of
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transform coding is the so-called temporal noise shaping (TNS) [8],
which is part of the MPEG-2/4 AAC and is used in the Low Delay
Audio Coder instead of block switching [7]. In TNS, a coding gain is
achieved for transient signals by predictive coding of transform co-
efficients, and the optimal linear predictor can be derived efficiently
in the frequency domain using standard methods [9]. While linear
prediction has found use in predictive coding of speech, it is also a
widely used method for spectral estimation of auto-regressive (AR)
stochastic processes. Likewise, TNS can be interpreted as either a
method for predictive coding in the frequency domain or as an en-
velope estimator, or, in modulation theoretical terms, a demodula-
tor. Aside from being an envelope estimator, the frequency-domain
linear predictor is also an efficient parametric representation of the
envelope that can be quantized using well-known methods.

In this paper, we explore an alternative amplitude modulated si-
nusoidal coding technique based on frequency-domain linear predic-
tion (FDLP) that has considerably lower complexity and delay than
[4]. Further, we also analyze the properties of the FDLP-based en-
velope estimator. We apply the sinusoidal coding in the subbands
of a critically sampled filter bank. The advantage of doing this is
twofold. Firstly, it has a lower computational complexity than the
full-band system and, secondly, it allows for different envelopes in
the individual subbands, which may be desirable for some, but by
no means all, signals [4, 10]. The sinusoidal parameters are found,
given the subband envelopes, using matching pursuit based on a per-
ceptual distortion measure.

The remaining part of this paper is organized as follows: Section
2 contains an overview of the proposed system. The envelope esti-
mator and its properties are presented in Section 3 and subsequently
the matching pursuit algorithm used for sinusoidal parameter esti-
mation is treated in Section 4. In Sections 5 and 6 implementation
details and experimental results are presented, and, finally, Section 7
concludes on the work.

2. SYSTEM OVERVIEW

The method proposed in this paper is implemented in a system that
consists of an analysis and a synthesis system. In the analysis sys-
tem the input signal is first split intoQ critically sampled subbands.
We here use a uniform filter bank. In each subband, an envelope is
estimated using FDLP and the associated parameters are quantized.
Given the subband envelopes a number of sinusoidal parameters are
extracted and quantized and finally all parameters are then entropy
coded. In the synthesis system, the parameters are reconstructed and
the subband signals are synthesized using overlap-add. Finally, the
signal is reconstructed using a synthesis filter bank that combined
with the analysis filter bank has perfect reconstruction. Now, let us



introduce some definitions and the notation. First, we define the sub-
band signal for subbandq asxq(n) =

PM−1

m=0
hq(m)x(n − m) for

n = 0, . . . , N − 1 with hq(n) being the impulse response of theqth
analysis filter of lengthM . From these subband signals, the input
signal can be reconstructed (with a delayd) as

PQ

q=1

PM−1

m=0
gq(m)-

xq(n − m) = x(n − d) using the impulse responses of the synthe-
sis filtersgq(n). In the envelope estimation and in the sinusoidal
parameter estimation, we will make use of the so-called discrete-
time analytic signal for a particular segment and subbandq. For
n = 0, . . . , K − 1 with K = N/Q this is defined as

aq(n) = xq(Qn) + jH{xq(Qn)} , (1)

whereH{·} denotes the Hilbert transform. Here we have assumed
that the segment lengthN is an integer multiple ofQ. Note that
the calculation of the analytic signal may be integrated into the filter
bank implementation sincehq(n) ∗ (x(n) + jH{x(n)}) = x(n) ∗
(hq(n) + jH{hq(n)}). The model of the analytic subband signal
used in this paper can be written as the following sum of sinusoids
where the sinusoids are modulated by the amplitude modulating sig-
nal γ̂q(n),

âq(n) =

Lq
X

l=1

γ̂q(n)Aq,le
jωq,ln+jφq,l , (2)

where each sinusoid is characterized by a frequencyωq,l, a phase
φq,l and an amplitudeAq,l. This signal model is built using a match-
ing pursuit algorithm [11] based on the perceptual distortion measure
presented in [12] and a redundant dictionary consisting of modu-
lated complex sinusoidal components. This dictionary can be seen as
being signal-adaptive since the amplitude modulating signalγ̂q(n)
varies with the signal over time and subbands.

In the decoder, the subband signal is recovered by taking the
real-value of (2), upsampling the signal by a factor ofQ and subse-
quent filtering by the synthesis filtergq(n).

3. ENVELOPE ESTIMATION

In this section we briefly present the main results of the envelope
estimator based on the FDLP principle first introduced in [8] as tem-
poral noise shaping for transform coding. Further, we also provide
some additional analysis of the properties of this estimator. It must
be emphasized that the application of FDLP considered here is fun-
damentally different from that of [8]. First, we define the Fourier
transform of the analytic signal fork = 0, . . . , K − 1 as

Aq(k) =

K
X

n=0

aq(n)e−j2π k
K

n. (3)

We then write the frequency-domain prediction errorEq(k) as a lin-
ear combination ofAq(k) having theI (complex) prediction coeffi-
cientsbi ∈ C:

Eq(k) = Aq(k) −
I

X

i=1

biAq(k − i). (4)

The optimal prediction coefficients are then found in such a way that
the squared prediction error is minimized, i.e.,

{bi} = argmin

K−1
X

k=0

|Aq(k) −

I
X

i=1

biAq(k − i)|2, (5)

which can be solved efficiently using well-known methods [9]. Then,
by taking the Fourier transform of the squared instantaneous enve-
lope, we get the spectral autocorrelation sequence estimateCq(τ):

K−1
X

n=0

|aq(n)|2e−j2π τ
K

n =
1

K

K−1
X

k=0

Aq(k)A∗
q(k − τ) (6)

=Cq(τ), (7)

from which the prediction coefficients also can be found. Taking the
inverse Fourier transform of both sides of (4), we get

eq(n) = aq(n)

"

1 −
I

X

i=1

bie
j2π i

K
n

#

. (8)

Rearranging this, we get the (complex) envelope estimate forn =
0, . . . , K,

γ̂q(n) =
aq(n)

eq(n)
=

1

1 −
PI

i=1
bie

j2π i
K

n
. (9)

Specifically, the squared instantaneous envelope estimate is

|γ̂q(n)|2 =
1

|1 −
PI

i=1
bie

j2π i
K

n|2
. (10)

As the prediction error filter is minimum-phase, the phase ofγ̂q(n)
can be determined uniquely fromlog |γ̂q(n)| since they form a Hilbert
transform pair, i.e.,

∠γ̂q(n) = H{log |γ̂q(n)|}. (11)

Using Parseval’s theorem, we can write the minimization in (5) of
the sum of the squared prediction error in the time domain:

min

K−1
X

k=0

|Eq(k)|2 = min

K−1
X

n=0

|aq(n)|2

|γ̂q(n)|2
. (12)

From these equations, we can make a number of interesting obser-
vations. From (12) we see that minimizing the prediction error a
least-squares fashion corresponds to minimizing the sum of the ratio
between the squared instantaneous envelope and the estimate. The
frequency-domain linear predictor models the time-domain envelope
in exactly the same way as the time-domain linear predictor models
the spectral envelope, and, hence, they share the same properties and
suffer from the same problems (e.g. the cancellation of errors and
overemphasis on peaks [9]). One notable property is that the enve-
lope estimate converges to the squared instantaneous envelope as the
model orderI grows. From (7) and (12) we see that a decorrelation
of the transform coefficients results in a flattening of the squared
instantaneous envelope sinceCq(τ) = 0 for τ 6= 0 implies a flat
envelope. It can easily be shown that the squared instantaneous en-
velope of two sinusoids that are modulated by the same signal con-
tains cross-terms that are due to the sinusoidal carriers (see [10]).
In sinusoidal modeling these cross-terms are modeled by the sinu-
soids and should hence not be captured by the envelope estimator.
For sinusoids that are well-separated in frequency these cross-terms
will occur as long-term correlation inCq(τ), and hence FDLP has
the (at least in this particular application) undesirable property that
it will seek to model these cross-terms. Consequently, the model
order should be chosen sufficiently low such that this does not hap-
pen and this order cannot, contrary to common practice in transform
coding, simply be chosen from the prediction gain. Moreover, the
envelope estimator will fail when the sinusoids and the modulating
signal are not well-separated in frequency (since Bedrosian’s theo-
rem [13] does not hold in this case) or when the sinusoids are closely
spaced [10].



4. SUBBAND MATCHING PURSUIT

The individual sinusoidal parameters, i.e. frequencies, phases and
amplitudes, are found in each subband using a psychoacoustic match-
ing pursuit [11] given the subband envelopesγ̂q(n). The subband
envelope adapts the dictionary to the subband signal, and, as a con-
sequence, a higher rate of convergence, in terms of the distortion as a
function of the number of components, can be achieved. In each iter-
ation, withi being the iteration index, the algorithm operates on the
F point Fourier transform of the subband residualsRq,i(k) which
are initialized fork = 0, . . . , F − 1 as

Rq,1(k) =

K−1
X

n=0

w(n)aq(n)e−j2π k
F

n, (13)

with w(n) being the analysis/synthesis window. The algorithm finds
in each iteration the subband and the parameters that minimize the
weighted squared absolute value of the Fourier transform of the resid-
ual, i.e.,Dq,i =

PF−1

k=0
Pq(k)|Rq,i(k)|2, wherePq(k) is a percep-

tual weighting function for the frequency region associated with sub-
bandq. This weighting function is derived, for each segment, from
the auditory masking model presented in [12]. The combination of
frequency (index)f̂ and subband̂q that minimizes the perceptual
distortion are chosen as:

{q̂, f̂} = argmax
{q,m}

|Ψq(m)|2

Φq(m)
, (14)

with the numerator containing the inner product

Ψq(m) =

F−1
X

k=0

Pq(k)Z∗
q (k − m)Rq,i(k), (15)

and the denominator the norm

Φq(m) =

F−1
X

k=0

Pq(k)Z∗
q (k − m)Zq(k − m). (16)

Zq(k) is defined as the Fourier transform of the windowed subband
envelope, i.e.,

Zq(k) =

K−1
X

n=0

w(n)γ̂q(n)e−j2π k
F

n. (17)

The optimum phase and amplitude associated with the estimated
complex sinusoid of frequencŷf in subband̂q can be found as

Aq̂,ie
jφq̂,i =

Ψq̂(f̂)

Φq̂(f̂)
. (18)

Finally, having found the subband, frequency, phase and amplitude
we update the Fourier transform of that subband residual as

Rq̂,i+1(k) = Rq̂,i(k) − Aq̂,ie
jφq̂,iZq̂(k − f̂). (19)

Note how the numerators of equations (18) and (14) contain the same
inner product. It can be seen from the following that, like for the
constant-amplitude case treated in [11], these inner products can be
efficiently computed for differentm using FFTs:

Ψq(m) =

K−1
X

n=0

vq(n)w(n)γ̂∗
q (n)e−j2π m

F
n, (20)

with vq(n) =
PF−1

k=0
Pq(k)Rq,i(k)ej2π k

F
n. Similarly, the denom-

inator of equations (18) and (14) can be found using Fourier trans-
forms:

Φq(m) =

K−1
X

n=0

"

F−1
X

k=0

|Zq(k)|2e−j2π k
F

n

#

pq(n)e−j2π m
F

n, (21)

with pq(n) being the inverse Fourier transform of the perceptual

weighting function, i.e.,pq(n) =
PF−1

k=0
Pq(k)ej2π k

F
n. Finally,

we note that since the subband signals are orthogonal, the total dis-
tortion is simply the sum of the subband distortions and can hence
be subject to rate-distortion optimization. It follows from the perfect
reconstruction of the filter bank and the convergence of the matching
pursuits in the subbands that the entire system will converge.

5. IMPLEMENTATION DETAILS

In assessing the improvement that the higher update-rate of the am-
plitude, i.e. amplitude modulation, results in, we compare two dif-
ferent configurations of the proposed system: The first uses only
constant-amplitude sinusoids (denoted CA) while the second uses
multiband amplitude modulation with Q=8 (denoted AM). The op-
timal segment length has been determined empirically by informal
listening tests to be about 35 ms for the CA configuration using a
von Hann window with50% overlap. This segment length was also
used for the AM configuration. The frequencies and amplitudes are
quantized using the logarithmic quantizer described in [4] while the
phases are quantized uniformly using 5 bits. At average this results
in approximately 15 bits per sinusoidal component. The complex
prediction coefficients were quantized by mapping the reflection co-
efficients to the log-area ratios which were then quantized uniformly.
The associated rate has been estimated from the entropy of the quan-
tization indices, which resulted in approximately 9 bits per complex
prediction coefficient, and a 5th order complex prediction filter was
used in the simulations. Both configurations were set to run at30
kbps. In order to achieve efficient coding of stationary sinusoids, the
envelope is not used when it has a correlation coefficient of more
than90% with a constant envelope. Alternatively, the rate-distortion
optimization-based coder switching architecture proposed in [4] can
be used for this. Subband FFTs of 1024 points were used for the
AM configuration while the CA configuration uses 8192 point FFTs
in the matching pursuit. Further, we have used an FFT-based im-
plementation of the Hilbert transform. In practice we have found
the orthogonality between subbands not to be of critical importance
for the task at hand. Hence, we have used a uniform 8-band pseudo
QMF filter bank for the AM configuration with a prototype filter of
length 512.

6. RESULTS AND DISCUSSION

In Figure 1 we illustrate the order selection problem of the envelope
estimator for two sinusoids2 cos(2π0.1n) + sin(2π0.11n + π/3).
It can be seen that the FDLP models the cross-terms that are due to
the carriers and that the low-order model is better than the high-order
model when cross-terms are present.

The subband processing has been verified to produce good re-
sults compared to a full-band system using constant-amplitude si-
nusoids, i.e. no AM. This verifies that the subband processing does
not introduce any noticeable artifacts, although it has some inherent
drawbacks. There is a significant reduction of complexity of the sub-
band system compared to the full-band system. Where the full-band
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Fig. 1. Illustration of the problem of cross-terms in the squared in-
stantaneous envelope for multiple sinusoids. The top panel shows
the true squared envelope (solid) and the squared instantaneous en-
velope (dashed). The squared instantaneous envelope of one sinu-
soid estimated using a 5th order predictor (solid), and using a 25th
order predictor (dashed) are shown in the middle panel. And sim-
ilarly, in the bottom panel, for two sinusoids estimated using a 5th
order predictor (solid), and using a 25th order predictor (dashed).

Statistic AM CA Anchor 1 Anchor 2 HR

Mean 62 54 29 54 95
Conf. (±) 7.4 6.6 4.0 5.8 2.8

Table 1. Results of MUSHRA test. Scores for all excerpts and lis-
teners (means and 95% confidence intervals).

system would require FFTs of sizeF , the subband system requires
FFTs of sizeF/Q and only one subband has to be updated per iter-
ation of the matching pursuit.

As proof of concept of the proposed method, we use a subjective
listening test. Specifically, we use the MUSHRA test [14] for quan-
tifying the improvements of the AM configuration compared to the
CA configuration. For each excerpt, the listeners were asked to rank
5 differently processed versions relative to a known reference on a
score from 0 to 100. These included the hidden reference (denoted
HR), an anchor low-pass filtered at 3.5 kHz and an anchor low-pass
filtered at 7 kHz (denoted Anchors 1 and 2). The remaining two ver-
sions were the different configurations, AM and CA. The excerpts
were 5 different critical 10 s transient (mono) signals from SQAM
[6], namely castanets, claves, glockenspiel, triangle and xylophone.
12 inexperienced listeners participated and the test was conducted
using headphones. In Table 1 the results of the listening test are
shown. As can be seen from the anchors, the sometimes large con-
fidence intervals can largely be attributed to variations over the ex-
cerpts and listeners. Testing instead for the differences in scores, the
mean of the difference between the AM and the CA configuration
was found to be8.3 with a 95% confidence interval of±7.4. Since
the confidence interval does not include zero, we conclude that the
AM configuration performs significantly better than the CA config-
uration. In interpreting the results it should noted that due to the
temporal integration in the human auditory system, events of a short
duration, such as onsets, may only result in small improvements in
scores. We also note that, as shown in [4], both the CA and AM
configurations may be further improved and even combined using
rate-distortion optimal segmentation and allocation [5] at the cost of
significantly increased delay and complexity.

7. CONCLUSION

We have presented a method for amplitude modulated sinusoidal au-
dio coding based on frequency-domain linear prediction for estima-
tion and efficient coding of time-domain envelopes. This has been
found, in a subjective listening test, to improve on sinusoidal coding
for critical transient signals. Further, the properties of the envelope
estimator have been analyzed and it has been demonstrated that spe-
cial care must be taken in selecting the model order.
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