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ABSTRACT

COMPUTATIONALLY EFFICIENT AND ROBUST KINEMATIC

CALIBRATION METHODOLOGIES AND THEIR APPLICATION TO

INDUSTRIAL ROBOTS

Name: Messay-Kebede, Temesguen

University of Dayton

Advisor: Dr. Raúl Ordóñez

Robot kinematic calibration is the process of enhancing the positioning accuracy of

a given manipulator and must be performed after robot manufacture and assembly or

during periodical maintenance. This dissertation presents new computationally efficient

and robust kinematic calibration algorithms for industrial robots that make use of partial

measurements. These include a calibration method that requires the supply of Cartesian

coordinates of the calibration points (3DCAL) and another calibration technique that only

requires the radial measurements from the calibration points to some reference (1DCAL).

Neither method requires orientation measurements nor the explicit knowledge of the where-

about of a reference frame. Contrary to most other similar works, both methods make

use of a simplified version of the original Denavit-Hartenberg (DH) kinematic model.

The simplified DH(-) model has not only proven to be robust and effective in calibrating

industrial manipulators but it is also favored from a computational efficiency viewpoint

since it consists of comparatively fewer error parameters. We present a conceptual approach
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to develop a set of guidelines that need to be considered in order to properly construct the

DH(-) model such that it is parameterically continuous and non-redundant. We also propose

an automated method to provide a characterization of the parameters that can be insightful

in identifying redundant/irrelevant parameters and deducing the DH(-) error model of a

manipulator. The method is a hybrid scheme comprised of the Simulated Annealing (SA)

algorithm and a local solver/optimizer and it conducts a statistical analysis on the estimates

of a given error parameter that is indicative of its relevance. For the type of industrial

robots used in this dissertation, we made note that calibrating the home position only is

sufficient to attain adequate results for most robotics applications. Hence, we put forward

for consideration of a yet simpler calibration model; the DH(-)(-) model. We employ

the Trust Region (TR) method to minimize the objective functions (solve for the error

parameters of the simplified error models) of both frameworks (3DCAL and 1DCAL).

We also compare the performance of the proposed methods to that of a state-of-the-art

commercial system (Motocal) using the same materials, data and internationally recognized

performance standards. Our experimental results suggest that our methods are more robust

and yield better results compared to that of MotoCal.
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CHAPTER 1

INTRODUCTION

Repeatability (also known as test-retest reliability) and accuracy/precision are important

characteristics of industrial robots [10–13]. The former is relevant when programming the

robot by manually teaching the end-effector poses (the so called teach and play program-

ming methodology). It refers to the manipulators ability to return to a taught position.

However, in off-line programming, the latter is of essence because the location would

not have been taught to the robot but would be specified/defined in a virtual space with

respect to an absolute or relative coordinate system [10–14]. Meaning, accuracy refers to

the robots’ ability to move to a commanded location in its workspace. Both are measures

of pose (position and orientation) performance. The demand of improving those two

qualities/facets of industrial robots has therefore been growing continuously over the past

two decades.

It is a known fact that today’s industrial manipulators have satisfactory repeatability

(better built) but poor accuracy due to numerous sources of errors. As listed in [12, 15–

17], the errors can be caused by temperature drifts and other nonlinearities, manufacturing

and assembly errors, limited resolution of the motor encoders, computer round-off errors,

steady-state control errors and installation errors (including due to component replacement).

Robot calibration is the process of enhancing the positioning accuracy of a manipulator
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through software rather than modifying the mechanical structure (i.e., design) of the robot

itself [18–20]. Different calibration techniques (or a combination of) need to be employed

to solve the various types of error model. Generally speaking, the methods can be classified

into two main/broad categories: geometric/kinematic calibration and non-kinematic calibr-

ation, which models errors other than geometric defaults (e.g., dynamic parameters, back-

lash, environmental related variability such as temperature drifts, etc.) [12, 15, 21]. The

leading source of lack of accuracy is the deviation between the mathematical model of

the manipul-ator in the controller and the actual geometry of the system [11, 12, 15, 17,

22, 23]. An accurate representation of the geometry of a robot is very crucial because

the efficiency of methods for planning and controlling robot motions to perform specified

tasks is dependent on such a mathematical model [20, 24–28]. Hence, in this dissertation,

we present kinematic calibration techniques that make use of partial pose measurements.

A kinematic calibration procedure involves modelling, measuring, identifying parameters

and implementing comp-ensation [18, 29, 30].

The first procedural step is to establish/derive a mathematical function that relates the

robot joint angles to the pose of the robot end-effector and that takes into account the

geometric error parameters that need to be modeled. The standard Denavit-Hartenberg

(DH) convention [31] is universally accepted/used for kinematic modelling in robotics [12,

25, 27, 31–33]. However, a standard DH based kinematic calibration model is singular

for manipulators with two consecutive parallel (or near parallel) joint axes (i.e., a slight

deviation of the structure would yield a significant variation of the model parameters) [7, 8].

Since the majority of industrial robots possess at least two parallel joint axes, significant

efforts were made to solve such a problem. Authors either proposed to use a modified

version of the standard DH convention (e.g., adding an extra parameter to the original DH
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model) or introduced their own model to resolve the presented challenge. For example,

Hayati et al. [7, 8] introduced new rules to determine the link parameters of parallel or near

parallel joint axes. They added an extra revolute parameter to the standard DH model and

developed specific equations to handle the special case. Stone [34] derived a model and

an identification approach to estimate what he refers to as “S-model” parameters, based

on circle-point analysis. He used what he designated as the plane of rotation, center and

radius of rotation as joint features in his approach. In their work, Veitschegger and Wu [35]

presented a more detailed model that applies to consecutive parallel joints and includes

second-order terms. Another example is the complete and parameterically continuous

(CPC) model described in [36] and [37]. The proposed method by Abderrahim et al. [18,

29] combines the methodologies of Stone [34] and Hayati et al. [8]. Another solution

is to employ the product of exponentials (POE) presented in [38–40]. POE guarantees

the smooth mapping between Lie algebras and Lie groups, and hence naturally avoids

singularity. However, a potential drawback of some of the discussed alternate approaches/

solutions is that the compensation is not directly implementable in controllers of existing

industrial manipulators. In other words, control software like the one found in Yaskawa

Motoman Robotics, Inc. (e.g., [2, 3, 41]) or other similar controllers do not use the same

parameters to solve the kinematic equations.

Fairly recently, Nubiola and Bonev [12, 15] proposed an elegant solution to overcome

the problem of disproportion at parallel or near parallel joint axes. In their method, they

forced axis 3 to be parallel to axis 2 for simplicity. Meaning, they chose not to perturb

the zero valued DH parameter αs (also known as link twists [20, 24–27]) and were able to

successfully calibrate a manipulator by making use of the original DH model. In this thesis,

we extend that solution and propose to further “simplify” the standard DH based kinematic
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calibration model so as to make it continuous and non-redundant. As done by [12, 15], we

also opt to not consider the error in the zero valued DH parameter αs in order to overcome

the problem of discontinuity [7, 8, 42]. We believe our approach is applicable here because

our focus is to develop a calibration scheme for industrial manipulators. In particular,

one that is suited for improving the accuracy of Yaskawa Motoman Robotics, Inc. or

other similar manipulators. Since access to modify the DH parameter α in the control

software currently used within controllers such as [2, 3, 41] is not possible, we put forward

for consideration to not consider the errors related to all link twist parameters (including

the non-zero valued αs). Furthermore, another problem with the error model (original DH

convention based kinematic calibration model), is redundancy due to ineffectual or linearly

dependent error parameters. In which case it makes it difficult to distinguish which of

the error parameters are contributors to the positioning inaccuracy (i.e., which of those

error parameters are relevant). Thus, we allow the end-user to select which permissible

DH parameters to perturb/estimate subject to some rules/guidelines. We have established

some useful guidelines based on empirical studies and generalized geometric knowledge

of kinematic modelling that need to be considered in order to prevent/avoid redundancy

in the error model. Our guidelines dictate that some of the DH parameters (in addition

to the DH α parameter) be kept “frozen” during the calibration process. The simplified

DH(-) model, in addition of being continuous and non-redundant, is therefore also favored

from computational efficiency viewpoint since it consists of comparatively fewer error

parameters. We shall also show that it is more robust compared to existing calibration

methods since it ensures that a reliable end-result is attained.

We have also devised an automated method to provide a parameter assessment that

can be insightful in identifying redundant/irrelevant parameters and correctly constructing
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the DH(-) model of a given manipulator. In particular, we believe that this automated

assessment might be of great asset when dealing with structures of complex geometry (e.g.,

manipulators with higher Degree of Freedom (DOF) compared to the ones considered in

this work). The method is a hybrid scheme comprised of the Simulated Annealing (SA)

algorithm [43–47] and the Trust Region (TR) algorithm [48–52]. It provides a statistical

analysis on the estimates of a given error parameter that is suggestive of its relevance.

Rather than using a scatter-search mechanism or uniformly distributed start points within

bounds to generate multiple starting points (initial conditions) as done in [53–55] to execute

a Global Search (GS), we make use of SA. We then employ the TR method for convergence

purposes (as a local solver/optimizer) to examine each starting point generated via SA. In

other words, we utilize SA to obtain a set of starting points and analyze each point using

the TR solver in order to carry out a GS. To our best knowledge, we have not seen that

done in any other work. Other types of GS techniques like the ones described in [53–55]

call for higher number of starting points and an exhaustive analysis of those points in an

attempt to find global minima within specified bounds of solution space. Our SA based

GS approach appears particulary advantageous because a comparatively fewer number but

richer set of starting points are examined (i.e., it does not involve as much use of the solver

in question). With a proper choice of temperature model and tuning parameters [43–47],

SA can intelligently explore the solution space and procure potential/key starting points.

Note that the purpose of this hybrid scheme is not to find the optimal solution (solve for

the error parameters) but to provide valuable insight regarding the relevance of each error

parameter and to make the task of deducing the DH(-) calibration model for an arbitrary

manipulator unchallenging/effortless (i.e., a diagnostic utility if one will). Once the scheme

has converged for the selected error parameters and a set of calibration data, the variance
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of each solution for a given error parameter (across the multiple solutions found using

our SA-TR based GS) is examined so as to provide an automated relevance/redundancy

assessment of the selected parameters. Error parameters that portray high variance but

no significant change in the output of the objective/cost functions are highly likely to be

linearly dependent or not pertinent. Thus, for the error parameters that the auto-rating

is above a given threshold, only a basic understanding of the geometry of the robot is

required from the user to designate which ones are non-pertinent and hence that need to

be discarded in order to correctly derive the DH(-) kinematic calibration model for the

manipulator at hand. In effect, the automated evaluation alleviates the burdensome need of

a comprehensive analysis of the entire model and narrows down the scope of the problem

such that the user can focus on the targeted redundant/irrelevant error parameters only (i.e.,

it supports/assists the user in the endeavor of finding the DH(-) model of a manipulator).

Moreover, we shall also show that, for the type of robots (e.g., [1, 4, 56]) and controllers

(e.g., [2, 3, 41]) that are put to use in this dissertation, precision inaccuracy is mostly due

to incorrectness of the offsets values used to describe manipulator’s home position (also

known as ABS data [2, 3, 41]). Although in some cases estimating the other two DH

parameters (link lengths and offsets [25, 27, 31]) can be helpful, we shall demonstrate that

calibrating the home position of manipulators like [1, 4, 56] is sufficient to attain accuracy

that is satisfactory for most robotics applications. Hence, we also further simplify the DH(-

) model and introduce the DH(-)(-) model, a simpler model that consists of calibrating the

home position (and tool if applicable) only. Thus, in light of those reasons, we believe it

is justifiable to make use of a simplified versions of the original DH model to calibrate

industrial robots such as [1, 4, 56] that are governed by control software like the ones

found in [2, 3, 41]. We shall demonstrate that although incomplete, the DH(-) and DH(-)(-)
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kinematic calibration models are capable of exceptional performance and can be used to

calibrate a wide range of industrial robots provided that the simplified models are construct-

ed properly.

In practice, another crucial choice (used in the second procedural step of calibration)

is the measurement system. The efficiency of the calibration method is determined by the

accuracy of the observations (measurements) itself [12, 15, 57, 58]. A number of different

measurement systems have been used for robot calibration and/or validation. Generally

speaking, the measurement systems used for the measurement step during robot calibration

can be classified into two groups: complete pose measurement and partial pose measure-

ment. A complete pose measurement of the tool pose would consist of three position

coordinates, and three orientation angles (6D). This type of measurement method yields

the maximum information for a given configuration (i.e., at each observation). Examples

of kinematic calibration techniques that make use of complete pose measurement include

those described in [15, 18, 58–64]. More specifically, [59] makes use of a coordinate

measuring machine with a touch probe and a specially designed end-effector to calibrate

a robot. In the work of [18, 60–62] a 6D vision/camera-based measuring systems is used

to calibrate manipulators. Another example is the work described in [63], where a laser

tracker with a 6D probe is put to use for calibration. A telescoping bar based 6D measure-

ment system is used in [15, 58] for calibration purposes. We also have the work of [64],

where the authors improve the accuracy of a Daewoo DR06 industrial robot using an

Optotrak 6D optical measurement system. A different way of carrying out 6D measurements

is presented in [65]. In that work, the orientation of an industrial robot system is calibrated

using vision (referred as “major orientation error” by the authors) and the so called “relative

position and minor orientation error” is calibrated using 3D force/torque sensor [65].
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Incomplete/partial measurements of the tool pose (that is, less than six measured values

per observation ranging from 3D to 1D) can also be used to identify the robot parameters.

For example, [57] uses laser tracking interferometry to conduct experiments in robot

metrology. In that experiment, the target is described in a spherical coordinate system.

Additionally, [66] uses two theodolite triangulation to calibrate an Automatix AID 900

robot. A three theodolite based triangulation system is used in [67] to calibrate a PUMA

760 robot. Two theodolites are put to use in [68] to locate a single target that is mounted on

the robot to be calibrated. The position of the robot tool is computed by measuring three

distances to the target rather than the angles returned by theodolites. Similar to the work

of [68], [33, 69] computes the three distances but using time of flight from an acoustic

emitter at the robot end-effector to microphones located at a number of measurement

points. The 3D end-effector measurements required by their calibration methods described

in [8, 70] are deduced using a touch probe and a reference artifact. In [71–75], the authors

utilize a telescoping ballbar to acquire measurements for robot calibration processes. A

vision–based 3D position measuring device with limited range is employed in [76] and [77]

to calibrate a robot. A 3D vision–based measurement system is also used by [23] to

calibrate an ABB IRB–2400 and a PUMA–500 at different regions and volumes within

their workspace. Wider 3D range position measuring equipments that make use of laser

tracking are employed in [12, 29, 78]. A radial-distance transducer is used to measure the

distance of the robot endpoint from a fixed point in the workspace (1D) and to identify

kinematic parameters in [79]. Different types of calibrated fixtures can also be used to

measure position information during a robot calibration [32, 80–82].

What is paramount to note from the research efforts discussed thus far (type of measure-

ments used in their methods and reported performance analyses), is that incomplete pose
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information in accordance with a specific data-collection scheme can be used to successful-

ly calibrate a robot (yields satisfactory/useful results for most industrial robotic application).

Also to note from the survey is that, in most cases, complete pose measuring devices were

found to be relatively more expensive (compared to partial pose measuring equipments).

For these reasons, it behooves us to develop a kinematic parameter identification solution

that requires the supply of incomplete pose information. Moreover, considering the variabil-

ity among existing partial pose measuring devices, we believe that, in order for a solution

to have practical relevance, it ought to be adaptable to the supply of various types of

partial/incomplete pose information. Hence, our overall kinematic calibration framework

is comprised of two methodologies/systems: one that uses 3D position measurements

(3DCAL) and another that requires radial distance measurements only (1DCAL). Note

that neither method requires orientation measurements. In this dissertation, we made use

of Compugauge [5] and the Cordax RS-220 DCC Coordinate Measuring Machine (CMM)

to acquire the partial pose measurements of the calibration points.

For the third procedural calibration step (identifying parameters), in our framework, we

have formulated kinematic parameters identification process as a simplified optimization

problem. In our 3DCAL and 1DCAL systems, we make use of the DH(-) and DH(-

)(-) error models (simplified versions of original DH model). The 3DCAL requires the

Cartesian coordinates (position only) of the robot’s tool for some designated configurations.

Unlike [12, 66], our 3D approach does not require knowledge of the position of the robot’s

base frame as the Euclidean distances among the observations themselves are the only

measurements that are put into use. Aforementioned, our 1DCAL system requires the

supply of radial distance measurements only (i.e., absolute distance from the tool end-

point to a fixed reference anchored outside the workspace of the robot). Our 1D method
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is similar to one proposed by [79] in the sense that the objective function to be minimized

is also based on the difference of the computed radial distances of the robot’s endpoint

with respect to a fixed reference and the measured lengths. However, we differ in that our

1D method does not require the explicit knowledge of the fixed reference whereabout with

respect to the robot’s base frame. That is to say, we believe our approach is more flexible

to the location of the fixed reference (compared to the approach described in [79]) because

the position of the fixed reference is estimated and then iteratively refined along with the

selected DH error parameters via our algorithm during the calibration process. In this

study, the TR approach and the Levenberg-Marquardt method (LM) [83–85] algorithm are

implemented to minimize the objective functions of both systems (3DCAL and 1DCAL).

Even though both (TR and LM) algorithms converged to the same numerical values for

all cases of nonlinear least square estimation of the parameters, we found TR to be more

efficient compared to LM and hence the former is favored and is used to optimize over the

cost functions of both systems.

For the fourth calibration procedural step (implementing compensations), we allow user

interaction. It must be recalled that access to modify the parameters in some controllers is

not obvious, and may not be possible for second and third parties. Hence, as mentioned in

the above, we let the user select which DH parameters to estimate subject to our rules

that need to be applied to successfully derive the DH(-) error model (i.e., in order to

render the original DH convention based error model continuous and non-redundant). It

is important for the compensation of a kinematic calibration technique to be practical so

that it is transferable to control software of existing industrial manipulators [18]. From that

perspective (i.e., considering the widespread use of the convention in existing robot control
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software), we believe our approach is well-suited/desirable for this procedure since DH

parameters are obtained directly from both methods (3DCAL and 1DCAL).

It is a difficult task to make definitive comparison between previously published calibrat-

ion systems due to variability in the number of calibration points used to calibrate, number

of points used to validate performance of calibration scheme, type of manipulator, number

and type of parameters that are identified, kinematic model, accuracy of the measurement

equipment, performance metric, etc. It is well known that the performance results of a

calibration system can differ significantly depending on those variables. Fortunately, a

comprehensive comparison is made possible here thanks to Yaskawa Motoman Robotics,

Inc. and Measurement Specialties, Inc., who allowed us to make use of the Cordax RS-

220 DCC Coordinate Measuring Machine (CMM), CompuGauge [5] and MotoCal [6];

commercial systems that are currently used in their setting to calibrate various manipulators.

In this dissertation, our experimental results are compared to those of MotoCal [6]. We have

used identical manipulators, measurement equipment, performance metric and similar data

to put our performance into clear context. We shall show that our calibration methods are

not only competitive with a state-of-the-art system of the same genre but more robust.

The remainder of this dissertation is organized as follows. We begin by describing

the materials that we used in Chapter 2. They include manipulators and measurement

equipments used to carry out numerous experiments. In Chapter 3, we present two reliable

techniques that can be used to properly construct the DH(-) and DH(-)(-) error models.

The 3DCAL, 1DCAL and the optimization scheme algorithms are also described in that

Chapter. Experimental results and related discussion are presented in Chapter 4. The results

include performance results and comparison of our approaches to that of a commercial

system (MotoCal) using the same materials. Finally, in Chapter 5, we offer conclusions.
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Where relevant, some of the previously published methods described in this Chapter are

discussed further in the thesis.
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CHAPTER 2

MATERIALS

2.1 Manipulators: The HP20D, MH5-Hi and MH6

To test our 3DCAL system, we made use of the Yaskawa Motoman Robotics Inc.

HP20D manipulator [1] and the control software of the DX100 controller [2]. The HP20D

is a versatile high speed 6 DOF robot with all six revolute joints [1]. It is an anthropomorphic

robot comprised of a spherical wrist [20, 25, 27]. The HP20D is used in a variety of

applications such as cutting, dispensing, handling, machine tending, material removal,

packaging, press tending and welding [1]. Details concerning the specifications of the

robot and controller are presented in [1]. The geometry of the manipulator is presented in

Appendix A. The DH Table according to the convention described in [25] is presented in

Table 2.1.

We also made use of the MH5-Hi [56] and the FS100 controller [3] to further test our

3DCAL approach. The MH5 can be used for similar applications as the HP20D. Note that

it offers the widest work envelope in it’s class (706 mms reach) [56]. Technical data of the

MH5 are provided in [3, 56]. Its geometry is shown in Appendix B and the corresponding

DH Table is provided in Table 2.2. The “Hi” came to be incorporated in the name of the

robot because it was rebuilt such that to increase its axes resolution (i.e, the gears of the
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Table 2.1: DH parameters of the HP20D manipulator.

Link di in mm ai in mm αi in degrees θi in degrees

1 0 150 90 θ1
2 0 760 0 θ2 + 90
3 0 140 90 θ3
4 795 0 -90 θ4
5 0 0 90 θ5 − 90
6 105 0 0 θ6

Table 2.2: DH parameters of the MH5-Hi manipulator.

Link di in mm ai in mm αi in degrees θi in degrees

1 0 88 90 θ1
2 0 310 0 θ2 + 90
3 0 40 90 θ3
4 305 0 -90 θ4
5 0 0 90 θ5
6 80 0 0 θ6

Table 2.3: Axis Resolution of the MH5 and MH5-Hi.

Joint/Axis Manufacturer MH5 Rebuilt MH5-Hi

Index in pulses/rev in pulses/rev

1 391,791.3043 1,253,732.1739

2 436,906.6666 873,813.3333

3 364,088.8888 728,177.7777

4 327,680.0000 1,048,576.0000

5 327,680.0000 491,520.0000

6 204,800 409,600.0000

manufacturer were replaced with finer components). This is done in order to effectively

address one of the causes of error discussed in Chapter 1 (“limited resolution of the motor
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encoders”) and hence to further increase positioning accuracy from a mechanical/structural

viewpoint. Table 2.3 shows the axis resolution of the MH5 (robot from manufacturer) and

the one for the MH5-Hi (newly rebuilt) in terms of “pulses” per “revolution”, where “pulse”

is a motor’s smallest revolutionary increment.

The MH6 is a similar 6DOF serial robot that is used for alike applications as the

HP20D [4]. We made use of the MH6 manipulator and DX100 controller to validate

our 1DCAL method [2, 4]. The dimensions of the robot are depicted in Appendix C.

Specifications of the MH6 robot can be found in [2, 4]. Its DH Table is shown in Table 2.4.

Table 2.4: DH parameters of the MH6 manipulator.

Link di in mm ai in mm αi in degrees θi in degrees

1 0 150 90 θ1
2 0 614 0 θ2 + 90
3 0 155 90 θ3
4 640 0 -90 θ4
5 0 0 90 θ5 − 90
6 95 0 0 θ6

2.2 Measurement Systems: 3D and 1D CompuGauge

For the purpose of measuring the Cartesian coordinates of the calibration points for our

3DCAL system using the HP20D robot, we made use of 3D CompuGauge [5]. CompuGau-

ge is a system that allows 3D measurement and performance testing of robot positioning.

It is comprised of hardware and software.

As shown in Figure 2.1, the hardware (measurement device itself) consists of two

triangulation beams. The “measurement attachment” (tool) depicted/zoomed-in in that
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figure is mounted on the robot. The four “measurement cables” coming from both triangula-

tion beams are connected to the tool (to the robot test point). High resolution, low inertia

optical encoders are used to constantly measure the extension of the cables. The data

is interpreted by the software to deduce an accurate measurement of the test point with

respect to the user-supplied/user-defined reference frame [5]. Note that only three out of

the four cables that originate from the fixed cable-fed device are put to use to calculate the

coordinates of a given test point. The extra cable is dedicated for verification purposes.

Figure 2.1: The 3D CompuGauge System and measurement attachment (tool) [5].
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In addition to data acquisition, the software also allows to perform various robot perfor-

mance tests following two different internationally recognized performance standards: “M-

anipulating Industrial Robots - Performance Criteria and Related Testing Methods” (ISO

9283) and “American National Standard for the Evaluation of Point-to-Point and Static

Performance Characteristics of Industrial Robots and Robot Systems” (ANSI/RIA R15.05)

[5]. In this dissertation, we make use of that software capability to measure and report our

performance. More will be said about the performance metric and analysis in Chapter 4.

Specifications of the discussed measurement system are presented in Table 2.5.

Table 2.5: Specifications of the 3D CompuGauge System [5].

Performance

Resolution: 0.010mm
Repeatability: 0.020mm
Accuracy: ±0.150mm
Measurement space: 1500 mm× 1500mm× 1500 mm
Tracking rate: up to 5m/s
Sampling frequency: from 25 to 1000 Hz
Data range: up to 32000 points/file
Measurement Time: up to 10min
Mechanical (per “triangulation beam”)

Dimensions (approx.) : (L) 1730 mm× (W ) 165 mm× (H) 165mm
Weight (approx.): 7 kg
Environmental

Operating temperature: 20± 2◦C (68± 5)

In order to acquire the radial measurements of calibration points for our 1DCAL system,

we make use of 1D CompuGauge. 1D CompuGauge consists of an encoder, a specially

designed end-effector that is to be mounted on the robot and software. In essence, it

is a simplified version of 3D CompuGauge. The encoder is be anchored outside of the

manipulator’ workspace; preferably 45 cm to one side of the robot base and approximately

17



the same height as the base as shown in Figure 2.2. This location permits the largest

working envelope, reduces interference with robot components, and increases calibration

accuracy. The software provides similar capabilities as the one of 3D CompuGauge; a

means for data acquisition and robot performance testing/analysis based on alike standards.

Figure 2.2: 1D CompuGauge System [5, 6].

2.3 Coordinate Measuring Machine (CMM): Cordax RS-220 DCC

In a final test of our 3D approach we made use of a Coordinate Measuring Machine

(CMM). CMM is highly accurate device typically used for measuring the geometrical

characteristics of a specimen. Figure 2.3 The Cordax RS-220 DCC CMM that we used

to measure the Cartesian coordinates of the calibration points. In our experiment, the

MH5-Hi is installed on the CMM machine and the measurements are defined by virtue

of a specially designed end-effector that is mounted on the robot and a laser probe attached

to the third moving axis of the CMM machine. The coordinates of the calibration points

are collected by using the laser probe that is positioned automatically via Direct Computer
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Figure 2.3: The Cordax RS-220 DCC Coordinate Measuring Machine (CMM).

Control (DCC). The advantage of using DCC based CMM machine for the purpose of

taking measurements and evaluating calibration algorithms is that it can be programmed

to repeatedly measure identical calibration points. The CMM system that we utilized has

the following specifications: An average volumetric accuracy in the order 0.016 ± 0.030

mms, repeatability in the order of 0.013 ± 0.008 mms and measurement space capacity of

3000 mm× 1200 mm× 1000 mm.
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CHAPTER 3

PROPOSED KINEMATIC CALIBRATION METHODS

In this Chapter, we describe the proposed calibration methods. The concepts used

to develop a set of guidelines that need to be considered/applied in order to properly

construct the DH(-) and DH(-)(-) kinematic calibration models are discussed in Chapter 3.1.

3DCAL is described in Chapter 3.2. 1DCAL is presented in Chapter 3.3. In Chapter 3.4,

two optimization techniques for the purpose of minimizing the cost functions of 3DCAL

and 1DCAL (identifying the error parameters of the simplified/non-redundant kinematic

calibration models [DH(-) and DH(-)(-) models]) are compared. Following that, an automa-

ted/numerical parametric relevance assessment technique that can greatly aid the end-user

in deducing the DH(-) model of a given manipulator is presented in Chapter 3.5. That is

accomplished by making use of a novel global optimization scheme. In that Chapter, we

also correlate/compare the results of conceptual/analytic and numerical approaches in order

to demonstrate the agreement among the two in finding the simplified DH(-) model.

3.1 The DH(-) and DH(-)(-) Kinematic Calibration Models: Conceptual

(Analytical) Approach

A kinematic calibration model is a mathematical function that relates the robot joint

angles to the pose of the robot end-effector and that takes into account the geometric

error parameters that need to be modeled [20, 24–27]. As told in Chapter 1, the standard/
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original DH model is currently and widely used in robotics and hence is our first candidate

under consideration. Hayati [7, 8] first made note that when the geometric structures

deviated slightly, the original DH model parameters varied significantly (i.e., parameters

don’t vary continuously.) More specifically a small misalignment of parallel joint axes

which corresponds to error in nominally zero valued DH parameter α causes a large change

in the other DH parameters [7, 8].

Figure 3.1 illustrates a schematic of two consecutive parallel joint axes and correspond-

ing coordinate frames assigned according to the DH convention described in [25]. Looking

at joint axes labelled θi−1 and θi, we have two consecutive perfectly parallel joint axes. For

that scenario, the DH rule dictates to locate the origin of the coordinate frame that is to be

assigned to linki (frame 1) where the common normal to Zi and Zi−1 intersect Zi. The DH

parameters that relate/describe the two frames (frame 0 and frame 1) are di = 0, ai = L,

αi = 0◦ and the joint variable offset θi = 0◦. Now suppose that due to some manufacturing

tolerances the Zi axis is misaligned by a small angle β as shown in Figure 3.1. In that

Figure, we labelled the misaligned axis of actuation which corresponds to θ
′

i as Z
′

i . Zi−1

and Z
′

i now intersect at some distance away from frame 0. In such case, according to the

DH convention, one is to locate the origin of the coordinate frame that is to be assigned

to linki at that intersection. Therefore, the true DH parameters in this case (the ones that

relate frames 0 and frame 1′) are di = −D, ai = 0, αi = −β◦ and θi = −90◦, where D as

shown in Figure 3.1 is a large positive scalar which is measured from origin of frame 0 to

that of frame 1′. Thus a small error in the alignment of axes of actuation that are parallel

causes a large error in the other three DH parameters (di, ai, and θi) [7, 8].

Notwithstanding that, Nubiola and Bonev [12, 15] recently proposed an elegant solution

to overcome the problem of disproportion at parallel or near parallel joint axes. In their
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Figure 3.1: Drawing of two consecutive parallel joint axes and corresponding coordinate

frames assigned according to the DH convention [7, 8].
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method, they forced axis 3 to be parallel to axis 2 for simplicity (i.e., they chose not

to perturb the zero valued DH parameter α) and were able to successfully calibrate a

manipulator by making use of the DH model. In this work, we apply that solution and

make use of an original DH convention based kinematic calibration model that meets the

“Continuity” criterion described in [39, 42] to calibrate various manipulators. Table 3.1

presents the continuous kinematic calibration model applied to the HP20D manipulator.

Table 3.1: Original DH convention based continuous kinematic calibration model applied

to HP20D manipulator.

Link di in mm ai in mm αi in degrees θi in degrees

1 0 + δd1 150 + δa1 90 + δα1 θ1 + δθ1
2 0 + δd2 760 + δa2 0 (θ2 + 90) + δθ2
3 0 + δd3 140 + δa3 90 + δα3 θ3 + δθ3
4 795 + δd4 0 + δa4 −90 + δα4 θ4 + δθ4
5 0 + δd6 0 + δa5 90 + δα5 (θ5 − 90) + δθ5
6 105 + δd6 0 + δa6 0 θ6 + δθ6

The HP20D robot’s kinematic calibration model can be mathematically represented as

T(q)0tool = A1(q1)A2(q2)A3(q3)A4(q4)A5(q5)A6(q6)Atool, (3.1)

where q is the vector of the joint values ([q1, q2, · · · , q6] which in our case = [θ1, · · · , θ6]

since we are dealing with 6DOF manipulators that possess axes with all revolute joints).

Ai and Atool can be calculated using Eqs. (3.2) and (3.3) respectively,

Ai = Rot(z, θi + δθ)Trans(z, di + δdi)Trans(x, ai + δai)Rot(x, αi + δαi), (3.2)

Atool = Trans(x,Xtool + δXtool)Trans(y, Ytool + δYtool)Trans(z, Ztool + δZtool)Rtool,

(3.3)
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where

Rtool = RPY (RXtool + δRXtool, RYtool + δRYtool, RZtool + δRZtool). (3.4)

RPY in Eq. (3.4) is a function that, given the Roll/RZtool, Pitch/RYtool and Yaw/RXtool

angles of the end-effector mounted on manipulator, returns a 4×4 homogenous transformat-

ion matrix Rtool representative of the orientation of the tool frame [24]. See Appendix D

for details of the abbreviated homogeneous transformation matrices. Note that the DH

calibration model is comprised of 28 error deviations/parameters (where six of those are

dedicated for estimating the location/position and orientation of the tool-frame/end-effector

itself). Let p = [x,y, z]T denote the calculated position of the end-effector. In other

words, the vector p contains the first three elements of the last column of T(q)0tool for

some configuration q. The robot’s DH kinematic calibration model can be expressed in a

compact form as

p = f(q, e), (3.5)

where vector e ∈ Ω contains all 28 geometric error parameters (deviations δdi, δai, δαi

and δθi that are be added to corresponding nominal values) and Ω is the set of allowable

deviations (e.g., ei ∈ [−ei, ēi] where −ei and ēi are robot manufacturer dependent range

limits).

We believe that forcing the alignment of parallel or near parallel joint axes as done by

Nubiola and Bonev [12, 15] is well applicable in our case because access to modify the

DH parameter α in Yaskawa Motoman Robotics, Inc. controllers is not possible [2, 3, 41].

Hence, in addition to that, we extend the idea and elect to “freeze” all DH α parameters

(i.e., making use of the nominal values) in our calibration scheme.
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Figure 3.2: Illustration of DH parameters redundancy.

Moreover, by examining the rank of the Jacobian of their least-square optimization

method, Nubiola and Bonev [12, 15] found that several error parameters are often redundant.

In order to attain a stable solution, they chose to take out what they refer to as useless/

redundant error parameters [12, 15]. For example, the error parameters δd2 and δd3 are

dependent (i.e., they are redundant error parameters) because of the parallel axes of joints

2 and 3 (which are forced to be perfectly parallel) and so they chose to not consider δd3

in their model [12, 15]. Another form of redundancy that can be problematic in achieving

convergence (stable solution) for an optimization scheme like the one we will be employing

can be demonstrated using the example shown in Figure 3.2. The Figure shows that

different combinations of the other three parameters θi, ai, and di lead to the same transfor-

mation from point A to B.

In order to circumvent the discussed issues, our product usage guidelines include the

following terms. Since axis 2 and 3 of the HP20D are considered perfectly parallel, only
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one (out of the two) DH parameter that describes an offset along that dimension (e.g.,

δd2 or δd3) is be considered in the model. Moreover, for the reason explained in the

above, one of the two DH parameters (ai or di) of a transformation that describes the

spatial relation of any two given links (i.e., Ai) must be kept “frozen” at its nominal

value. In fact, in this work, we will not be considering zero valued DH parameters (ai

and di) in our kinematic calibration model. The reason for that lies in a long standing

experience (achieved over the course of calibrating numerous Yaskawa Motoman Robotics,

Inc. manipulators) and extensive experiment done by us, that including those particular

parameters does not contribute to a noteworthy overall performance gain in return.

Furthermore, we will not be considering δθ1. As mentioned in Chapter 1, our approach

is invariant to the fixed frames (robot’s and measurement equipment’s base/reference frame-

s). The Euclidean distances between/among the calibration points are the measurements

put to use. Hence, estimating that particular error parameter will only translate and/or

rotate all calibration points while the Euclidean distances among those observations remain

unchang-ed. Since that will bring about undesired redundancy, as it will be demonstrated

by an automated parameter assessment method in Chapter 3.5, in our approach the offset

of the first joint angle θ1 must be kept “frozen” during calibration as well.

Finally, another aspect of kinematic calibration is the need to determine the tool transfo-

rm when necessary. The provided measurement-attachment/tool shown in Figure 2.1 is

well defined and ideally is to be mounted directly onto the robot. Unfortunately, for the

HP20D, we used a fabricated mounting plate due to hardware incompatibility and hence

the error parameters of Atool in Eq. (3.3) need to be identified. More will be said about the

experimental procedure that we performed to obtain an initial tool definition in Chapter 4.

What needs to be emphasized here is (after an initial guess of the tool specifications) the
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guidelines that need to be set in order to attain a good estimate (i.e., avoid redundancy). It

follows that, if the attached tool is well defined, then error parameters listed in the last/sixth

row of Table 3.1 (δd6 and δθ6) can be estimated. However, if one chooses to estimate tool

definition (as done in this work for the HP20D robot) then those error parameters need to

be kept frozen for the obvious reason to avoid redundancy. This will also be justified and

further discussed in Chapters 3.5 and 4. In the case of the HP20D, we made use of a flat

fabricated mounting plate (approximately 20mm thick), one that guarantees certainty of

the orientation of the tool frame and hence we decided to estimate the position of the tool

frame only (Xtool, Ytool and Ztool). Let “DH(-) model” denote the kinematic calibration

model after modifying the model described in Table 3.1 as discussed thus far (i.e., after

applying the discussed guidelines). Table 3.2 presents the DH(-) kinematic calibration

model for the HP20D manipulator that we will use to evaluate our 3DCAL methodology.

Table 3.2: DH(-) kinematic calibration model of the HP20D manipulator.

Link di in mm ai in mm αi in degrees θi in degrees

1 0 150 + δa1 90 θ1
2 0 760 + δa2 0 (θ2 + 90) + δθ2
3 0 140 + δa3 90 θ3 + δθ3
4 795 + δd4 0 −90 θ4 + δθ4
5 0 0 90 (θ5 − 90) + δθ5
6 105 0 0 θ6

The “simplified” model is now comprised of only 11 error parameters (where 3 paramet-

ers are dedicated for estimating the location of the tool frame). Note that although our

kinematic calibration model is incomplete (i.e., does not meet the “completeness” criteria

defined in [42, 86]), we shall show that it is capable of exceptional performance (i.e.,
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yields accuracy that is more than satisfactory for most robotics applications). More will

be said about this in Chapter 4. Also to note is that the DH(-) model is without a doubt

favorable (compared to that of DH or other complex models discussed in Chapter 1) from

a computational efficiency stand point of view since it consists of fewer degrees of error

parameters.

Table 3.3: DH(-) kinematic calibration model of the MH5-Hi manipulator.

Link di in mm ai in mm αi in degrees θi in degrees

1 0 88 + δa1 90 θ1
2 0 310 + δa2 0 (θ2 + 90) + δθ2
3 0 40 + δa3 90 θ3 + δθ3
4 605 + δd4 0 −90 θ4 + δθ4
5 0 0 90 θ5 + δθ5
6 80 + δd6 0 0 θ6 + δθ6

Similarly the kinematic calibration model of the MH5-Hi manipulator described in

Chapter 2.1 can be simplified according to the guidelines mentioned in the above. Table 3.3

presents the continuous and non-redundant DH(-) error model of the MH5-Hi. Note that,

in the case of validating our 3DCAL approach using the DH(-) model of the MH5-Hi

manipulator, we made use of the CMM machine (described in Chapter 2.3) and an end-

effector/tool of known dimensions to measure the Cartesian coordinates of the calibration

points. Hence, unlike in the case of the HP20D, we opt to estimate the error parameters

δd6, and θ6 instead of calibrating tool related parameters. In our experiment, we are able to

accurately calculate Atool using

Atool = Trans(x, 0.000)Trans(y, 100.000)Trans(z,−17.78)Rtool, (3.6)
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where Rtool is a 3 × 3 identity matrix. All dimensions in that equation are metric (mm).

Note that the dimensions of the tool are deduced using the CMM machine itself in a

separate experiment. Also to note is that the kinematic calibration model of the MH5-Hi is

comprised of 10 parameters.

Table 3.4: DH(-) kinematic calibration model for MH6 manipulator.

Link di in mm ai in mm αi in degrees θi in degrees

1 0 150 + δa1 90 θ1
2 0 614 + δa2 0 (θ2 + 90) + δθ2
3 0 155 + δa3 90 θ3 + δθ3
4 640 + δd4 0 −90 θ4 + δθ4
5 0 0 90 (θ5 − 90) + δθ5
6 95 + δd6 0 0 θ6 + δθ6

In order to validate our 1DCAL approach we made use of the DH(-) model of the MH6

manipulator (described in Chapter 2.1) and the 1D CompuGauge measurement equipment

that is described in Chapter 2.2. The continuous and non-redundant DH(-) model for the

MH6 manipulator can be constructed by applying the same guidelines as for the other two

manipulators (HP20D and MH5-Hi) and is presented in Table 3.4. As done in the case of

the MH5-Hi manipulator, we have also decided to calibrate θ6 and d6 because we made use

of a well defined tool that we directly mounted on the robot (i.e., in the case of employing

1DCAL to calibrate the MH6 we do not take into account the error parameters related to

tool frame/data). Atool can be accurately calculated using

Atool = Trans(x, 0.951)Trans(y,−149.920)Trans(z, 138.040)Rtool, (3.7)

29



where Rtool is a 3 × 3 identity matrix. All dimensions in that equation are metric (mm).

Note that the DH(-) model of the MH6 consists of only 10 error parameters (just like the

DH(-) model of the MH5-Hi manipulator).

Table 3.5: DH(-)(-) kinematic calibration models

The DH(-)(-) kinematic calibration model of the HP20D Manipulator

Link di in mm ai in mm αi in degrees θi in degrees

1 0 150 90 θ1
2 0 760 0 (θ2 + 90) + δθ2
3 0 140 90 θ3 + δθ3
4 795 0 −90 θ4 + δθ4
5 0 0 90 (θ5 − 90) + δθ5
6 105 0 0 θ6

The DH(-)(-) kinematic calibration model of the MH5-Hi Manipulator

Link di in mm ai in mm αi in degrees θi in degrees

1 0 88 90 θ1
2 0 310 0 (θ2 + 90) + δθ2
3 0 40 90 θ3 + δθ3
4 305 0 −90 θ4 + δθ4
5 0 0 90 θ5 + δθ5
6 80 0 0 θ6 + δθ6

The DH(-)(-) kinematic calibration model of the MH6 Manipulator

Link di in mm ai in mm αi in degrees θi in degrees

1 0 150 90 θ1
2 0 614 0 (θ2 + 90) + δθ2
3 0 155 90 θ3 + δθ3
4 640 0 −90 θ4 + δθ4
5 0 0 90 (θ5 − 90) + δθ5
6 95 0 0 θ6 + δθ6

As briefly mentioned in Chapter 1 and as it will be demonstrated in Chapter 4, when

it comes to industrial manipulators like the ones of Yaskawa Motoman Robotics, Inc. and

alike a great amount of positioning inaccuracy is mostly due to erroneous offsets values
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used to describe manipulator’s home position (also known as ABS data in controllers found

in [2, 3, 41]). We therefore further simplify the DH(-) model and introduce the DH(-)(-)

model where the model takes into account the home position (and tool if applicable) only.

Based off the logic deliberated in the passage above concerning the unstable parameter δθ1,

that error parameter shall not be taken into account in this simpler error model. Without a

doubt, the newly introduced model is highly incomplete (according to [42, 86] and compar-

ed to the DH(-) model) but to our pleasant surprise it yields/produces results that we believe

are significant for a majority of robotics applications. Table 3.5 presents the DH(-)(-)

kinematic calibration models for the three manipulators (HP20D, MH5-Hi and the MH6

respectively). It should be noted that the DH(-)(-) error model of the HP20D is a function

of 7 error parameters (where 3 are tool frame related estimates since we chose to calibrate

the tool of vaguely known dimensions). In contrast, the two DH(-)(-) models of the MH5-

Hi and MH6 are functions of only 5 error parameters because in our experiments we chose

not to calibrate the tool in the case of those two robots (i.e., since the specification of the

tools that are directly mounted on those robots is known). Also to note is that these models

with notable fewer parameters can be processed a lot quicker compared to any other error

model cited and proposed/DH(-) thus far (i.e., they are more preferred for the mathematical

calculation that needs to be executed).

3.2 3DCAL

In this Chapter, we describe the 3DCAL technique that is employed to identify the error

parameters of the DH(-) and DH(-)(-) models of the HP20D and MH5-Hi manipulators.

Figure 3.3 shows a block diagram of the calibration algorithm where the HP20D manipulat-

or and its DH(-) error model are used as an example. A natural extension of Eq. (3.5)
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described in Chapter 3.1 is

P = f(Q, e), (3.8)

where the matrix P is now comprised of a set of calculated Cartesian coordinate vectors

[p1(q1, e),p2(q2, e), · · · ,pN(qN, e)] of N calibration points, and matrix Q contains the

corresponding set of joint values (i.e., set of N configuration vectors).

As shown in that Figure 3.3, the Euclidean distance matrix D of matrix P is calculat-

ed [87–90]. Matrix D is a hollow (diagonal elements are all equal to zero) and symmetric

matrix [87–90] and is of size N×N for a given set of N calibration data points. Let l denote

a vector that contains the (N × (N − 1))/2 unique (distinct) non-zero values of matrix

D. Furthermore, let matrix P̃ and vector l̃ represent arrays that contain the corresponding

measurements of those calibration points acquired using the 3D CompuGauge measurement

equipment described in Chapter 2.2 (i.e., a set of measured Cartesian coordinate vectors

and the distinct non-zero values of their Euclidean distance matrix, respectively). Then, as

depicted in Figure 3.3, the multi-variable objective function of our 3DCAL system that is

to be minimized (off-line) using our optimization scheme can be expressed as

y3DCAL(e) =
1

(N × (N − 1))/2)

(N×(N−1))/2∑

i=1

∆l2i , (3.9)

where ∆li = li − l̃i (the residual/difference between the calculated and measured distances

of the ith Euclidean distance for a total of (N × (N − 1))/2 unique Euclidean distances).

The optimal error parameter vector e∗ can then be calculated as

e∗ = argmin
e∈Ω

y3DCAL(e). (3.10)

Note that the error function y3DCAL(e) that is to be minimized is based on the discrepancy

between the calculated and measured Euclidian distances among the tool end-points for
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Figure 3.3: 3DCAL block diagram. The DH(-) model of the HP20D is used as an example.
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some designated configurations. In other words, we do not explicitly make use of the

Cartesian coordinates of the calibration points with respect to a fixed frame (neither the

robot’s nor 3DCompuGauge’s base frames). We believe our approach is therefore more

practical and robust compared to the ones described in [12, 66]. Those two methods call for

an extra procedure to determine a common reference coordinate frame/system beforehand

and that extra step alone could introduce errors that could potentially propagate down to

the end-results. Ω is robot and manufacturer dependent solution space. More will be said

on how to define the dimensions of Ω in Chapter 4.3.

Of course, at this point, the challenge is to optimize over the cost function of Eq. (3.9)

(i.e., calculating the optimal error parameter vector e∗ as described in Eq. (3.10)). It is

basically a nonlinear least-squares optimizat-ion problem that can be solved using either

the Trust Region (TR) algorithm [48–52], or Levenberg-Marquardt (LM) algorithm [83–

85]. The two are powerful optimization algorithms for large-scale nonlinear problems.

In Chapter 3.4, we will compare the two and make a recommendation with regards to

which one out of the two is effective and efficient in identifying the error parameters of the

DH(-) and DH(-)(-) error models of the two manipulators (HP20D and MH5-Hi) using the

discussed 3DCAL method.

3.3 1DCAL

The system presented in this Chapter requires the supply of radial measurements of the

calibration point with respect to some fixed reference. Figure 3.4 presents a block diagram

for the 1DCAL approach where the MH6 manipulator and its DH(-) error model are used

as an example for illustration purposes. Our 1DCAL system is a simplified version of

3DCAL and builds on the work of Goswami et. al. [79]. As briefly explained in Chapter 1,
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unlike [79] the location of the fixed reference is estimated and then iteratively refined along

with the selected DH error parameters via our algorithm during the calibration process.

As it is illustrated in Figure 3.4, we propose to define the main objective function that

is to be minimized to estimate the coordinates/location of the fixed reference (encoder)

pe = [xe,ye, ze]
T ∈ V, and the vector e that contains the selected DH error–parameters/

deviations as

y1DCAL(pe, e) =
1

N

N∑

i=1

(ri − r̃i)
2, (3.11)

where ri and r̃i in that equation are the computed and measured radial distances at the ith

calibration point, respectively, out of a total of N calibration points. More specifically, ri

can be calculated as

ri = ∥pe − pi∥, (3.12)

where the ith vector pi that describes the position of the end-effector can in turn be calculated

by invoking Eq. (3.5) (i.e., pi = f(qi, e)). This is another nonlinear least–squares optimizat-

ion problem where either of the two powerful optimization algorithms mentioned in Chapt-

er 3.2 can be used to to optimize over Eq. (3.11) such that the solution/minimizer

e∗ = arg min
e∈Ω,pe∈V

y1DCAL(pe, e), (3.13)

is found.

V is a spherical volume. More will be said about the dimensionality of V in Chapter 4.3.

Note that our approach consists of solving for both minimizers e∗ and p∗
e simultaneously

(although the former vector contains the relevant information to calibrate the manipulator).

Also to note is that those two vectors belong to two drastically different sub-spaces (i.e.,

Ω and V, respectively). We believe a zero valued vector ∈ Ω is an appropriate initial–

condition/starting–point for the purpose of solving for e∗ since it contains deviations of
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Figure 3.4: 1DCAL block diagram. In this Figure, the DH(-) model of the MH6 is used as

an example
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small magnitude. However, the vector pe contains the location of the encoder and hence a

zero valued vector ∈ V is far from the minimizer/solution p∗
e. Thus, to facilitate computat-

ion, we take on the task of supplying a different and adequate initial–condition/starting–

point in order to solve for p∗
e more efficiently. We initially optimize over

y1DCAL(pe,0) =
1

N

N∑

i=1

(ri − r̃i)
2, (3.14)

so as to find the minimizer

p∗
e0 = arg min

0∈Ω,pe∈V
y1DCAL(pe,0), (3.15)

that is relatively closer to the solution p∗
e. Hence, as an initial procedure, we execute

Eq. (3.15) and make use of 0 and p∗
e0 as an initial starting points to solve for e∗ and p∗

e,

respectively, while optimizing over Eq. (3.11). Once more we are in need of an effective

optimization scheme to estimate the error parameters of the MH6 using 1DCAL. In the

next Chapter, we compare/discuss the TR and LM optimization schemes in details and

provide our suggestion concerning which of the two is preferable in terms of effectiveness

and efficiency to solve the non-linear least squares optimization problems that we have

formulated thus far.

3.4 Optimization Scheme: Identifying Error Parameters

In this Chapter, we shall thoroughly describe the optimization scheme employed to

solve-for/identify the error parameters of the simplified models (DH(-) and DH(-)(-)) using

both frameworks (3DCAL and 1DCAL). Aforementioned, both Eqs (3.9) and (3.11) are

nonlinear least-squares optimization problems that can be solved using either Trust Region

approach (TR) [48–52] or Levenberg-Marquardt method (LM) [83–85]. TR and LM are

two efficient optimization algorithms that can handle large-scale nonlinear optimization
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problems. The details of the two optimization algorithms can be found in [48–52, 83–

85, 91]. Here, a brief overview of the implemented methods is presented. Given an

objective/cost function y(e) (like Eqs (3.9) and (3.11)), the minimization problem can be

mathematically approximated using the Taylor development limited to the second order of

the Lagrangian function of y(e) as

min y(ek +∆e) ≈ minm(ek +∆e) = y(ek) + gT
k∆e+

1

2
∆eTHk∆e, (3.16)

where m(ek +∆e) is the local quadratical model/approximation of y(e) around ek. ek is

a vector that contains the guesses of the error parameters and ∆e is small perturbation of

ek. Vector gk is the gradient of the objective function with respect to ek. It represents the

direction of the maximum rate of change of the objective function surface and is ideally

zero in magnitude at the minimum. Matrix Hk is the Hessian matrix of the objective

function and it contains convexity related information of the objective function.

In LM, an iteration/Newtonian step is taken according to

∆e = −(Hk + λkI)
−1gk, (3.17)

where λk is an adjustable scalar and I is an identify matrix of size that is equal to H. The

elements of the update vector ∆e are added to ek to give an improved set of parameters.

If at the kth iteration the condition y(ek +∆e) > y(ek) is satisfied (meaning the iteration

was unsuccessful), the step is rejected and λk is increased. Choosing a relatively large

value for λk makes Hk negligible and the search procedure resembles the well known “the

Steepest–Decent” (also known as “Gradient–Search method”) where the Newton step can

be approximated as ∆e = −gk. In essence, the algorithm relies on gradient information

since the quadratic model does not fit properly. Note that large values of λk makes the

inversion of Hk + λkI possible even if Hk is not positive definite. In fact, the sole purpose
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of introducing that parameter is to overcome the difficulties caused by singularities and near

singularities of the Hessian matrix. For every kth successful iteration (i.e., y(ek +∆e) <

y(ek)), the step is accepted and λk is decreased in order to exploit the curvature information

contained inside the Hessian matrix. In effect, as the search continues while decreasing

λk, the successive Newtonian steps resembles the “Gauss–Newton” steps (i.e., ∆e =

−Hk
−1gk). In practice, λk is chosen in a way which is intended to use Steepest–Descent

when far from the solution and Gauss–Newton near the solution. Hence, LM presents a

useful combination/mixture of the steepest descent and the Gauss-Newton techniques (i.e.,

it is a robust algorithm that can solve singular systems).

In actuality, choosing a large λ value in LM decreases the Newton step size (i.e., ∥∆e∥

is reduced). It can be proven that, if we impose a proper limitation on the step size, we can

achieve convergence even it the Hessian matrix is indefinite [49, 91]. That is the principle

of the TR based approach. Simply put, in TR, the steps are subject to a Trust Region that

is iteratively modified (i.e., the size of the region is reduced or increased based on a similar

validation check like that of LM). Mathematically speaking, according to the TR algorithm,

Eq, 3.16 is modified as

min
∥∆e∥≤δk

q(ek +∆e) = y(ek) + gT
k∆e+

1

2
∆eTHk∆e, (3.18)

where δk is the trust region of the model q(ek) (i.e., the region where we trust the model is

valid). The basic algorithmic steps of TR are as follow:

1. While the stopping criterion is not met; compute the provisional update step ∆e as

∆e = −Hk
−1gk.

2. Compute the ratio

ark
prk

=
y(ek +∆e)− y(ek)

m(ek +∆e)−m(ek)
,
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where ark and prk are the actual and predicted reductions, respectively.

3. Compute a new set of parameters as

ek+1 =

{
ek, if ark/prk < η1

ek +∆e, otherwise.

4. Modify the trust region as

δk+1 =





γ1δk, if ark/prk < η1

δk, if η1 ≤ ark/prk ≤ η2

max{δk, γ2δk}, if ark/prk > η2.

5. Increment index k and go to step 1.

In the steps of the algorithm presented in the above, the condition parameters are limited

to 0 < η1 < 0.5 < η2 ≤ 1 and the scaling (“shrinking” or “growing”) factors are subject

to 0 < γ1 < 1 < γ2. The algorithm is quite insensitive to the constraints. We made use of

typical values. The typical values used ins this work are η1 = 0.25, η2 = 0.75, γ1 = 0.5 and

γ2 = 2. These conditions and scaling factors ensure that TR makes use of a trust region

within which the quadratic model of the Lagrangian function is believed to be accurate

(i.e., the model/approximation is valid in a neighborhood of ek that is restricted by the trust

region radius δk).

While we found the described/generic LM and TR approaches to be effective in solving

all optimization problems presented in this dissertation, for sake of completeness, we made

note of some interesting variations of those techniques. Recently, [92] suggested to replace

the equation of the provisional update/newtonian step ∆e described in step 1 of TR with

Eq. (3.17). Moreover, [92] goes on in making the trust region modification described in

step 4 of TR as a function of λk [92]. In other words, this modified LM/TR algorithm

modifies the parameter λk in every iteration, which in turn modifies δk implicitly [92]. We
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also have [93] who propose a new LM method where for the kth unsuccessful iteration,

rather than completely rejecting the step, the step is accepted but the provisional update/

newtonian step ∆e is subject to a damping factor that is obtained by Wolfe or Armijo line

search [93].

To summarize it all, LM and TR are both restricted Newton Step based methods and

hence exhibit quadratical speed of convergence for iterations near the solution e∗. Moreover,

they both can handle singular system of non-linear equations. However when we are far

from the solution, LM will slow down drastically since it relies mostly on the Gradient

Search method. In contrast, the solution trajectory of TR can potentially perform a very

long leap and expedite the search process. This efficient facet of TR has been proven by

numerous literatures including [91] and [94]. In particular, as sated by [91], “[TR] methods

are an evolution of [LM] algorithms. [TR] methods are able to follow the negative curvature

of the objective function. [LM] algorithms are NOT able to do so and are thus slower.” We

strongly concur with those literatures as TR demonstrated a slightly faster convergence

rate for all cases of nonlinear least square minimization problems presented/encountered

in this dissertation. These include Eqs 3.9, 3.11 and 3.14. For example, in the case of

minimizing Eq. 3.14, given the same initial condition (a zero vector) and identical tolerance

based stopping-criterion/termination-condition, LM carried out 13 iterations while TR only

performed 7 iterations to converge to the same solution. Hence, even though they both

converged to the same numerical solutions for all calibration cases, we favor TR as it is

computationally efficient for this application. In this work, the termination condition for

TR that we used is until the deviation error is small enough (in the order of 10−12). We also

made use of TR (as a local solver) for the purpose of carrying out a parametric redundancy

auto-assessment using a Simulated Annealing based Global Search that we are about to
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introduce in the next Chapter (Chapter 3.5). We found the assessment to be very handy in

facilitating the derivation of the simplified kinematic error model DH(-).

3.5 The DH(-) Kinematic Calibration Model: Automated/Numerical

Method

In this Chapter, we propose an automated method that calls for numerical analysis to

provide a redundancy assessment of the error parameters. Note that the sole purpose of

this evaluation is to provide insight in identifying redundant parameters so as to facilitate

the derivation/construction of the DH(-) model of a given manipulator. That is to say,

the user may opt to use the “conceptual/analytical approach” described in Chapter 3.1 or

the automated method that we are about to explain in order to deduce the DH(-) model.

Once DH(-) model is found the error parameters can be solved using the efficient solver

discussed in Chapter 3.4. Figure 3.5 depicts a block diagram of the discussed product usage

protocol. The first step/“stage” is to find the DH(-) model of the manipulator in question.

As shown in that figure, “stage 1” can be carried out either using the “concept approach” or

“the automated approach”. Note that “the automated approach” does increase the burden

on the user (running an optimization-scheme/Global-Search using available data) but is

undoubtedly helpful in deriving the DH(-) model of the robot in question (in particular,

it can greatly help if the geometry of the structure is complex and the guidelines of the

“analytical approach” can no longer be extended in an obvious fashion). Provided that

the DH(-) model is correctly identified, the user can complete the second stage of the

calibration process; solving for the non-redundant error parameters using TR. The friendly

Graphical User Interface (GUI) that we have devised to allow the user to carry out the

calibration procedure per the discussed protocol is presented in Appendix E.
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Figure 3.5: Top level block diagram illustrating the product usage protocol.

As mentioned in the previous Chapter and as it will be demonstrated in Chapter 4, TR

is found to be very adequate to identify the error parameters of the DH(-) and DH(-)(-

) kinematic calibration models (i.e., solving non-redundant systems). However, when it

comes to redundant error models (e.g., original and continuous DH based error model of

the HP20D manipulator shown in Table 3.1), TR and similar solvers are sensitive to the

supplied initial condition/guess (starting point) when searching for global solution(s) as

error models with redundancy are problems that contain multiple global maxima or minima.

We propose to take advantage of such sensitivity in order to identify redundant parameters

by performing a Global Search (GS) using multiple starting points. We seek to examine

each starting point using TR and inspect if the selected error parameters converge to the

same numerical values in which case those will be deemed non-redundant. Conversely,

error parameters that converge to different numerical values but without any significant

impact in the output of the objective function are adjudged ineffectual. We chose TR as

a local solver (to examine each starting point) since not only it exhibits excellent local

convergence but it is also efficient.
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We propose to make use of another type of solver to gather a rich set of starting

points. We then run TR using those starting points in order to to perform a GS for the

solution. In essence, we have a GS mechanism similar to the ones described in [53–55].

Unlike [53–55], we make use of Simulated Annealing (SA) [43–47] to generate starting

point candidates. Let us briefly describe SA’s algorithm operation before embarking on to

the use of it to produce a rich set of initial conditions.

SA is a stochastic optimization algorithm on its own right [43–47]. The method models

the physical process of “heating” the material and then “cooling” the temperature to decrease

defects, thus minimizing the system energy. The basic operation of SA begins by allowing

the solution trajectory to take large random steps in the solution space (i.e., heating of the

solution space). If the output of the objective function is smaller than the previous (i.e., if a

solution that further minimizes/reduces output of cost function compared to the precedent

is found), the current/new solution is accepted. Else, the new solution is only retained with

some probability. The greater the increase in the output of the objective function, the lower

the probability of acceptance. By registering points that raise the objective, the algorithm

avoids being trapped in local minima, and is able to explore globally for more possible

solutions. As the algorithm progresses, the temperature decreases (i.e., “cooling regime”)

in order for algorithms’ search to converge to a minimum [43–47]. After a certain number

of new points are accepted, the temperature is raised to a higher value in hope to restart

the search and move out of a local minimum (re-annealing process). Since the position

of the final point in the solution/state space is subject to stopping criteria (which could

have terminated the algorithm while the solution trajectory is taking “uphill” path), it is not

always the optimal answer. Therefore, the best solution visited over the entire SA session

is outputted.
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Given an objective function, like the one described in Eq. (3.9) for example, which

maps the multi-dimensional solution sub-space Ω ∈ R
m → R where m is the number of

selected error parameters (i.e., dimensionality of the solution sub-space) and e ∈ Ω is a

vector in that sub-space, the flow of simulated annealing for a given temperature schedule

can be enumerated as follows:

1. Choose a random vector e0; initial guess at the solution.

2. Evaluate y0 = y3DCAL(e0).

3. Take a random step in the solution space to a neighboring vector e1

4. Evaluate y1 = y3DCAL(e1).

5. Continue iterating in this fashion until stopping criteria is met. During the iteration,

6. if yk+1 < yk at the kth iteration, then update the solution to ek+1 (i.e., ek+1 is the

new/current solution).

7. If on the other hand at any iteration yk+1 > yk then retain ek+1 as the solution with

probability pk = e−∆/T where ∆ = |yk+1 − yk| (i.e., difference of objective function

values between two consecutive steps) and T is the system’s temperature.

8. Reduce the system temperature according to schedule and the final solution is ek

such that yk is the smallest value that has been achieved at any point in the algorithm

after terminating the algorithm.

Note that in this work it was considered to use SA as a stand alone optimizer for this

application but we found SA to be inadequate/unsuccessful in converging to an acceptable

result (the optimal solution). Difficult and arduous tasks that need to be mastered for SA
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to be effective include a proper choice of initial temperature and temperature model for

each dimension of the solution space, setting tuning parameters (e.g., annealing constant,

re-annealing interval, etc.), determining search stopping criteria (e.g., maximum number of

iterations, change in function or parameters value [tolerance], time allowed, etc.) [43–47].

However, we made note of SA’s potent capability of intelligently exploring the solution

sub-space Ω.

It is for that reason that in our study we decided to combine the best of two worlds. We

propose a hybrid optimization scheme that consists of the outstanding probing capability of

SA (i.e., intelligent search with a fast temperature schedule) with the first-rate convergence

properties of TR. In our approach we first retain the results obtained over the course of

multiple SA runs using the maximum number of iterations as a stopping criterion for each

run (50 distinct outcomes to be precise). We then employ the “local optimizer” TR using

SA’s results as potential starting points to carry out a GS. In other words, each (for a total

of 50) output produced by SA is further examined with the TR agent (instead of solely

relying on the convergence properties [cooling regime] of SA). We believe our hybrid

optimization scheme is computationally efficient compared to the ones described in [53–55]

because those methods call for a higher number of starting points (obtained vis a scatter-

search mechanism or uniformly distributed starting points within bounds) and an exhaustive

inspection using similar non-linear programming.

As mentioned in the latter, the purpose of this hybrid optimization scheme is to provide

insight about the relevance of the selected parameters. That is, insight regarding unwanted

redundance within the model due to some ineffectual/irrelevant parameters (i.e., linearly

dependent parameters and such). The parameters that present noticeable jitter but without

significant change in the output of the objective function are highly likely to be redundant
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and hence some of those parameters need to be discarded/removed in order to render the

model non-redundant. In other words, a modest investigation into the flagged parameters

can effectively guide the user in simplifying the model (i.e., correctly finding the DH(-)

model). Those “suspicious” parameters can be identified by simply examining the variance

across the multiple solutions of a given error parameter (multiple solutions found using our

SA-TR based GS).

Let us look at an example to verify/validate the effectiveness of the automated redundan-

ce detection algorithm that we just discussed (i.e., variance analysis). Let us also try to

possibly correlate the results to the ones found using the “conceptual/analytical approach”

as the guidelines established conceptually are meant to avoid redundancy. In other words,

the goal of the two approaches (conceptual and automated) is to construct/find the DH(-)

model of a robot and hence one would expect a strong agreement among the two analyses.

Table 3.6 presents results if one were to elect to estimate all non-zero DH parameters for

the HP20D manipulator using our 3DCAL method (a total of 14 error parameters). The

results were generated by employing TR as a local optimizer using each of the 50 starting

points obtained through SA. The details of the optimization session for one the 50 starting

point is presented in Figure 3.6 (i.e., optimal solution [“current point”], iteration versus

Norm of residuals, step size, number of objective function evaluations, etc.). Other details

of the experiment shall be discussed in Chapter 4. The goal here is to demonstrate that the

established guidelines to avoid redundancy and to make the model less complex (i.e., to

construct the DH(-) model) are in accordance with the automated assessment and hence are

justifiable and well-founded.

The automated evaluation (variance analysis) presented in Table 3.6 is consistent with

the guidelines that we analytically established in Chapter 3.1 in order to identify irrelevant
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Figure 3.6: 3DCAL: TR optimization session details for a given starting point (out of the

potential 50).
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Table 3.6: “Stage 1” using the “automated approach”: auto-relevance assessment of the

various error parameters using 3DCAL and the HP20D manipulator.

Selected Parameters Nominal Values Variance

a1 in mm 150.000 0.001
a2 in mm 760.000 0.000
a3 in mm 140.000 0.006
d4 in mm 795.000 0.001
d6 in mm 105.000 1.184
δθ1 in degrees 0.000 2.263
δθ2 in degrees 0.000 0.000
δθ3 in degrees 0.000 0.000
δθ4 in degrees 0.000 0.000
δθ5 in degrees 0.000 0.000
δθ6 in degrees 0.000 2.117
Xtool in mm 2.549 0.001
Ytool in mm 0.342 0.002
Ztool in mm 70.079 1.184

parameters and to render the model non-redundant (i.e., to correctly construct the DH(-)

model of the manipulator). It follows as expected, the error corresponding to the first joint

angle (δθ1) can not be estimated using the proposed method since all calibration points

are shifted by the same amount while the Euclidean distances among the points remain

unaltered. This is the reason why a great level of parametric variance is observed without

a change in the output of the objective function. Mathematically speaking

∂

∂δθ1
y3DCAL(e) = 0.

Also to note is the great variances of the error associated with DH parameter d6, the error

corresponding to the last joint angle (δθ6) and the Z dimension of the tool frame. As told

in Chapter 3.1, the user needs to choose whether to estimate the error parameters of the last

row of the DH table (i.e., A6(q6)) or tool definition Atool but not both. Note that parameters

d6 and the Z dimension of the tool are actually linearly dependent as they describe the
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same dimension of the robot and tool for any configuration (just like the error parameters

δd2 and δd3 that are dependent because of the parallel axes of joints 2 and 3). That is to

mathematically say

∂3

∂δθ6∂δd6∂δZtool

y3DCAL(e) = 0.

holds true for numerous combinations/solutions of those error parameters.

Restating in part what was mentioned previously, we denote Table 3.6 as “Stage 1”

because it can be viewed as an intermediate procedural calibration step that the user may

choose to perform at the expense of an optimization session using available data in order

to deduce which of the error parameters associated to non-zero valued DH parameters are

redundant. Based on this insight, the user can elect which of those need to be kept frozen so

as to correctly construct the DH(-) error model of the manipulator and perform “Stage 2”;

identifying the error parameters of the simplistic and non-redundant kinematic calibration

model (the DH(-) model). Note that the results and comparative analyses presented in

this Chapter demonstrate that the guidelines that we conceptually/analytically established

for the purpose of deduce the DH(-) model are righteous/well-founded and as reliable as

the “automated”/numerical approach. Considering the burden of “Stage 1” on the user, we

herby recommend to make use of the justified “conceptual”/analytical approach to construct

DH(-) model unless the manipulator that needs to be calibrated presents great geometry/

kinematic related challenges.

After successfully completing the course of DH(-) model search (“Stage 1”), the error

parameters can be identified/solved-for using the TR optimization scheme described in

Chapter 3.4 (“Stage 2”). Note that the DH(-) and DH(-)(-) models are non-redundant and

hence the objective/cost functions corresponding to those error models may possibly be

convex-like in nature [95]. It follows that it is sufficient to run TR with an arbitrary starting
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point to attain a reliable and robust solution as convergence is inevitable (i.e., a SA-TR

based GS is simply unnecessary.) More will be said about this in Chapter 4.3. The reader

should be well informed that we have compared both optimization techniques (TR and

LM) over the course of completing “Stage 2” for all calibration cases. Although both

optimizers converge to the same numerical solutions for all “Stage 2” calibration cases,

TR indicated a quicker convergence rate (on average 10 iterations for any given arbitrary

starting point compared to > 17 when employing LM.) For that reason, we declare TR as

the best candidate to execute the second stage of the calibration processes for all situations.
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

In this Chapter, we present numerous results to demonstrate the effectiveness of the

proposed calibration systems. We present performance analyses of 3DCAL and 1DCAL

using Compugauge’s performance standard/metric described in Chapter 2.2. We also prese-

nt results of 3DCAL using the MH5-hi and CMM using a detailed statistical performance

analyses. The performance of our approaches are compared to the performance of a state–

of–the–art commercial system (MotoCal) using same materials and performance metric.

This Chapter concludes with a discussion (of the systems and results) and thoughts for

future improvements and work.

4.1 3DCAL Performance Analysis

In order to test our 3DCAL system, we first made use of the HP20D manipulator

described in Chapter 2.1. Let us begin by briefly describing the method we used to gather

the calibration points. We used a uniformity sampled grid that is comprised of 27 calibration

points and that covers most of the working envelope in front of the robot. Then we

incorporated orientations to those 27 calibration points. Namely, orientation about the

x − axis of the base frame in the order of -25 and 25 degrees. And, orientation about the

y − axis of the base frame in the order of -25 and 25 degrees. This gave rise a total of 135
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Figure 4.1: Calibration points used to calibrate the HP20D Manipulator [9].

calibration points. Figure 4.1 depicts the calibrations points. Note that all configurations

shown in that figure are non–singular.

Unfortunately, not all calibration points could be measured using CompuGauge due to

hardware limitations (occurrence of cable twist for some position measurements). Note

that this is the reason why we generated orientation–limited calibration points in the first

place. After carefully testing each point, we concluded that only 87 calibration points out

of the 135 are valid (could be measured).

Table 4.1 shows the estimated errors using the simplified kinematic model DH(-) for the

HP20D manipulator. We employed TR using an arbitrary starting point to optimize over

the objective function associated with the DH(-) error model. Note that the termination

condition that we used is until the deflection error is small enough (in the order of 10−12).
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Table 4.1: 3DCAL and MotoCal “Stage 2” calibration results using 3D CompuGauge and

the DH(-) error model of the HP20D manipulator.

3DCAL MotoCal

Selected Nominal Estimated Estimated

parameters values values values

a1 in mm 150.000 149.901 N/A
a2 in mm 760.000 760.971 761.000
a3 in mm 140.000 140.071 N/A
d4 in mm 795.000 794.966 794.960
δθ2 in degrees 0.000 0.135 0.143
δθ3 in degrees 0.000 1.001 1.002
δθ4 in degrees 0.000 −0.156 −0.156
δθ5 in degrees 0.000 0.614 0.614
Xtool in mm 2.549 0.046 0.066
Ytool in mm 0.342 0.015 0.020
Ztool in mm 70.079 70.615 70.625

Performance Analysis:

Alignment Test

∆X in mm 7.4553 0.2798 0.2867
∆Y in mm 0.8770 0.3039 0.3117
∆Z in mm 1.7363 0.2001 0.2167

The table shows result for what we referred to as “Stage 2” of calibration process (i.e., after

removing ineffectual and/or redundant error parameters). As mentioned in Chapter 3.2,

we opt to estimate the tool definition in this experiment/case due to the fact that we did

not have a well defined tool at hand. In order to obtain an initial estimate (the nominal

values of the tool shown in Table 4.1), we used the “tool calibration utility” of the DX100

controller [2]. It provides an automatic method to calculate the X , Y and Z dimensions of

the mounted tool. Obviously, it is erroneous since the robot itself was not well calibrated;

and hence the need to estimate tool data.
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Table 4.2: 3DCAL and MotoCal “Stage 2” calibration results using 3D CompuGauge and

the DH(-)(-) error model (home position and tool data) of the HP20D manipulator.

3DCAL MotoCal

Selected Nominal Estimated Estimated

parameters values values values

δθ2 in degrees 0.000 0.162 0.153
δθ3 in degrees 0.000 1.029 1.001
δθ4 in degrees 0.000 −0.149 −0.153
δθ5 in degrees 0.000 0.612 0.612
Xtool in mm 2.549 0.032 0.041
Ytool in mm 0.342 0.061 0.020
Ztool in mm 70.079 70.425 70.588

Performance Analysis:

Alignment Test

∆X in mm 7.4553 0.3012 0.2997
∆Y in mm 0.8770 0.4624 0.4722
∆Z in mm 1.7363 0.3889 0.4039

The performance metric that we used to validate our approach is the so called “alignment

test” [5, 6]. In order to perform this alignment test, we used eight points (the vertices of

a cube that covers the majority of the working envelope of the robot). Those eight points

are used to find the “best” fit between the coordinates of those eight points with respect to

the robot frame and measurement system frame. The fit of the alignment procedure reflects

the accuracy of the robot itself; a performance standard that is widely used in the robotics

community [5, 6]. Before calibration, the misfit was in the order of 7.4553, 0.8770 and

1.7363 mms along X , Y and Z dimensions respectively. After employing our 3DCAL

approach, we were able to reduce the misfit to 0.2789, 0.3039 and 0.2001 mms. According

to our experiment results (shown in Table 4.1), our performance is comparable (in fact

slightly better) compared to that of MotoCal.

55



MotoCal has similar features. It allows user interaction (which parameters to estimate).

Similar to our automated/numerical parametric relevance assessment that the user may

perform to complete “Stage 1”, it also provides provides feedback to the user regarding

which parameters ought to be frozen in order to have reliable results (the so called “Accept-

ance Angular Stdv”) [6]. If the “Acceptance Angular Stdv” of a given parameter is above

a given threshold (default value in the order of 0.04), the algorithm recommends that the

parameter be omitted during the second stage of the calibration procedure. Note that this is

achieved at the expense of an optimization session using available data. Based on that,

in addition to θ1, DH parameters a1 and a3 are kept frozen during MotoCal’s second

calibration round. Hence, the MotoCal’s results shown in Table 4.1 can also be referred

to as “Stage 2” calibration results. Note that the same data (87 calibration points) and

manipulator (HP20D) were put to use to generate the results shown in Table 4.1 using

MotoCal. It is interesting to compare the estimated values. One could state that the

numerical solutions obtained using MotoCal are very similar to the ones found using our

3DCAL approach. We attribute the slight boost in performance of 3DCAL to the two extra

error degrees of freedom (a1 and a3).

We also present results for the other experiment where we elect to estimate the error

parameters associated with the joint variables and tool data only (i.e., we make use of yet a

further simplified model; the DH(-)(-) model). Table 4.2 shows those results. These results

are very informative for two reasons: First, it appears that most of the inaccuracy is due to

errors associated with the offset of joint variables (i.e., home position). We say this because

only a slight deterioration in performance is observed when comparting Tables 4.1 and 4.2.

Second, it allows us to make a definite comparison between the two systems (i.e., same
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number of error parameters). Based on that context, we solidly affirm that our performance

is indeed comparable to that of MotoCal.

Table 4.3: 3DCAL and MotoCal “Stage 2” calibration results using CMM and the DH(-)

error model of the MH5-Hi manipulator.

3DCAL MotoCal

Selected Nominal Estimated Estimated

parameters values values values

a1 in mm 88.000 87.864 N/A
a2 in mm 310.000 310.391 310.354
a3 in mm 40.000 40.003 40.064
d4 in mm 305.000 305.034 304.925
d6 in mm 80.000 79.824 N/A
δθ2 in degrees 0.000 −0.159 −0.144
δθ3 in degrees 0.000 0.169 0.167
δθ4 in degrees 0.000 0.333 0.325
δθ5 in degrees 0.000 0.049 0.063
δθ6 in degrees 0.000 −0.209 N/A

Performance Analysis:

Step

Mean error in mm 0.237 0.043 0.049
Minimum error in mm 0.018 0.007 0.015
Maximum error in mm 0.510 0.080 0.088
Spread in mm 0.492 0.071 0.073
Standard Deviation in mm 0.131 0.018 0.019
Cube

Mean error in mm 0.819 0.185 0.186
Minimum error in mm 0.292 0.039 0.049
Maximum error in mm 1.650 0.376 0.351
Spread in mm 1.357 0.331 0.302
Standard Deviation in mm 0.419 0.099 0.090
End-Effector Roll

Mean error in mm 0.763 0.255 0.207
Minimum error in mm 0.354 0.034 0.042
Maximum error in mm 1.196 0.524 0.430
Spread in mm 0.842 0.472 0.388
Standard Deviation in mm 0.266 0.125 0.109
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Table 4.4: 3DCAL and MotoCal “Stage 2” calibration results using CMM and the DH(-)(-)

error model (home position only) of the MH5-Hi manipulator.

3DCAL MotoCal

Selected Nominal Estimated Estimated

parameters values values values

δθ2 in degrees 0.000 −0.165 −0.131
δθ3 in degrees 0.000 0.218 0.208
δθ4 in degrees 0.000 0.354 0.342
δθ5 in degrees 0.000 0.081 0.053
δθ6 in degrees 0.000 −0.239 N/A

Performance Analysis:

Step

Mean error in mm 0.237 0.043 0.049
Minimum error in mm 0.018 0.010 0.010
Maximum error in mm 0.510 0.073 0.093
Spread in mm 0.492 0.063 0.083
Standard Deviation in mm 0.131 0.019 0.024
Cube

Mean error in mm 0.819 0.387 0.407
Minimum error in mm 0.292 0.082 0.075
Maximum error in mm 1.650 0.671 0.666
Spread in mm 1.357 0.568 0.592
Standard Deviation in mm 0.419 0.169 0.170
End-Effector/Tool Roll

Mean error in mm 0.763 0.304 0.249
Minimum error in mm 0.354 0.077 0.068
Maximum error in mm 1.196 0.582 0.491
Spread in mm 0.842 0.505 0.423
Standard Deviation in mm 0.266 0.135 0.123

In a final test we evaluated our TR based 3DCAL approach using a higher axes resolution

robot (MH5–Hi described in Chapter 2.1) and a more accurate measuring device (CMM

described in Chapter 2.3). The same technique as for the experiment with the HP20D is

used to acquire the Cartesian coordinates of the calibration points used for the purpose of

estimating the 10 kinematic error parameters. To be precise, a total of 71 calibration points
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(non singular configurations) that cover most of the MH5–Hi dexterous workspace are

utilized. Table 4.3 shows the results for “Stage 2” of the calibration procedure (estimated

errors using the simplified DH(-) kinematic model of the MH5–Hi manipulator and the

CMM machine). Note that, although avoidable, we took the task of completing “Stage 1”

of the calibration process for sake of illustrating the effectiveness of the auto–relevance/

numerical evaluation of all the error parameters associated with non–zero valued DH para-

meters. And as expected (based on our “conceptual approach”), our auto–relevance evaluat-

ion flagged δθ1 as the only unstable error parameter. Furthermore, as also anticipated, the

error parameter δθ6 and the one associated with the DH parameter d6 showed negligible

variances (i.e., unlike the HP20D’s case, since we made use of a well defined tool those two

parameters can be calibrated.) We of course opt not to calibrate the tool data considering

an accurate definition of it is provided. A similar parametric assessment is performed using

MotoCal as well. In addition to δθ1, as shown in that table, MotoCal recommended the user

not to perturb 3 additional parameters during “Stage 2” of the calibration procedure (a1,d6

and δθ1).

We made use of a different performance metric (compared to the one used to evaluate

the two systems using HP20D manipulator and CompuGauge) to evaluate and compare

the two calibration methods. The performance analysis labeled as “Step” in Table 4.3 is

calculated by examining the difference between the measured and commanded positions

(with respect to a common frame of reference) while the robot is programmed to move

linearly along a dimension with fixed orientation. The “step” segment is comprised of

40 linearly spaced calibration points ranging from −200 to 200 mms along Y -axis of the

robot’s base frame. The “Cube” performance analysis is computed in the same fashion

except the manipulator is programmed to move at the vertices of and center of a cube (i.e.,
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total of 9 calibration points). The dimensions of the cube are in the order of 200 mms along

the X-axis of the robot’s base frame, 600 mms along the Y -axis and 350 mms along the Z-

axis. The performance/error statistics for “Roll” are calculated by systematically varying

the orientation of the tool for a fixed/commanded position and examining the discrepancies

among the measured values. For a well calibrated robot those values should not change

as the orientation of the tool is the only variable (and not the position of the tool). The

“Roll” segment consists of orientations of the tool about all three principal axes for a total

of 13 calibration points (hand picked combination of RXtool = [0◦, 30◦, 60◦], RYtool =

[−90◦,−40◦,= 20◦, 0◦, 20◦, 40◦, 90◦] and RZtool = [−100◦,−50◦, 0◦, 50◦, 100◦, 150◦]).

Note that the “Roll” performance metric is similar to the one that we will be using to

validate our 1DCAL approach (so called “Deviation” performance metric that will discuss

in the next Chapter).

Our experimental results suggest that the presented approach is not only comparable but

slightly better to that of MotoCal. The numerical solutions of the two systems (3DCAL and

MotoCal) shown in Table 4.3 are similar for the most part except for the error parameter d4.

In terms of statistical mean error, it appears that the best results for “Step” (0.043 ± 0.020

mms) and “Cube” (0.185 ± 0.099 mms) are obtained using our approach and the one for

“Roll” using MotoCal (0.207±0.109 mms). We also present Table 4.4 that shows 3DCAL’s

and MotoCal’s calibration results if one were to choose to calibrate the robot using the error

parameters related to the joint variables only (i..e, calibrating using the DH(-)(-) model also

referred to as calibrating the “home position”). By comparing the performance analyses

presented in the two tables (Table 4.3 and Table 4.4), we affirm that most inaccuracy is due

to erroneous estimate of the robot’s home position as a slight deterioration in performance

is noted.
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To summarize the improvements in positioning accuracy, we present Table 4.5. The

improvement percentages for 3DCAL and MotoCal are calculated using

Improvement percent =
Before calibration− After calibration

After calibration
× 100.

The last column of the table shows the difference between 3DCAL and MotoCal improvem-

ent (i.e, our advancement/boost–in–performance compared to MotoCal.) As stated in the

latter and as it can be clearly seen in the newly presented Table, our performance is slightly

better compared to that of MotoCal for most of the cases. The only shortcoming of our

3DCAL approach is when it comes to the End-Effector Roll performance results for the

MH5-Hi case. When interpreting the results of the experiments with the MH5-Hi, it is

instructive to note that at that level of metrologic accuracy, the repeatability of the robot

and measurement system are variables that can play a drastic role. Notwithstanding that,

in general, it is safe to state that a comparable performance to that of MotoCal is attained.

Based on the comparison of the positioning accuracy improvements achieved using DH(-)

versus DH(-)(-) error models, for both robots, we re-affirm that most positioning inaccuracy

is mostly due to misestimation of the home positions.

4.2 1DCAL Performance Analysis

In this Chapter, we present similar results as in Chapter 4.1 but for the 1DCAL approach

described in Chapter 3.3. The radial measurements of 105 valid calibration points were

acquired using the 1D CompuGauge measurement system described in Chapter 2.2. We

used the same procedure as for our 3DCAL system to generate those points/configurations

but using the MH6 manipulator. Table 4.6 summarizes the estimated values and correspond-

ing performance upon completion of “Stage 2” of the calibration procedure. Note that we

used a tool of known dimension (just like the MH5-Hi case) and hence elected to estimate
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Table 4.5: Summary of the improvements in positioning accuracy using 3DCAL and

MotoCal.

HP20D case using DH(-) model and 3D CompuGauge.

Alignment Test 3DCAL MotoCal Difference

∆X 96.24% 96.15% 0.09%
∆Y 65.35% 64.46% 0.89%
∆Z 88.48% 87.52% 0.96%

HP20D case using DH(-)(-) model and 3D CompuGauge.

Alignment Test 3DCAL MotoCal Difference

∆X 95.96% 95.98% −0.02%
∆Y 47.27% 46.16% 1.11%
∆Z 77.60% 76.74% 0.86%

MH5-Hi case using DH(-) model and CMM machine.

Performance Metric 3DCAL MotoCal Difference

Step Mean error 81.86% 79.32% 2.54%
Cube Mean error 77.41% 77.29% 0.12%
Roll Mean error 66.58% 72.87% −6.29%

MH5-Hi case using DH(-)(-) model and CMM machine.

Performance Metric 3DCAL MotoCal Difference

Step Mean error 81.86% 79.32% 2.54%
Cube Mean error 52.75% 50.31% 2.44%
Roll Mean error 60.16% 67.37% −7.21%

the errors associated with the last link of the MH6 (i.e. A6(q)) as oppose to calibrating tool

data as done with the HP20D case in our 3DCAL experiment.

The performance metric used here is based on the fact that given a well calibrated

robot the Cartesian coordinates of a position should remain unchanged (or should change

ever so slightly) as one varies the orientation of the tool frame. Hence, “ Deviation” in

Table 4.6 refers to the maximum discrepancy among the recorded radial measurements

as we randomly varied the orientation of the tool for a given fixed position in space.
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Table 4.6: 1DCAL and MotoCal “Stage 2” calibration results using 1D CompuGauge and

the DH(-) error model of the MH6 manipulator.

1DCAL MotoCal

Selected Nominal Estimated Estimated

parameters values values values

a1 in mm 150.000 148.140 N/A
a2 in mm 614.000 614.381 614.748
a3 in mm 155.000 155.281 N/A
d4 in mm 640.000 640.534 N/A
d6 in mm 95.000 94.855 94.827
δθ2 in degrees 0.000 −0.128 −0.199
δθ3 in degrees 0.000 0.046 −0.017
δθ4 in degrees 0.000 −0.117 −0.136
δθ5 in degrees 0.000 −0.915 −0.906
δθ6 in degrees 0.000 −0.837 −0.909

Performance Analysis:

Deviation in mm 9.761 1.131 1.301

Table 4.7: 1DCAL and MotoCal “Stage 2” calibration results using 1D CompuGauge and

the DH(-)(-) error model (home position) of the MH6 manipulator.

1DCAL MotoCal

Selected Nominal Estimated Estimated

parameters values values values

δθ2 in degrees 0.000 −0.188 −0.353
δθ3 in degrees 0.000 −0.083 0.074
δθ4 in degrees 0.000 −0.065 −0.125
δθ5 in degrees 0.000 −0.914 −0.907
δθ6 in degrees 0.000 −0.882 −0.855

Performance Analysis:

Deviation in mm 9.761 1.372 1.434

To be precise, 34 random orientations that are bounded by the hardware limitations of

measurement device and robot are chosen about all three principal axes. According to the
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performance standard discussed in Chapter 2.2, if the deviation is below 2.0 mms, it is

safe to assume that the robot is fairly well calibrated for most applications [5, 6]. Before

calibration, a deviation in the order of 9.761 mms is reported.

Based on our guidelines founded conceptually/analytically, the offset corresponding to

the first joint angle (δθ1) is only parameter that can not be calibrated in the case of the MH6

experiment. Thus, in this experiment, we are in favor of estimating all non-zero parameters

except for δθ1. Note that we completed “Stage 1” for the purpose of cross validating/

checking and we are pleased to make note that the auto–assessment does again conform

with the “conceptual approach”. After executing “Stage 2” (calibration using the DH(-)

model of the MH6 manipulator), we were able to reduce the deviation to 1.131 mms using

our 1DCAL approach. The commercial system MotoCal can also calibrate a given robot

with the supply of radial measurements [6]. In table 4.6, we compare our 1DCAL results

and performance to that of MotoCal. Note that MotoCal’s algorithm has recommended

not to consider 3 of the non-zero parameters shown in Table 4.6. Unlike the 3D case, our

numerical results/solutions differ compared to the ones generated using MotoCal. This

could be due to the extra 3 parameters in the case of 1DCAL. Note that in this particular

scenario, our approach has outperformed MotoCal. To make a definite comparison to our

best ability, we present Table 4.7 where only the joint angle offsets (i.e., calibration using

the DH(-)(-) error model) are estimated. The results from both systems remain different

but a comparable performance is attained.

We conclude this Chapter by presenting a similar Table like that 4.5 but with our 1D

approach. Table 4.8 clearly shows that 1DCAL has outperformed MotoCal in both cases.

By comparing the rows of the table, we state as a fact that indeed most of inaccuracy is due

to incorrect joint variable offsets (i.e., calibration of the home position of the robot).
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Table 4.8: Summary of the improvements in positioning accuracy using 1DCAL and

MotoCal.

Performance Metric and Error Models 3DCAL MotoCal Difference

Deviation using DH(−)model 88.41% 86.67% 1.74%
Deviation using DH(−)(−)model 85.94% 85.31% 0.63%

4.3 Discussion

An issue that needs to be discussed when examining calibration algorithm performance

is the sensitivity of the system to the number of calibration points. After experimenting,

we found that as long as there are at least twice as many calibration points as calibration

parameters (error degrees of freedom) both systems (using the recommended local solver

over the course of the two calibration phases) converged to the same solution. It is instructi-

ve to note that at those varied positions, one needs to at least incoporate/include two

different orientations (per calibration point).

Another point that needs to be discussed is how to efficiently define the solution space

Ω for the 3DCAL and 1DCAL approaches. A manipulator requires calibration for two

main reasons: 1) if the accuracy of the robot (“out of the box”) is deemed inadequate

(further improvement in accuracy is required by the application) or 2) if the robot has

been repaired (after collision or parts replacement is performed.) Aforementioned, the

dimensions of the solution space Ω is manufacturer specific. For example, Yaskawa,

Motoman Robotics Inc., manipulators are known to be fairly accurate “out of the box.”

Hence if further improvement in accuracy is required a conservative restriction of the

solution space is sufficient. To be specific, the angular parameter bounds of −ei and ēi

(such as home position) may be limited to ±1◦ and the length parameter bound may be
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limited to ±1.0 mm. robot manufacturers typically also provide a service for re–building

and repairing their manipulators when needed (the second reason discussed in the latter). In

this second scenario, it is first recommended that the user make use of the “pin alignment”

technique to visually (with the “naked eye”) get a rough estimate of the home position.

Then the user may employ the presented calibration algorithms subject to a comparatively

wider solution space. That is, for this particular scenario we recommend that the angular

parameter bounds of −ei and ēi ought to be limited to ±3◦ and the length parameter bound

may be limited to ±2 mm. It is importnat to note that our recommendations here on how

to set Ω are based on Yaskawa, Motoman Robotics, Inc. manufacturing and repairing

capabilities hence those bounds need to be revised accordingly as they are manipulator

manufacturer and servicing quality dependent.

In addition of the specification of the solution space Ω our 1DCAL approach requires

the definition of the spherical volumetric solution space V. Note that the discrepancy

between the set of calculated values r and the set of measured values r̃ is due to de–

calibration. In fact, Ω and V are functions of the level of de–calibration. That is the

reason why we recommend to set Ω in accordance to the two scenarios discussed in the

above. We recommend a more methodological approach to estimate the radius of V. That

is, the spherical volumetric solution space V can be readily defined by computing its radius

as

rV = 2×max
rV ∈R

(r− r̃),

where r and r̃ are sets of calculated and measured values. We also propose that V be

centered at p∗
e0. V must include the location of the encoder and hence we believe it is

wise to incorporate a safety factor (in particular since p∗
e0 is an initial guess). The largest
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measurement discrepancy is multiplied by 2 in order to ensure that the actual position of

the encoder is within the volumetric space V.

To compare the degree to which our hybrid optimization scheme (employed in “Stage

1” if the user chooses to make use of the “automated/numerical” approach) is successful

in providing useful relevance assessment of the selected error parameters efficiently, we

took on the task of implementing a similar optimization scheme. Namely, we looked at the

“Multi-start” framework described in [53]. We made use of the scatter search method to

generate potential starting points and employed TR for convergence purposes (i.e., we used

different methods [SA versus Multi-start] to generate the starting points but employed an

identical solver to analyze each initial condition). In order for that framework to convey a

comparable evaluation (i.e., as indicative), a scatter search comprised of over 450 starting

points is required. For example, referring back to Table 3.6, our technique (SA-TR based

GS using 50 initial conditions) indicated a variance in the order of 2.263 for the error

parameter δθ1 upon completion of the first stage of calibration. Generating the same

amount of starting points using the method described in [53] and performing a relevance

evaluation on that parameter returns a variance analysis in the order of 0.981 only. Note

that it also took a slightly higher number of iterations to converge for a given starting

point (27 iterations on average using the same error deviation tolerance criterion). That

particular parameter is obviously the most unstable for the reasons explained in Chapter 3.2

(i.e., a change in that parameter has null impact in the output of the objective function).

We attribute our higher-ranking performance in this domain (i.e, relevance evaluation and

convergence rate) to SA’s ability to not only globally explore the solution sub-space thorou-

ghly but as illustrated in Figure 3.6 to output a result/starting-point that is closer to the

minima of the cost function.
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Using the discussed assessment methodology, one can take the advantage of the opport-

unity to conduct an empirical study to possibly/up-to-some-extent characterize the various

objective functions associated with the DH(-) error models. For illustration purposes,

Table 4.9 depicts the same results as in Table 4.3 along withe variance analysis of each

error parameter (i.e., the3DCAL and MotoCal “Stage 2” calibration results using CMM

and the DH(-) error model of the MH5-Hi manipulator along with the automated/numerical

assessment of each parameter deemed salient). It is very interesting to note that all 50

potential starting points converged to the same numerical solution for the defined/bounded

search space Ω (i.e., the automated/numerical evaluation indicates no variance). That is

likely due to the fact that after the completion of the first stage, almost all redundancy

in the error model has been eliminated and the cost function associated with that model

may be well-conditioned. That in turn could imply that the objective function exhibits

locally (within Ω a convex like characteristic. Hence the DH(-) error models could warrant

a reliable calibration results as this check proves that the obtained multiple numerical

solutions are consistent regardless the initial position of a widespread starting points. Note

that this was found to be true for all other calibration cases as well. Also to note is that

identical results were seen when employing the multi-start framework (instead of SA) to

generate a different set of “casual” starting points that is significantly higher in number.

Apropos MotoCal was unable to calibrate δθ6 even though its own parametric assessment

indicated that the parameter is stable. Hence, we believe our approach is indeed more

robust compared to that of the available state–of–the–art commercial calibration system

Motocal.

We also need to address the issue of processing speed. The system consumes approxim-

ately on average 271 seconds if the user opt to execute “Stage 1” of the calibration procedure
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Table 4.9: 3DCAL and MotoCal “Stage 2” calibration results using CMM and the DH(-)

error model of the MH5-Hi manipulator along with the automated/numerical assessment

of each parameter deemed salient.

3DCAL MotoCal

Selected Nominal Estimated Estimated

parameters values values Variance values

a1 in mm 88.000 87.864 0.001 N/A
a2 in mm 310.000 310.391 0.000 310.354
a3 in mm 40.000 40.003 0.002 40.064
d4 in mm 305.000 305.034 0.001 304.925
d6 in mm 80.000 79.824 0.000 N/A
δθ2 in degrees 0.000 −0.159 0.000 −0.144
δθ3 in degrees 0.000 0.169 0.000 0.167
δθ4 in degrees 0.000 0.333 0.000 0.325
δθ5 in degrees 0.000 0.049 0.000 0.063
δθ6 in degrees 0.000 −0.209 0.000 N/A

Performance Analysis:

Step

Meanerror in mm 0.237 0.043 0.049
Minimumerror in mm 0.018 0.007 0.015
Maximumerror in mm 0.510 0.080 0.088
Spread in mm 0.492 0.071 0.073
StandardDeviation in mm 0.131 0.018 0.019
Cube

Meanerror in mm 0.819 0.185 0.186
Minimumerror in mm 0.292 0.039 0.049
Maximumerror in mm 1.650 0.376 0.351
Spread in mm 1.357 0.331 0.302
StandardDeviation in mm 0.419 0.099 0.090
End-Effector Roll

Meanerror in mm 0.763 0.255 0.207
Minimumerror in mm 0.354 0.034 0.042
Maximumerror in mm 1.196 0.524 0.430
Spread in mm 0.842 0.472 0.388
StandardDeviation in mm 0.266 0.125 0.109
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(employing TR as local optimizers and using all 50 starting points obtained by way of

SA). “Stage 2” of the calibration procedure using DH(-) and DH(-)(-) models consumes on

average 7.6 and 6.8 seconds, respectively, given a single arbitrary starting point. The work

is implemented in MATLAB on an HP Personal Computer (PC) with processor speed of

3.22 GHz. The obvious thing to note is that the reported temporal rates are subject to the

amount of data/calibration-points used to calibrate the robot in question. Also to note is that

the calculated time consumption appears to be less on average in the case of the 1DCAL

calibration system (in comparison with 3DCAL). In order to accelerate the automated/

numerical approach of “Stage 1”, we would like to refer the reader to a previous work of

the current author [96]. In that work, we have proven that as long as processes are parallel,

they can be greatly accelerated. The process related to each starting point is independent

from another (i.e., parallel). And hence, those processes can be simultaneously done on

a platform like the one described in [96]. We acknowledge that the scatter search method

that requires the 450 processes for a good parameter assessment can also be implemented in

that type of platform and hence can also be greatly accelerated (i.e., the 450 processes can

be conducted simultaneously). However, we believe our method is advantageous to some

degree since it ensures up to some extent a faster convergence rate (i.e., fewer number of

iterations steps taken by the local solvers since initial conditions are found via SA and can

be comparatively/somewhat closer to solution[s]).

In order to further boost the computationally efficiency of our 1DCAL algorithm, we

considered making use of a systematic approach to reduce the dimensionality of the combin-

ed search space comprised of Ω and V. A block diagram of this attempt is shown in

Figure 4.2. The idea was to first estimate the location of the encoder and use that optimal

estimate to solve for the DH error parameters. To first estimate the coordinates/location
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Figure 4.2: Alternate 1DCAL approach block diagram where the DH(-) model of the MH6

manipulator is used as an example.
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of the fixed reference (encoder) pe = [xe,ye, ze]
T ∈ V, we made use of the objective

function y1DCAL(pe, e) described in Eq. (3.11) of Chapter 3.3 and we minimized that

function such that a minimizer

p∗
e = arg min

pe∈V
y1DCAL(pe, e). (4.1)

is found. We made use of TR to solve for p∗
e since it has proven to be efficient compared to

LM. Note that finding the solution p∗
e is a sub-procedure. As it is illustrated in Figure 4.2,

We make use of that solution to minimize the objective function described in Eq. (3.11)

(i.e., to minimize y1DCAL(p
∗
e, e)) so as to solve for the DH error parameters. In other

words, the cost function used to estimate the error parameters can be re-written as

y1DCAL(p
∗
e, e) =

1

N

N∑

i=1

(r∗i − r̃i)
2 (4.2)

where r∗i is the computed radial distance using Eq. (3.12) of Chapter 3.3 but differs from ri

because the minimizer p∗
e obtained from Eq. (4.1) is used to carry out that calculation. In

other words, r∗i is calculated as follow

r∗i = ∥p∗
e − pi∥.

In essence, we have a cyclic coordinate descent [97–99] based optimization scheme where

p∗
e is refined via Eq. (4.1) at each iterative step taken to minimize the cost function described

in Eq. (4.2) such that a minimizer

e∗ = argmin
e∈Ω

y1DCAL(p
∗
e, e)

is calculated. Note that TR is also put to use to solve for the error parameter vector e∗.

Even though the original 1DCAL and the newly discussed cyclic coordinate descent based

version of it converged to the same solution, no significant improvement in processing
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speed is attained. We attribute the comparable performance in speed of the original 1DCAL

to the initial step of estimating the starting point p∗
e0 before optimizing over Eq. (3.11) in

order to find the minimizer described in Eq. (3.13) of Chapter 3.3 at a fast/comparable rate.

We are in the process of exploring higher–quality metrology equipments (compared to

CompuGauge and/or CMM) in order to evaluate the peak performance and limitations of

the presented frameworks. We also believe that extending the presented simplistic approach

so as to include other sources of error is another potentially fruitful area of future research

(i.e., to devise non–redundant error models that take into account parameters related to

elasticity of joints and links, load proportion and joint deflection, etc.). It is also our hope

to investigate computationally efficient kinematic and dynamic related calibration schemes

for redundant manipulators (i.e., robots that possess more than six degrees of freedom [like

the Yaskawa Motoman Robotics, Inc. IA20 [100] that has 7 revolute joints]).
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CHAPTER 5

CONCLUSION

In this dissertation, we have presented new computational efficient kinematic calibration

algorithms for industrial robots. These include the 3DCAL system that uses Cartesian

coordinates of the calibration points and 1DCAL approach that requires the supply of radial

measurements only of the calibration points. Both methods make use of an error model

that is based on the original DH convention. For both systems the calibration procedure

calls for two stages. The first stage that consists of deducing the correct DH(-) model of a

manipulator can be achieved either using a conceptual/analytical or an automated/numerical

approach. Note that “the automated approach” does increase the burden on the user (running

an optimization-scheme/Global-Search using available data) but is undoubtedly helpful in

deriving the DH(-) model of the robot in question (in particular, it can greatly help if the

geometry of the structure is complex and the guidelines of the “analytical approach” can

no longer be extended in an obvious fashion). After completing “Stage 1” (i.e., Removing

ineffectual error parameters that bring about unwanted redundancy such that to correctly

construct the DH(-) model), we use TR to carry out the second stage of the calibration

process. We have also introduced DH(-)(-) error model where the home positions (and

tool(s) if needed) only of the robots are calibrated. Note that those two models are less

complex (compared to the numerous error models discussed in Chapter 1) and hence
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do not require burdensome computation. Although incomplete, in this work, we have

proven that those simplified error models (DH(-) and DH(-)(-)) in conjunction with the

proposed optimization scheme (TR) are capable of exceptional performance comparable to

that of an existing commercial system. Using our 3DCAL, we are able to successfully

calibrate the Yaskawa Motoman Robotics, Inc. 6DOF serial manipulator HP20D to a

satisfactory degree for most applications (according to performance standard and metric

described in Chapter 2.2) and the MH5-Hi to a higher degree of accuracy (possibly the best

achievable manipulator accuracy by means of geometric/kinematic calibration). Similarly,

using the presented 1DCAL approach and according to the performance standard described

in Chapter 4, we have also adequately calibrated another similar robot; the MH6. Based

on our experimental results, we have concluded that most of positioning inaccuracy is

due to the error parameters related to joint angles (i.e., home position of robot), at least

when it comes to Yaskawa Motoman Robotics, Inc. manipulators like the HP20D, MH5-

Hi and MH6. And hence, the DH(-)(-) error model appears to be sufficient in improving

positioning accuracy for most applications where those robots are put to use.

We make use of novel global optimization technique in our automated/numerical appro-

ach used in “Stage 1” to effectively target unstable and/or redundant error parameters

It consists of first gathering a rich set of potential starting points using SA. We then

employ the local solver like TR using those starting points to carry out a GS for the

solution. To our best knowledge, we have not seen that done in any other work. We

found our optimization technique not only to be beneficial from a computational stand

point of view (compared to other global search mechanism that call for a higher number

of starting points) but to also be very well suited for the first stage in this application as it

can provide an automated parametric relevance assessment to the end-user. Based on that
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insight, the user can easily identify the ineffectual error parameters and construct the DH(-)

error model for a given manipulator. We have conducted numerous experiments that show

that the automated evaluation (variance analysis) is consistent with the guidelines that we

analytically established in order to identify irrelevant parameters and to render the model

non-redundant (i.e., to correctly construct the DH(-) model of the manipulator)
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[16] B. Karan and M. Vukobratović, “Calibration and accuracy of manipulation robot

modelsan overview,” Mechanism and Machine Theory, vol. 29, no. 3, pp. 479–500,

1994.

[17] Y. Andrew Liou, P. P. Lin, R. R. Lindeke, and H.-D. Chiang, “Tolerance specification

of robot kinematic parameters using an experimental design techniquethe taguchi

method,” Robotics and computer-integrated manufacturing, vol. 10, no. 3, pp. 199–

207, 1993.

[18] M. Abderrahim, A. Khamis, S. Garrido, and L. Moreno, “Accuracy and calibration

issues of industrial manipulators,” Industrial Robotics: Programming, Simulation

and Applications, 2006.

[19] A. Elatta, L. P. Gen, F. L. Zhi, Y. Daoyuan, and L. Fei, “An overview of robot

calibration,” Information Technology Journal, vol. 3, no. 1, pp. 74–78, 2004.

[20] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators.

Springer Verlag, 2000.

[21] C. Gong, J. Yuan, and J. Ni, “Nongeometric error identification and compensation

for robotic system by inverse calibration,” International Journal of Machine Tools

and Manufacture, vol. 40, no. 14, pp. 2119–2137, 2000.

79



[22] M. R. Driels and U. S. Pathre, “Robot calibration using an automatic theodolite,”

The International Journal of Advanced Manufacturing Technology, vol. 9, no. 2, pp.

114–125, 1994.

[23] J. M. S. Motta, G. C. de Carvalho, and R. McMaster, “Robot calibration using a 3d

vision-based measurement system with a single camera,” Robotics and Computer-

Integrated Manufacturing, vol. 17, no. 6, pp. 487–497, 2001.

[24] R. P. Paul, Robot manipulators: mathematics, programming, and control: the

computer control of robot manipulators. Richard Paul, 1981.

[25] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control. John

Wiley & Sons New York, 2006.

[26] J. Robert, “Fundamentals of Robotics: Analysis and Control,” Canada, Prentice-

Hall, 1990.

[27] J. J. Craig, Introduction to robotics. Addison-Wesley Reading, MA, 1989, vol. 7.

[28] M. Brady, Robot motion: Planning and control. MIT press, 1982.

[29] M. Abderrahim and A. Whittaker, “Kinematic model identification of industrial

manipulators,” Robotics and Computer-Integrated Manufacturing, vol. 16, no. 1,

pp. 1–8, 2000.

[30] X. Yang, L. Wu, J. Li, and K. Chen, “A minimal kinematic model for serial robot

calibration using poe formula,” Robotics and Computer-Integrated Manufacturing,

vol. 30, no. 3, pp. 326–334, 2014.

80



[31] J. Denavit, “A kinematic notation for lower-pair mechanisms based on matrices.”

Trans. of the ASME. Journal of Applied Mechanics, vol. 22, pp. 215–221, 1955.

[32] D. Whitney, C. Lozinski, and J. M. Rourke, “Industrial robot forward calibration

method and results,” Journal of dynamic systems, measurement, and control, vol.

108, no. 1, pp. 1–8, 1986.

[33] H. W. Stone and A. C. Sanderson, “A prototype arm signature identification system,”

in Robotics and Automation. Proceedings. 1987 IEEE International Conference on,

vol. 4. IEEE, 1987, pp. 175–182.

[34] H. W. Stone, Kinematic modeling, identification, and control of robotic

manipulators. Springer, 1987, vol. 29.

[35] W. Veitschegger and C.-H. Wu, “Robot accuracy analysis based on kinematics,”

Robotics and Automation, IEEE Journal of, vol. 2, no. 3, pp. 171–179, 1986.

[36] H. Zhuang, Z. S. Roth, and F. Hamano, “A complete and parametrically

continuous kinematic model for robot manipulators,” Robotics and Automation,

IEEE Transactions on, vol. 8, no. 4, pp. 451–463, 1992.

[37] H. Zhuang and Z. S. Roth, “Robot calibration using the cpc error model,” Robotics

and computer-integrated manufacturing, vol. 9, no. 3, pp. 227–237, 1992.

[38] K. Okamura and F. Park, “Kinematic calibration using the product of exponentials

formula,” Robotica, vol. 14, no. 4, pp. 415–422, 1996.

[39] R. He, Y. Zhao, S. Yang, and S. Yang, “Kinematic-parameter identification for serial-

robot calibration based on poe formula,” Robotics, IEEE Transactions on, vol. 26,

no. 3, pp. 411–423, 2010.

81



[40] X. Yang, L. Wu, J. Li, and K. Chen, “A minimal kinematic model for serial robot

calibration using poe formula,” Robotics and Computer-Integrated Manufacturing,

vol. 30, no. 3, pp. 326–334, 2014.

[41] Yaskawa Motoman Robotics, Inc., “NX100 Controller Manual”, Part

Number:149201-1, Yaskawa Motoman Robotics Inc., Yaskawa America, Inc.,

Motoman Robotics Division, Headquarters and Manufacturing Facility, 100

Automation Way, Miamisburg, OH 45342, United States, 2007. [Online]. Available:

www.motoman.com/

[42] G. Du and P. Zhang, “Online robot calibration based on vision measurement,”

Robotics and Computer-Integrated Manufacturing, vol. 29, no. 6, pp. 484–492,

2013.

[43] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” Journal

of statistical physics, vol. 34, no. 5-6, pp. 975–986, 1984.

[44] L. Davis, “Genetic algorithms and simulated annealing,” 1987.

[45] P. J. Van Laarhoven and E. H. Aarts, Simulated annealing. Springer, 1987.

[46] E. Aarts and J. Korst, “Simulated annealing and boltzmann machines: a stochastic

approach to combinatorial optimization and neural computing,” 1988.

[47] T. R. Tuinstra, “Automatic segmentation of small pulmonary nodules in computed

tomography data using a radial basis function neural network with application to

volume estimation,” Ph.D. dissertation, University of Dayton, 2008.
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APPENDIX A

Geometry of the HP20D manipulator [1, 2].

Figure A.1: Geometry of the HP20D manipulator. All dimensions are metric (mm).
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APPENDIX B

Geometry of the MH5 manipulator [1, 3].

Figure B.1: Geometry of the MH5 manipulator. All dimensions are metric (mm and

degrees).
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APPENDIX C

Geometry of the MH6 manipulator [2, 4].

Figure C.1: Geometry of the MH6 manipulator. All dimensions are metric (mm).
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APPENDIX D

Expressional details of homogeneous transformation matrices.

Rot(x, αi) =




1 0 0 0
0 cos(αi) −sin(αi) 0
0 sin(αi) cos(αi) 0
0 0 0 1




Rot(z, θi =




cos(θi) −sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1




Trans(z, di) =




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1




Trans(x, ai) =




1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




Ai = Rot(z, θi)Trans(z, di)Trans(x, ai)Rot(x, αi)

Ai =




c(θi) −s(θi)c(αi) s(θi)s(αi) (ai)c(θi)
s(θi) c(θi)c(αi) −c(θi)s(αi) ais(θi)
0 s(αi) c(αi) di
0 0 0 1
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RPY (RXtool, RYtool, RZtool) =




c(RZtool)c(RYtool) c(RZtool)s(RXtool)s(RYtool)− c(RXtool)s(RZtool)
c(RYtool)s(RZtool) c(RZtool)c(RXtool) + s(RZtool)s(RXtool)s(RYtool)

−s(RYtool) c(RYtool)s(RXtool)
0 0

· · ·

· · ·

s(RZtool)s(RXtool) + c(RZtool)c(RXtool)s(RYtool) 0
c(RXtool)s(RZtool)s(RYtool)− c(RZtool)s(RXtool) 0

c(RXtool)c(RYtool) 0
0 1




where c() and s() are the short hands of cos() and sin(), respectively.

94



APPENDIX E

Graphical User Interface (GUI).

Figure E.1: Graphical User Interface (GUI) for the proposed calibration framework.

95


